
John sees Mary

Greg Kobele

March 4, 2014

1 Overview

The basic structure I will be assigning to the sentence “John sees Mary” is as
in figure 1. This structure can be thought of as familiar label-free structure,

•

•

•

-s •

•

•

•

-ε •

see

John

Mary

Figure 1: Structure of “John sees Mary”

with a multi-domainance perspective on movement chains. Although the
nodes are ordered on the page, this is not part of this structure; this can be
thought of along the standard LCA lines [Kayne, 1994].

1



It is perhaps easier to understand this structure if we add in node labels.
A perhaps more helpful presentation of this structure is given as figure 2.

T

T

T

-s v

v

v

v

-ε V

see

John

Mary

Figure 2: Structure of “John sees Mary”, with labels

I am assuming post-syntactic head movement of one form [Stabler, 1997]
or another [Kobele, 2002], to derive the complex head sees from the pieces
see, -ε, and -s.

This is mostly a familiar analysis of this sentence, assuming that ob-
jects check case before the subject is merged [Koizumi, 1995]. (The head
labeled -ε is a fusion of little-v and AgrO. I have treated this as one head
here for simplicity.) The only unusual aspect of this is the extra chain posi-
tion for both subject and object. This is because I follow Hornstein [1995]
in adopting a reconstruction approach to quantifier scope, and the object
must therefore be in a position higher than the base position of the subject.
(For other reasons, I want the object to check its case before the subject is
merged.)

I prefer yet another labeling scheme, given in figure 3. I prefer this
scheme because I know how to generate it exactly; it is simply the derivation
for the sentence “John sees Mary” using the lexical items given in table 1.
Viewed as a derivation from the lexical items in table 1, the arcs from the

2



move

move

merge

-s move

merge

move

merge

-ε merge

see

John

Mary

Figure 3: Derivation tree for “John sees Mary”

nodes labeled move to the movers are redundant, in the sense that they
are recoverable from the architecture of the system. Figure 4 shows them
removed. Finally, for purely aesthetic purposes, I prefer the expression with
the selector feature (=x) to come before the one with the selectee feature (x)
in derivation trees. My preferred representation is given as figure 5 below.
In this case, only the relative ordering of John and its sister have changed.

I want to emphasize that the structure in figure 5 just is the structure
we began with in figure 1. It looks different only because of the irrelevant

〈John, d -k -q〉 〈-s, =v +k +q s〉
〈Mary, d -k -q〉 〈-ε, =V +k =d +q v〉

〈see, =d V〉

Table 1: Lexical items (from Kobele [2006])

3



move

move

merge

-s move

merge

John move

merge

-ε merge

see Mary

Figure 4: Derivation tree for “John sees Mary”, with reentrant arcs sup-
pressed

move

move

merge

-s move

merge

move

merge

-ε merge

see Mary

John

Figure 5: Derivation tree for “John sees Mary”, without reentrant arcs, and
with selectors before selectees

orderings of subtrees, and because of the suppressed information about reen-

4



trant arcs. This information is completely recoverable from the features on
the lexical items.

1.1 merge(A, B) = {A, B}

Because of various properties of the MG system, the tree in figure 5 can be
encoded as the following set-theoretic object:

{{{-s, {{{{-ε, {see,Mary}}, John}}}}

The encoding φ works as follows:

φ(`) = `

φ(move(t)) = {φ(t)}
φ(merge(t1, t2)) = {φ(t1), φ(t2)}

Crucially, this can be decoded as well, via a map ψ (in the third case I am
assuming that t1 6= t2):

ψ(`) = `

ψ({t}) = move(ψ(t))
ψ({t1, t2}) = merge(ψ(t1), ψ(t2))

Because whenever a subtree of the form merge(t1, t2) occurs in a derivation,
t1 6= t2, we have that ψ(φ(t)) = t for all t; in other words ψ◦φ is the identity
function, and ψ is a left inverse of φ. Thus MG derivations can be given
equivalently in terms of sets. This means, in particular, that any operation
one would like to perform on one of these representations (sets or trees), one
can define an equivalent operation on the other representation.

One way of thinking about the above is that we are here saying that
merge(A,B) = {A,B}, and we are reducing move to merge in a non-
canonical way by setting move(A) = merge(A,A) = {A}. As a slogan,
move is self-merge. To recap: 1. MG derivations can be given solely in
terms of the equation merge(A,B) = {A,B}, 2. there is no separate opera-
tion of movement; move is simply self-merge, and 3. all operations defined
over derivation trees (like transfer §2) can be extended to these sets via the
operations φ and ψ.

Since many people seem to desire that move be reducible to merge, and
that merge be simply set formation, it behooves us to reflect upon this
extremely straightforward answer to this problem.

