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Abstract

Recent research in computational linguis-
tics suggests that unbounded dependencies
in phonotactics, morphology, and even
syntax can all be captured by the class of
tier-based strictly local languages. Here,
grounded in the fact that there are phono-
tactic processes that cannot be described
with a simple tier-based account, we ex-
plore a new class of subregular languages
obtained by relaxing a particular con-
straint on the tier-projection mechanism.

1 Introduction

The complexity of linguistic dependencies has
been a topic of great interest in the last decade.
While many dependencies in phonology are local,
and thus can be described with n-gram models, un-
bounded dependencies have proven problematic.
But in fact a minor extension of n-gram models —
tier-based strictly local (TSL) grammars — is suf-
ficient to capture a large number of these processes
(Heinz et al., 2011; McMullin, 2016; McMullin
and Hansson, 2016).

TSL grammars build on the idea of phonologi-
cal tiers, pioneered in representational theories of
phonology for the study of tone systems, among
other things (Goldsmith and Club, 1976). But
Heinz et al. (2011) were the first to argue that a
formal notion of tier could be used to capture long-
distance dependencies. Thus, the class of TSL lan-
guages was introduced, in which a tier is defined
as the projection of a subset of the segments of the
input string, with n-gram constraints acting only
over that subset. This paper explores possible ex-
tensions of the TSL class, that are grounded in the
need to describe problematic phonotactic patters.
By modifying TSL grammars projection mecha-
nism, we show how it is possible to capture out-

lier processes, and study the increase in generative
power that arises even from these minor changes.

The paper is structured as follows. Section 2
presents phonotactic processes that are problem-
atic for the TSL account. Section 3 introduces
mathematical notation that is essential for study-
ing subregular languages. This particularly weak
subregion of the Chomsky hierarchy is discussed
in detail in Section 4, with emphasis on TSL and
its intersection closure. The central result of the
paper is in Section 5, which presents new exten-
sions of TSL, and relates them to the rest of the
subregular hierarchy. Section 6 discusses the im-
plications of these results for linguistics and learn-
ability.

2 Linguistic Motivation

The primary motivation for studying the proper-
ties of TSL extensions comes from their relevance
to the study of phonotactic patterns in natural lan-
guages.

As already mentioned, many dependencies in
phonology can be captured by local constraints
that only make distinctions on the basis of contigu-
ous substrings of segments up to some length k.
For example, a (k=2) local dependency requiring
/s/ to surface as [z] when followed by [l] can be
captured by a grammar that only contains the se-
quence zl (or, alternatively, the negative constraint
∗sl). However, (unbounded) long-distance depen-
dencies cannot be captured with local constraints,
and have been characterized instead as tier-based
strictly local. A full introduction to the formal
properties of TSL is given in Section 4.2.

Intuitively, a TSL dependency is a dependency
that is non-local in the input string, but local over
a special structure called a tier. A tier is defined
as the projection of a subset of the segments of the
input string, and the grammar constraints are char-
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acterized as the set of sequences of length k not
allowed on the tier. For instance, the example in
Figure 1 (from Aari, an Omotic language of south
Ethiopia) shows how to enforce long-distance sibi-
lant harmony (in anteriority) by projecting from
the input a tier T that only contains sibilants, and
ban contiguous ∗ÿs and ∗sÿ on T (c.f. (Hayward,
1990)).

ÿ a: e r s e

∗
ÿ s

T: sibilant harmony

Figure 1: Example from Aari showing long-
distance sibilant harmony as a local dependency
over a sibilant tier.

However, several processes have been reported
that cannot be described by the way TSL currently
combines its projection mechanism — used to fil-
ter irrelevant segments — and strictly local depen-
dencies. In particular, sometimes it is necessary to
check some structural properties of a segment in
the input string before projecting it on a tier.

For example, Baek (2016) discusses the case of
unbounded stress in Eastern Cheremis and Don-
golese Numbian, in which the primary stress falls
on the right-most non-final heavy syllable or —
if there is none — on the initial syllable. Baek
shows that no TSL grammar is able to gener-
ate this pattern, which should allow for well-
formed strings like ĹLLLH while also ruling out
ill-formed strings like ∗ĹLLLHH.

In order to discriminate among those strings,
the essential property to be considered is a sylla-
ble non-finality, which is a structural property and
cannot be deduced from the tier — a final heavy
syllable on a tier may be either non-final or final in
the string the tier was projected from. The gram-
mar would need to check the position of a syllable
before projecting it on a tier. However, this is not
something TSL is currently allowed to do.

Similarly, McMullin (2016) discusses the
Samala language of Southern California, in which
a regressive sibilant harmony with unbounded lo-
cality ([s] and [S] may not co-occur anywhere
within the same word, cf. (a)) overrides a restric-
tion against string-adjacent ∗st, ∗sn, ∗sl that results
in a pattern of dissimilation (see also Applegate
(1972) for the original data set). For example /sn/
surfaces as [Sn] (cf. (b) vs (c)), unless there is an

(a)

∗ s n i P

s n
∗

T

(b)

ok s n e t u s

s n s
∗ ok

T

Figure 2: Example from Samala: (a) is ill-formed
because of adjacent ∗sn; (b) is well-formed since
sn is followed by another s later in the string, but
it is still ruled out by the grammar.