5



First, observe that I have done exactly nothing interesting; I have simply
encoded the usual MG derivation tree in terms of sets. Because of the
fact that the two arguments to the merge operation are always distinct
(an empirical observation?), this allows us formal room to encode a unary
operation (in particular, move) as this unused case of merge. This is perhaps
sneaky, but I do not see any deep linguistic insight herein.

Second, observe that my solution is perhaps the simplest possible; I do
not need to allow merge to apply both to an expression and a subpart of
itself (as would be required for move). Instead, only entire expressions are
ever merged (i.e. put into sets) together.

Third, and most importantly, with this best possible solution to the
problem at hand, we seem nowhere nearer to an evolutionary explanation of
the emergence of the combinatory operations (merge and move) of syntax.1

2 Transfer

Structures like the ones above are only good in so far as they correctly pair
up sounds and meanings.2 We have seen (or at least, I have sketched) that
the structures above contain the same information, in the sense that each
can be transformed into any of the others, and back again, without any loss
of information. Still, one might attribute some kind of importance to one
representational scheme over the others, as seems to be behind the desire to
represent things set theoretically (as in §1.1).

However, the representations we have been looking at never need to be
explicitly computed ; Michaelis [2001] and Kobele [2006] have shown how
to perform transfer (-PF and -LF respectively) at each derivational step.
What this means is that there can be no answer to the question of which
representation is ‘right’, as the representation is a description of a process
(of parsing, and generation), and is not a static thing which exists.3 As
Steedman [2000] puts it, these structures are “no more than the trace of the
algorithm that delivers the [. . . ] interpretation”.

1The most interesting ideas I have heard in this regard are those of Steedman [2002].
2I would say rather in so far as they help us account for actual observable properties

of the world (e.g. linguistic behaviour). This seems (perversely in my opinion) an unfash-
ionable view, but, as this note is not an apology for a philosophical position, I will not
pursue this here further.

3To be a little more responsible, I should rather say that everything we would like
to do can be accomplished without ever needing to postulate an object like the ones in
the previous section. It could still be that this perspective is wrong. However, it is not
obviously wrong, and that means that the question about notation only even makes sense
under dubious assumptions about the architecture of the language faculty.

6



Both interface maps operate on objects with the same structure; finite
sequences. Each position in the sequence (other than the first) corresponds
to the interface-legible interpretation of a moving expression. In the case
of the PF interface, I will write the interpretation of expressions as familiar
strings, and in the case of the LF interface, as λ-terms.

To make things convenient, I number the nodes of the derivation tree for
future reference in figure 6.

move8

move7

merge6

-s move5

merge4

move3

merge2

-ε merge1

see Mary

John

Figure 6: Numbers at nodes for easy reference

2.1 Transfer-PF

Here, our interface legible objects are finite sequences whose first component
is a triple of strings (of the form 〈u, v, w〉), and all of whose other compo-
nents are strings. In fact, all sequences will be of length three. Michaelis
[2001] proves that this works, here I simply give the interface objects at each
derivational step. Given an interface object, the string it corresponds to is
obtained by simply concatenating the components of the triples in its first
component.

To begin, the PF-interpretation of a lexical item like 〈John, d -k -q〉 is
the tuple 〈〈ε, John, ε〉, ε, ε〉. Similarly for the other lexical items.4 The ex-
pression ε denotes the empty string, which is the identity for concatentation
(ε_w = w = w_ε).

4This means that a lexical item like 〈α, δ〉 is interpreted as the tuple 〈〈ε, α, ε〉, ε, ε〉.

7



The interpretation of the remaining nodes of the derivation tree is given
as follows:

1. merger of see and Mary

〈〈ε, see, ε〉,Mary, ε〉

2. merger of -ε and the interpretation of 1

〈〈ε, see_-ε, ε〉,Mary, ε〉

3. move applied to 2
〈〈ε, see_-ε, ε〉, ε,Mary〉

4. merger of 3 and John

〈〈ε, see_-ε, ε〉, John,Mary〉

5. move applied to 4

〈〈Mary, see_-ε, ε〉, John, ε〉

6. merger of -s and 5

〈〈ε, see_-ε_-s,Mary〉, John, ε〉

7. move applied to 6

〈〈ε, see_-ε_-s,Mary〉, ε, John〉

8. move applied to 7

〈〈John, see_-ε_-s,Mary〉, ε, ε〉

The string this corresponds to is obtained by concatenating the triple of
strings in the first component, giving “John sees Mary”.5

8



I(John) λP, c, φ.P (j)(c)(λd.φ(j::d))
I(Mary) λP, c, φ.P (m)(c)(λd.φ(m::d))
I(see) λx, y, c, φ.see(x)(y) ∧ φ(c)

everything else the identity function

Table 2: The meanings of lexical items

2.2 Transfer-LF

Here, our interface legible objects are finite sequences of λ-terms. Again,
all sequences will be of length three. (This is not a coincidence.) Kobele
[2012] gives more explication, here I simply give the interface objects at each
derivational step. Given an interface object, the meaning it corresponds to
is its first component.