[s] following in the string, in which case it surfaces
as [sn] (cf. (d)):

a) okkSuSojin “I darken it”

b) okSniP “his neck”

c) ∗sniP “his neck”

d) oksnetus “he does it to him”

Figure 2 exemplifies why it is not possible to
capture this overall pattern with a single TSL
grammar. Since [sn] is sometimes observed in a
string-adjacent context (as in (d)), it must be per-
mitted as a 2-gram on a tier (even though it is
only allowed when a segment such as [s] follows
them later in the string). But then, a TSL grammar
would have no means of banning ∗sn when there
is no subsequent [s] in the string (as in (b) vs. (c)).
Vice-versa — as shown is Figure 2 — if we ban
∗sn on T , then the grammar will not be able to al-
low it when another [s] follows on the tier.

A careful reader might point out that the differ-
ence between Figure 2.a and Figure 2.b can be re-
solved by extending the tier-grammar to consider
3-grams. However, in order to ban ∗sn, every oc-
currence of [n] in the input string must projected
on the tier. Since the number of [n] segments be-
tween two sibilants is potentially unbounded, no
TSL grammar can generally account for this pat-
tern, independently of the dimension of the tier k-
grams.

Another example of such processes can be
found in Yaka, where [+nasal] segments start a
harmony domain only if they are not immediately
followed by voiced oral stops (Walker, 2000), or
among culminativity patterns (cf. Heinz (2014)).

All the processes above are beyond the reach of
TSL because projection of a segment is no longer
determined solely by that segment’s label, but also
by other surrounding segments.
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In Section 5, we demonstrate that a very mi-
nor and natural change in the definition of TSL
grammars is sufficient to allow for this kind of
structure-sensitive projection.

3 Preliminaries

Familiarity with set notation is assumed. Given
a finite alphabet Σ , the set of all possible finite
strings of symbols from Σ and the set of strings of
length ≤ n are Σ∗ and Σ≤n, respectively. A lan-
guage L is a subset of Σ∗, which we also refer to as
a Σ-language. The concatenation of two languages
L1L2 = {uv : u ∈ L1andv ∈ L2}. For all strings w
and non-empty strings u, |w| denotes the length of
the string, |w|u denotes the number of occurrences
of u in w, and λ is the unique empty string. Left
and right word boundaries are marked by o,n /∈ Σ

respectively.
We define generalized regular expressions

(GREs) recursively. GREs include λ , /0, and ev-
ery symbol σ ∈ Σ. If R and S are GREs, then
RS, R+ S, R× S, and R∗ are also GREs. The lan-
guage of a GRE is defined as follows. L( /0) = /0.
For all σ ∈ Σ ∪ {λ}, L(σ) = {σ}. If R and S
are regular expressions, then L(RS) = L(R)L(S),
L(R+ S) = L(R)∪L(S), L(R× S) = L(R)∩L(S).
Also, L(R∗) = L(R)∗. A language is regular iff
there is a GRE defining it.

A string u is a k-factor of a string w iff ∃x,y∈Σ∗

such that w = xuy and |u| = k. The function Fk
maps words to the set of k-factors within them.

Fk(w) := {u : u is a k-factor of w}

For example, F2(aab) = {aa,ab}.
The domain Fk is generalized to languages L ⊆

Σ∗ in the usual way: Fk(L) =
⋃

w∈L Fk(w). We also
consider the function which counts k- factors up to
some threshold t.

Fk,t(w) := {(u,n) : u is a k-factor of w and

n = |w|u iff |w|u < t else n = t}

For example F2,3(aaaaab) = {(aa,3),(ab,1)}.
The set of prefixes of w is Pref (w) = {p ∈

Σ∗|w = ps for some s ∈ Σ∗} and the set of suffixes
is Suff (w) = {s∈ Σ∗|w = ps for some s∈ Σ∗}. For
all w ∈ Σ∗ and n ∈N, Suff n(w) is the single suffix
of w of length n if |w| ≥ n , and Suff n(w) = w other-
wise. For any given string w, P≤k(w) is a function
that maps w to the set of subsequences up to length

k in w. Following Oncina and García (1991), for
any function f : Σ∗→ T ∗ and x ∈ Σ∗, the tails of x
with respect to f are defined as:

tails f (x) := {(y,v)| f (xy) = uv∧u = lcp( f (xΣ
∗))}

where lcp(S) is the longest common prefix of a set
of strings S.

Following Oncina et al. (1993), a subsequen-
tial finite state transducer (SFST) is a 6-tuple
(Q,q0,Σ,Γ,δ ,σ), where Q is a finite set of states,
Σ and Γ are finite alphabets, q0 ∈ Q os the initial
state, δ ⊆ Q×Σ×Γ∗×Q is a set of edges, and
σ : Q→ Γ∗ is the final output function that maps
states to strings that are appended to the output if
the input ends in that state. δ recursively defines
a mapping δ ∗ : (q,λ ,λ ,q) ∈ δ ∗; if (q,u,v,q′) ∈ δ ∗

and (q′,σ ,w,q′′) ∈ δ then (q,uσ ,vw,q′) ∈ δ ∗.
In order to simplify some proofs, we rely on

first-order logic characterizations of certain string
languages and string-to-string mappings. As
usual, we allow standard Boolean connectives (∧,
∨, ¬,→), and first-order quantification (∃, ∀) over
individuals. We let x≺ y denote precedence, x≈ y
denote identity, and x,y denote variables ranging
over positions in a finite string w ∈ Σ∗. The re-
maining logical connectives are obtained from the
given ones in the standard fashion, and brackets
may be dropped where convenient. For example,
immediate precedence is defined as x / y ↔ x ≺
y∧¬∃z[x≺ z∧ z≺ y].