To begin, the meanings of the lexical items is given in table 2 (from
Kobele [2012]). The interface object associated with a lexical item ` is then
〈I(`), id, id〉, where id is the identity function. Note that, for purists, this
can be encoded as a single λ-term:

λf.f(I(`))(λx.x)(λx.x)

The identity function is a left identity for function application (id(f) = f).
The interpretation of the remaining nodes of the derivation tree is given

as follows:

1. merger of see and Mary

〈λxk.I(see)(xk), I(Mary), id〉

2. merger of -ε and the interpretation of 1

〈λxk.I(-ε)(I(see)(xk)), I(Mary), id〉

3. move applied to 2

〈λxq.I(-ε)(I(see)(xq)), id, I(Mary)〉
5I have erased dashes and the empty string ε. A more sophisticated approach to

morphology could do something more interesting.

9



4. merger of 3 and John

〈λxk, xq.I(-ε)(I(see)(xq))(xk), I(John), I(Mary)〉

5. move applied to 4

〈λxk.I(Mary)(λy.I(-ε)(I(see)(y))(xk)), I(John), id〉

6. merger of -s and 5

〈λxk.I(-s)(I(Mary)(λy.I(-ε)(I(see)(y))(xk)), I(John), id〉

7. move applied to 6

〈λxq.I(-s)(I(Mary)(λy.I(-ε)(I(see)(y))(xq)), id, I(John)〉

8. move applied to 7

〈I(John)(λz.I(-s)(I(Mary)(λy.I(-ε)(I(see)(y))(z)))), id, id〉

The meaning this corresponds to is simply the first component of the tuple,
namely,

I(John)(λz.I(-s)(I(Mary)(λy.I(-ε)(I(see)(y))(z))))

Replacing all I(`) by their meanings as in table 2 (but abbreviating the
meanings of the contentful lexical items by writing these in small caps),
we obtain:

John(λz.id(Mary(λy.id(see(y))(z))))

Reducing next the identity functions under the rule id(x)→ x,6 we obtain:

John(λz.Mary(λy.see(y)(z)))

Unpacking the abbreviation John (from 2) we have:

(λP, c, φ.P (j)(c)(λd.φ(j::d)))(λz.Mary(λy.see(y)(z)))

After β-reduction, we have:

λc, φ.Mary(λy.see(y)(j))(c)(λd.φ(j::d))
6This reduction follows from the definition id := λz.z.

10



Doing the same for Mary, we obtain:

λc, φ.see(m)(j)(c)(λd.φ(j::m::d))

And doing the same for see, we arrive at the following.

λc, φ.see(m)(j) ∧ φ(j::m::c)

This term encodes dynamic discourse context updates in the following
way [de Groote, 2006]. Given as a discourse context c (here understood as a
database of antecedents), rest of the discourse φ (a discourse continuation),
the rest of the discourse is interpreted in the new discourse context updated
with discourse referents for John and Mary, and the meaning of the sentence
is that John saw Mary.

References

P. de Groote. Towards a montagovian account of dynamics. In M. Gibson
and J. Howell, editors, Proceedings of SALT 16, pages 1–16, 2006.

N. Hornstein. Logical Form: From GB to Minimalism. Blackwell, Cam-
bridge, Massachusetts, 1995.

R. Kayne. The Antisymmetry of Syntax. MIT Press, Cambridge, Mas-
sachusetts, 1994.

G. M. Kobele. Formalizing mirror theory. Grammars, 5(3):177–221, 2002.

G. M. Kobele. Generating Copies: An investigation into structural iden-
tity in language and grammar. PhD thesis, University of California, Los
Angeles, 2006.

G. M. Kobele. Importing montagovian dynamics into minimalism. In
D. Béchet and A. Dikovsky, editors, Logical Aspects of Computational
Linguistics, volume 7351 of Lecture Notes in Computer Science, pages
103–118, Berlin, 2012. Springer.

M. Koizumi. Phrase Structure In Minimalist Syntax. PhD thesis, Mas-
sachusetts Institute of Technology, 1995.

J. Michaelis. On Formal Properties of Minimalist Grammars. PhD thesis,
Universität Potsdam, 2001.

11



E. P. Stabler. Derivational minimalism. In C. Retoré, editor, Logical Aspects
of Computational Linguistics, volume 1328 of Lecture Notes in Computer
Science, pages 68–95. Springer-Verlag, Berlin, 1997.

M. Steedman. The Syntactic Process. MIT Press, 2000.

M. Steedman. Plans, affordances, and combinatory grammar. Linguistics
and Philosophy, 25(5-6):723–753, 2002.

12


	Overview
	merge(A,B) = {A,B}

	Transfer
	Transfer-PF
	Transfer-LF