We add a dedicated predicate for each label
σ ∈ Σ we wish to use: σ(x) holds iff x is labelled
σ , where x is a position in w. Classical results
on definability of strings represented as finite first-
order structures are then used (McNaughton and
Papert, 1971). If Σ = {σ1, . . . ,σn}, then a string
w ∈ Σ∗ can be represented as a structure Ms in
the signature(σ1(·), . . . ,σn(·),≺). If ϕ is a log-
ical formula without any free variables, we use
L(ϕ) = {w ∈ Σ∗|Ms � ϕ} as the stringset exten-
sion of ϕ .

4 The Subregular Hierarchy

As mentioned earlier, the TSL languages are part
of the subregular hierarchy. Originally defined in
McNaughton and Papert (1971) and subsequently
extended in Rogers et al. (2010), the subregular hi-
erarchy categorizes subclasses of the regular lan-
guages according to their complexity. The hierar-
chy has become very intricate in recent years, and
the reader is referred to Rogers and Pullum (2011),
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Rogers et al. (2013) for details. We only provide
the basic definitions for a few relevant classes 4.1,
and focus instead on TSL, as well as well as its in-
tersection closure (MTSL, (De Santo, 2017)) since
they are central to our results.

4.1 Basic Definitions

Definition 1. (Strictly k-Local) A language L is
strictly k-local iff there exists a finite set S ⊆
Fk(ok−1Σ∗nk−1) such that

L = {w ∈ Σ
∗ : Fk(ok−1wnk−1)⊆ S}

We also call S a strictly k-local grammar. A lan-
guage L is strictly local iff it is strictly k-local for
some k ∈N.

For example, the set of strings (ab)n is a strictly
2-local language licensed by the grammar G =
{oa,ab,ba,b×}, and Σ = {a,b}. Basically, SL
languages describe patterns which depend solely
on the relation between consecutive symbols in a
string.

One note regarding left and right edge-markers:
for S to be k-local, it needs to contain only fac-
tors of length k. Thus, strings are augmented with
enough left and right edge-markers to ensure that
this requirement is satisfied. However, it is often
convenient to shorten the k-factors in the defini-
tion of strictly k-local grammars, and write down
only one instance of each edge-marker, with the
implicit understanding that it must be augmented
to the correct amount. We adopt this simpler nota-
tion throughout the paper, unless required to make
a definition clearer.

Strictly k-local languages are characterized by
k-local suffix substitution closure. This makes it
much easier to show that certain languages are not
strictly local, which greatly simplifies some of the
later proofs.

Definition 2. (Suffix Substitution Closure) A lan-
guage L satisfies k-local suffix substitution clo-
sure iff for all strings u1,v1,u2,v2, there exists
k≥ 1∈N such that for any string x of length k−1,
if u1 · x · v1, u2 · x · v2 ∈ L, then u1 · x · v2 ∈ L.

Theorem 1. A language is strictly k-local SLk iff
it satisfies k-local suffix substitution closure.

Strictly local languages are at the very bottom of
the hierarchy. Closer to the top we find the class
of locally threshold testable languages.

Definition 3. (Locally t-Threshold k-Testable) A
language L is locally t-threshold k-testable iff
∃t,k ∈ N such that ∀w,v ∈ Sigma∗, if Fk,t(w) =
Fk,t(v) then w ∈ L⇔ v ∈ L.

Intuitively LTT languages are those whose
strings contain a restricted number of occurrences
of any k-factor in a string. Practically, LTT lan-
guages can count, but only up to some fixed
threshold t since there is a fixed finite bound on
the number of positions a given grammar can dis-
tinguish.

Properly included in LTT, locally testable (LT)
languages are locally threshold testable with t = 1.

Higher in the hierarchy than TSL are also the
piecewise testable languages discussed by Rogers
and Pullum (2011).
Definition 4. (Piecewise k-Testable) A language L
is piecewise k-testable iff ∃k ∈N such that ∀w,v∈
Σ∗, if P≤k(w) = P≤k(v) then w ∈ L⇔ v ∈ L.
A language is piecewise testable if it is piecewise
k-testable for some k.

Piecewise languages are sensible to relation-
ships between segments based on precedence
(over arbitrary distances) rather than adjacency
(immediate precedence).

The last subregular class relevant to our discus-
sion is the class of star-free languages, a proper
subset of regular languages closed under Boolean
operations. Multiple characterizations are know
for star-free languages. Here we prefer the one
in terms of first-order logic (McNaughton and Pa-
pert, 1971), which is more helpful to some of the
proofs in this paper.
Definition 5. (Star-Free) Star-free (SF) languages
are those that can be described by first order logic
with precedence.

In other words, SF languages are those lan-
guages that can be obtained from a set of unary
predicates by using the operations of union, com-
plement, and concatenation, and which contain no
instances of the Kleene star (∗).

4.2 Tier-based Strictly Local
Tier-based strictly local languages (Heinz et al.,
2011) are an extension of SL languages, where k-
local constraints only apply to elements of a tier
T ⊆ Σ. An erasing (string projection) function is
introduced to delete all symbols that are not in T .

Given some σ ∈ Σ, the erasing function ET :
Σ→ Σ∪λ maps σ to itself if σ ∈ T and to λ oth-
erwise.
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ET (σ) :=

{
σ if σ ∈ T
λ otherwise

We extend ET from symbols to strings in the
usual pointwise fashion.

Definition 6. (TSL Language) A language L is
strictly k-local on tier T iff there exists a tier T ⊆ Σ

and a finite set S⊆ Fk(ok−1T ∗nk−1) such that

L = {w ∈ Σ
∗ : Fk(ok−1ET (w)nk−1)⊆ S}

We also call S the set of permissible k-factors on
tier T .

As can be gleaned from Definition 6 states that a
language L is TSL iff it is strictly k-local on tier T ,
for some tier T ⊆ Σ and k ∈N. Note that the eras-
ing function defines an input strictly local map-
ping as described by (Chandlee, 2014).

Definition 7. (Input Strictly Local Function) A
function f is input strictly k-local (ISL-k) iff there
is some k such that f can be described with a SFST
for which:

1. Q = Σ≤k−1 and q0 = λ

2. (∀q ∈ Q,∀a ∈ Σ,∀u ∈ Γ∗)
[(q,a,u,q′) ∈ δ ⇒ q′ = Suff k−1(qa)]

Given an ISL function, the output for input symbol
σ only depends on the last (k−1) input symbols.

Proposition 1. The erasing function of a TSL lan-
guage is input strictly local with k = 1.

start

σ ∈ T : σ

ε : σ /∈ T

Figure 3: Transducer D

A TSL grammar G can be decomposed into a
cascade of three transducers. The first one is the
ISL-1 transducer for the projection function ET .
The output of that transducer is filtered by the
strictly local grammar S of G. The filtration step
can be implemented by composing ET with the
identity function over L(S). Finally, a third trans-
ducer computes the inverse of ET , mapping every

string s to some s′ such that ET (s′) = s. The trans-
ducer D computing the inverse of ET is shown in
Figure 3.

The transducer perspective gives us interesting
insights into the relation between tier-projection
and strict locality, and further simplifies many
proofs in the paper.

4.3 Multi-Tier Strictly Local Languages
As mentioned in Section 2, while TSL captures
many unbounded dependencies in phonotactics,
the conjunction of distinct TSL languages has
been used in the literature to characterize more
complex patterns.

However, De Santo (2017) shows that TSL lan-
guages are not closed under intersection. Then,
to account for processes requiring more than one
grammar, he introduces multi-tier strictly local
(MTSL) languages as a generalization of TSL
based on a more explicit formal characterization
of the conjunction operation over tiers.

Informally, MTSL can be viewed as TSL lan-
guages projecting over multiple tiers and enforc-
ing a — potentially different — set of constraints
for each tier. Then, a string is in the language iff
each substring is well-formed on every projected
tier. Not too surprisingly, the MTSL class is ex-
actly the intersection closure of TSL.

Definition 8. A multi-tier strictly k-local ((k,n)-
MTSL) language L is the intersection of n dis-
tinct k-TSL languages L1, . . . ,Ln, with k,n ∈ N.
For succinctness, we write that a language is k-
MTSLn, where k,n can be omitted when not rele-
vant to exposition.

The following two theorems sum up most of
the properties of MTSL languages that are rele-
vant to the current work. The reader is referred to
(De Santo, 2017) for proofs of these results.

Theorem 2. The class of MTSL languages is not
closed under union, relative complement, and re-
labelings.

Theorem 3. TSL ( MTSL, MTSL⊂ SF, and MTSL
is incomparable to LTT and PT.

4.4 Logical Definability and Subregularity
The variants of TSL discussed in this paper are
properly contained in the class of star-free lan-
guages. These containment relations are obvi-
ous if one adopts a perspective grounded in first-
order logic. Recall from Definition 5 that a lan-
guage is star-free iff it can be defined in first-order
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logic (FO). The TSL variants can easily be defined
as highly restricted fragments of first-order logic,
wherefore they are all star-free.

The logical characterization of SL as conjunc-
tions of negative literals provides the general tem-
plate which all TSL variants build on. A string sat-
isfies the property pS iff it contains the k-gram p of
grammar S. For example, the strings that are well-
formed with respect to S = {∗ob,∗ bb,∗ aa,∗ an}
are those for which the following holds:

¬ob∧¬bb∧¬aa∧¬an

This statement is a formula of propositional logic,
where each k-gram corresponds to a proposition p,
also called a literal.

Therefore, a strictly k-local grammar S can be
written as a formula

φ =
∧
p∈S

¬p

where

p := ∃x1 . . .xk

[ ∧
1≤i<k

xi 6= xi+1∧ xi / xi+1

]
It is easy to extend this characterization to TSL

languages. We can define tier-precedence with re-
spect to tier T ⊆ Σ as the binary predicate:

x/T y↔T (x)∧T (y)∧ x≺ y

∧¬∃z [T (z)∧ x≺ z∧ z≺ y]

and

T (x)↔
∨
t∈T

t(x)

Thus, every TSL language is defined by an
FO formula like φ above, except that immediate
precedence is replaced by tier-precedence in the
definition of each p. Since every MTSL language
is the intersection of finitely many TSL languages,
the formulae for MTSL languages are conjunc-
tions of TSL formulae.

5 Structure-Sensitive TSL Languages

With all the preliminaries finally in place, we re-
turn to the initial question of how the projection
mechanism of TSL can be extended to handle the
problematic phenomena discussed in Section 2.

The projection mechanism of TSL languages is
based on each segment’s 1-local properties (i.e. its

label and nothing else). This section presents a
new class of grammars: structure-sensitive TSL
(SS-TSL). The projection mechanism of SS-TSL
grammars is generalized from strictly 1-local to
strictly k-local, which makes it possible to project
segments based on the structural context they ap-
pear in. In terms of the transducer perspective
of TSL given at the end of Section 4.2, SS-TSL
grammars are transducer cascades where the first
transducer is expanded from ISL-1 to ISL-k.

5.1 Definition

We define a context c∈C as triple (g,σ ,g′), where
σ ∈ Σ, g is an n-gram and g′ an n′-gram, such that
0≤ |g|+ |g′|< m.

Given w ∈ Σ∗, T ⊆ Σ and a set of contexts
CT , the erasing function ET : Σ → Σ ∪ λ maps
σ to itself iff ∃(g,σ ,g′) ∈ CT s.t. gσg′ ∈
Fm(om−1wnm−1), and to λ otherwise. In other
words, ET (σ) is an ISL-m function projecting a
segment on a tier iff there is at least one matching
context. A TSL erasing function with m > 1 can
also be referred to as structural projection.

Then, the definition of SS-TSL languages mir-
rors the one for TSL.

Definition 9. (Structure-Sensitive TSL) A lan-
guage L is structure-sensitive tier-based strictly
local ((k,m)-SS-TSL) with tier-sensitivity m iff,
given a set of contexts CT and T ⊆ Σ, there ex-
ist an ISL-m erasing function ET , and a finite set
S⊆ Fk(ok−1T ∗nk−1) such that

L = {w ∈ Σ
∗ : Fk(ok−1ET (w)nk−1)⊆ S}

For succinctness, we write L is k-SS-TSLm, where
k and m can be omitted unless required from con-
text.

As an example, assuming Σ = {a,b}, Figure 4
presents an ISL transducer with input and output
alphabet {a,b} that computes the erasing function
ET with structure sensitivity m = 2, projecting on
the tier only a,bs in initial/final position.

In order to characterize SS-TSL in terms of FO,
one has to modify the notion of tier-membership
that is used to determine tier-precedence. For ev-
ery segment, we need to re-define what it means to
belong to a tier based on its m-local properties.
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λstart

a : a

b : b

a : a

b : b

a : λ

b : λ

b : λ

a : λ

Figure 4: ISL2 transducer for tier of first/last a,b

T (x)↔

(∨
t∈T

t(x)

)

∧∃y1 . . .ym−1

[ ∧
1≤i≤m−1

(∨
γ∈Γ

γ(x,yi)

)]

where γ is a FO predicate defining for each yi a
set of possible labels and precedence relationships
to x, In other words, Γ is the set of contexts defined
for tier T .

To give a practical example, suppose we want
an SS-TSLm language such that it projects a tier of
initial/final as. Then:

T (x)↔ a(x)∧∃y[(o(y)∧ y/ x)∨ (n(y)∧ x/ y)]

For ease of exposition, we will refer to
tier-precedence employing this notion of tier-
membership withJT . Then, a SS-TSL language is
described by an FO formula just like the one given
for TSL, using JT instead of /T to define the tier.

5.2 Relations to other Sub-regular Classes

Having provided a complete characterization of
SS-TSL languages, we now establish their posi-
tion inside the subregular hierarchy. In particular,
we show that SS-TSL generalizes TSL in a dif-
ferent ways than MTSL, while still remaining a
proper subset of SF.

Theorem 4. TSL ( SS-TSL.

Proof. The inclusion is a corollary of Proposi-
tion 1, which states that the erasing function of
TSL languages is an ISL mapping with m = 1.
For proper inclusion, consider the language L =
a{a,b}∗b∪ b{a,b}∗a. L can be generated by an
SS-TSL2 grammar with T = {a :oa∨an,b :ob∨
bn} and S= {∗aa,∗ bb}. We can show that L is not
TSL. Consider a{a,b}∗a /∈ L: to rule this string
out, a TSL grammar would need to project every
a on the tier and ban ∗aa. However, this would
also ban a{a,b}∗b ∈ L. Thus, L is SS-TSL2 but
not k-TSL for any k

Lemma 5. SS-TSL languages * MTSL.

Proof. It suffices to give an example of a language
that is SS-TSL, but it is not MTSLn for any n ∈N.
Assume Σ = {a,b}, and once again consider the
language L = a{a,b}∗b∪ b{a,b}∗a. As already
stated in the proof of Theorem 4, L can be gen-
erated by an SS-TSL2 grammar with the erasing
function in Figure 4. Now, if L is MTSLn, it is the
intersection of n distinct TSL languages L1, . . . ,Ln.
Since a{a,b}∗a /∈ L, there has to be at least one Li

projecting every a on the tier, and enforcing ∗aa.
But then, this language would also incorrectly rule
out a{a,b}∗b. Thus, L /∈ MTSLn for any number
of intersecting TSL languages.

Lemma 6. MTSL languages * SS-TSL.

Proof. Again, it is possible to give an example
of a language that is MTSL but not SS-TSLm for
any m. Assume Σ = {a,b,c,d}, and consider
L = b∗a{b,d}∗cd∗. This language is not closed
under suffix substitution, thus it is not SL. But it
can be generated by a MTSL3 grammar with:

T1 = {a,c},ST1 = {∗oc,∗ an,∗on}

T2 = {b,c},ST2 = {∗cb}

T3 = {a,d},ST3 = {∗da}

Assume now that L ∈ SS-TSL. To en-
force the constraints of ST1 and ban strings
like {b,d}∗,b∗a{b,d}∗,{b,d}∗cd∗, the grammar
needs to project a and c on a tier T . Since ∗cb
sequences are also out, b is projected on the tier.
Finally, to avoid ∗da sequences, d needs to be on
the tier too. But now T = Σ, and ST is reduced to a
strictly local grammar over the input string. Since
{a,b,c,d} are all on the tier, ST will not be able to
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rule out strings like {b,d}+ which clearly are not
in L, while allowing the well-formed a{b,d}∗c.
Hence, L /∈ SS-TSLm for any m ∈N.

Theorem 7. The class of MTSL languages and the
class of SS-TSL languages are incomparable.

Proof. Corollary of Lemma 5 and Lemma 6.
Moreover, the two classes are obviously not dis-
joint, since TSL languages are both MTSL and
SS-TSL.

Theorem 8. SS-TSL is incomparable to LT, PT.

Proof. That SS-TSL * LT, PT follows from the
fact that it includes TSL, which is neither.

To see why LT is not a subclass of SS-TSL,
consider Σ = {a,b,c} and a sentential logic for-
mula ϕ := aa→ bb defining a language L = {w ∈
Σ∗|w � ϕ}. Thus, aabb,acbcacbcc,babbb ∈ L but
aaaaa,cacacaccaa /∈ L(ϕ). This language is 2-LT,
and clearly describes patterns that require more
than local constraints.

We can show that L /∈ SS-TSLm, independently
of the locality of the structural projection. Since
strings like aa+ are ill-formed, if L ∈ SS-TSL,
there is a tier T containing every a, and the gram-
mar should ban ∗aa. However, this also incorrectly
rules out the well-formed aa+bb. Given that a+b
is also not part of the language, we should also
project every b on T . Since the number of as
on the tier is potentially unbounded, banning a+b
strings will again result in blocking aa+bb, or ab+.
Thus, L is LT but not SS-TSL.

For PT * SS-TSL, we pick the same exam-
ple as before and we assume that, in the formula
ϕ := aa → bb, aa and bb are predicates based
on precedence (i.e. denoting subsequences) in-
stead than based on immediate precedence (denot-
ing substrings). This language is PT, but again not
SS-TSLm for any m.

Finally, the next result follows naturally from
the possibility to define SS-TSL tiers as first-order
predicates just from precedence.

Lemma 9. SS-TSL ( SF

5.3 Combining Multiple Tiers and Structural
Sensitivity

The fundamental insight in De Santo (2017) is that
the intersection closure of TSL is obtained by sim-
ply allowing a TSL grammar to exploit multiple
projection functions. Similarly, we can define a

new class of languages that are the intersection of
finitely many SS-TSL languages.

Definition 10. (Structure-Sensitive MTSL) Con-
sider a finite set of (k,m)-SS-TSL languages L =
{L1, . . . ,Ln}, with n = |L |. A structure-sensitive
multi-tier strictly local ((k,n,m)-SS-MTSL) lan-
guage L is defined as L :=

⋂
1≤i≤n Li.

We write k-SS-MTSLm
n instead of (k,n,m)-SS-

MTSL. We omit k,n and m when convenient.

Clearly, it is also possible to characterize SS-
MTSL languages in terms of FO logic, using tier-
precedenceJT as defined for SS-TSL. Since every
SS-MTSL language is the intersection of finitely
many TSL languages, the formulae for SS-MTSL
languages are conjunctions of SS-TSL formulae.

We can now place the class of SS-MTSL lan-
guages with respect to the rest of the subregular
hierarchy.

Lemma 10. MTSL ( SS-MTSL

Proof. MTSL ⊆ SS-MTSL follows from defini-
tion, TSL being the set of languages in SS-MTSLm

with m = 1. Proper inclusion is a corollary of
Lemma 7, which states that MTSL and SS-TSL
are incomparable.

This result also clarifies that SS-TSL and SS-
MTSL are in a proper subsumption relationship.

Theorem 11. SS-TSL ( SS-MTSL

Proof. Inclusion is trivial. It is proper since MTSL
and SS-TSL are incomparable, and MTSL ( SS-
MTSL.

Moreover, from the fact that SS-MTSL gram-
mars are FO definable follows that they are SF.

Lemma 12. SS-MTSL ( SF.

Finally, the following result derives the relation
of SS-MTSL to the rest of the hierarchy.

Theorem 13. The class of SS-MTSL languages is
incomparable to LTT, SP.

Proof. That SS-MTSL * LTT, PT follows from
the fact that SS-MTSL properly extends MTSL
and SS-TSL, and from Theorem 8. For the other
direction, we can simply refer to the counter-
examples used in Theorem 8, which are not SS-
MTSL independently of the number of tiers the
grammar is allowed to project.



9

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

5.4 Closure Properties

The current characterization of SS-TSL still lacks
a discussion of its closure properties.

Clearly, SS-TSL is not closed under intersection
This follows from the fact that SS-TSL is properly
included in SS-MTSL, and from Definition 10.

Moreover, both SS-TSL and SS-MTSL are not
closed under relabeling. Simply consider the SL
(thus SS-TSL, SS-MTSL) language Lab = (ab)+

and the relabeling r(L) := {r(w)|w ∈ L} s.t. r :
Σ → {a}: the resulting language is r(Lab) =
(aa)+, which is not even SF.

To shown that SS-TSL is not closed under
union, all we need is to show that the union of SS-
TSL produces languages that cannot be captured
by extending the locality of the ISL erasing func-
tion. In fact, we can exploit the counter-examples
used in De Santo (2017)’s non-closure proofs for
TSL and MTSL languages.

First, we need to introduce some additional no-
tation. Consider a language L over alphabet Σ.
Given {a,b} ⊆ Σ, {a,b}(L) denotes {E{a,b}(s) |
s ∈ L}. Then, T (L) := {ET (s) | s ∈ L}, and
we let the down-projection of T be ↓ T (L) :=
{s ∈ Σ∗ | ET (s) ∈ T (L)}, with T ⊆ Σ. Note that
↓ T (L) is the language resulting from the cascade
ISL→ id(SL)→ D described in Section 4.2, and
may be a proper superset of L.

Now, let Σ := {a,b,c} and L1 and L2 the largest
Σ-languages such that {a,b}(L1) := a+b+ and
{a,b}(L2) := b+a+. L1 and L2 are 2-TSL (thus
2-SS-TSL1) and that L1 ∪ L2 =↓ T (L1 ∪ L2) iff
T := {a,b}. But {a,b}(L1∪L2) = a+b+∪b+a+,
and it is not closed under k-local suffix substitution
for any choice of k:

a a b · · · b a a /∈ L

a b · · · b b ∈ L
b · · · b a a ∈ L

x

Thus, L1∪L2 is not TSL. The problem here is that
the union of two TSL languages results is a tier-
language that is not strictly local. This cannot be
fixed by moving to an SS-TSL grammar. To rule
out strings like b+,a+,{a,b}+a+, we still need to
project a,b on the tier, independently of the local-
ity of the ISL projection function.

Although this is not an exhaustive formal proof,
the counter-example illustrates the essential in-
sight: that the union of TSL includes languages
that need every element of the alphabet on the tier,

and therefore cannot be described by simply in-
creasing the locality of the structural projection.

The actual proof is convoluted and not particu-
larly informative, since it relies even more heav-
ily on technical notation, in order to consider all
possible combination of structural tier-projection.
Thus, we omitted it here, preferring to outline the
essential underlying intuitions instead.

Proposition 2. SS-TSL is not closed under inter-
section, union, and relabelings.

6 Discussion

The TSL class comes with particularly tight con-
straints on the erasing function. The inspiration
behind this paper was to try and explore the effects
of relaxing such constraints, thus allowing for
more general definitions of the projection mech-
anism. The final hierarchy of subregular classes
as discussed in this paper is shown in Figure 5.

This figure also includes a class of languages —
not discussed here — that further extends TSL by
allowing projections of tiers from tiers as a cas-
cade of ISL erasing functions. Preliminary work
indicates that this extension (TESL) properly in-
cludes SS-TSL, and that its intersection closure
(MTESL) subsumes even SS-MTSL languages.
Future work on the properties of these classes
might reveal whether they have any practical use
for linguistics.

Furthermore, we could gain a more comprehen-
sive understanding of the refined subregular hier-
archy as developed in recent years by comparing
SS-TSL and De Santo (2017)’s MTSL to the class
of interval-based strictly piecewise languages in-
troduced by Graf (2016) as an extension of TSL,
SL and SP.

6.1 Learnability Considerations

From a linguistic perspective, the phonotactic
learning problem in concerned with the way a
speaker learns to distinguish between ill-formed
and well-formed strings given a finite set of strings
of the language. As observed by Heinz and Rig-
gle (2011) (cf. Albright and Hayes (2011)), by
focusing on formal classes of languages, a theory
of learning will be able to determine characteris-
tics of the inputs data that fundamentally underlie
learnability/acquisition.

It is known that TSL languages are learnable in
the limit from positive data. Given a fixed alpha-
bet and a fixed k, the number of possible tiers and
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Regular
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LTT

LT
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MTSL SS-TSL
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TSL

Figure 5: Proper inclusion relationships among
subregular language classes. This paper estab-
lishes the SS-TSL and SS-MTSL. It also lays
the ground for further explorations of TESL and
MTESL.

permissible tier k-factors is finite, and thus learn-
able, since any finite class of languages is identifi-
able in the limit via an enumeration method (Gold,
1967). Not surprisingly, this result extends to our
new classes, which are finite given upper bounds
on their fundamental parameters (number of tiers,
locality of constraints, locality of projection). In
fact, the true constraints to learnability come just
from the locality of the ISL projection function,
and from the locality of tier-grams, since the num-
ber of useful (i.e. distinct and with separate gram-
mars) tiers is always finite, and bounded by the
size of the alphabet.

Theorem 14. The classes of SS-TSL and SS-MTSL
are learnable in the limit from positive data.

Besides general learnability, proving that sub-
regular classes are learnable with computationally
efficient methods has important consequences for
the cognitive relevance of TSL extensions. Al-
though learners based on Gold paradigm are re-
portedly inefficient, a series of learning algorithms
grounded in grammatical inference and formal
language theory have been proposed in the past.

For example, Jardine and Heinz (2016) present
an algorithm for learning 2-TSL languages, prov-
ing that constraints over phonological tiers can be
learned even when the tier alphabet is not known
a priori. Jardine and McMullin (2016) further ex-
tend this result, and establish a learner that is guar-

anteed to induce a TSLk grammar in polynomial
time and data. The latter seems to be easily adapt-
able to SS-TSL, by inducing a tier of segments
based on their k-local properties. Moreover, Chan-
dlee et al. (2014) also presents an algorithm cru-
cially based on the properties of input strictly local
functions, which offers promising perspectives in
efficiently learning the ISLk erasing function.

As for multiple-tier grammars, McMullin and
Allen (2015) propose a learner for conjoined TSL
languages that exploits search over lattices. While
their implementation still lacks generality, in the-
ory it should also work for SS-MTSL.

Overall, the extensive amount of work on effi-
cient learners for subregular classes encourages us
to propose the following conjecture:

Conjecture 1. The classes of SS-TSL and SS-
MTSL are efficiently learnable from a polynomial
sample size in polynomial time.

Future work will focus on adapting some of the
algorithms described above to SS-TSL, in order
to test this conjecture and compare performances.
Among alternative approaches worth exploring,
Goldsmith and Riggle (2012) propose a tier-based
learner for harmony patterns relying on mutual in-
formation.

6.2 Implications for Phonology

In Section 2, we argued that the classes discussed
in this paper are motivated by the existence of
phonotactic processes that exceed the expressive
power of TSL. These patterns can easily be cov-
ered by SS-TSL languages, which provide an eras-
ing function sensible to local properties of the seg-
ments in the string.

For instance, recall the harmony process in
Samala, which combined a long-distance sibilant
harmony with local dissimilation between /s/ and
/n/. This kind of expressivity can now be accom-
plished by increasing the locality window of the
tier projection mechanism.

For example, Figure 6 shows how, by increas-
ing the locality of the projection to 2, we allow the
grammar to project [n] iff it is immediately pre-
ceded by a sibilant in the input string, and then use
3-local tier constraints to ban {∗sn(¬s),∗Sns}, in
addition to the factors needed to enforce the usual
sibilant harmony patterns.

This time, the possible unboundedness of /n/
is not a problem, since/n/ is now relevant for the
projection only when adjacent to a sibilant.
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(b)

o s n e t u s n

o s n s n
ok

T

(a)

o s n i P n

o s n n
∗

T

Figure 6: Example from Samala: (a) is ill-formed
because of adjacent ∗sn; (b) is well-formed since
[sn] is followed by another [s] later in the string.
Note that [n] is projected on the tier only when
adjacent to [s]

One problem with the additional structure-
sensibility of SS-TSL grammars is that it can lead
to the generation of patterns that are unattested
among natural phonotactics. The grammar for
Samala, for example, can easily be modified to en-
force harmony between the first and last segment
to the exclusion of any other material, by project-
ing only sibilants in initial/final position. Not only
is such a pattern unattested, experimental evidence
suggests that it is never entertained as a possible
phonological dependency (Lai, 2015).

In future, we should see whether it is possi-
ble to carve a subclass of structure-sensitive lan-
guages that covers the desired SS-TSL patterns
while avoiding the unnatural ones.

Another useful direction could be to compare
SS-TSL against the constraint-based approach to
TSL proposed by McMullin (2016) along the lines
of Optimality Theory (OT; (Prince and Smolensky,
2008)). The idea is to account for phonotactic pat-
terns in which local and non-local dependencies
interact, by representing each OT constraint as in-
dividual, ranked, and violable 2-TSL grammars.

Most of the patterns covered by SS-TSL can be
captured this way. However, the operation of rank-
ing TSL languages is still lacking a proper formal-
ization, and it is not clear whether the generative
complexity of the formalism is still subregular.

Interestingly, OT systems can be implemented
through finite-state transducers, if each constraint
distinguishes among only a finite set of equiv-
alence classes of candidates (Frank and Satta,
1998). Then, this paper approach to TSL in terms
of cascades of ISL functions should make it easier

to study TSL rankings, once the effects of com-
posing ISL functions are better understood.

Evidently, to really assess the linguistic useful-
ness of what we can now call the TSL neighbor-
hood, there is need for a more careful typologi-
cal exploration. In particular, moving to linguistic
domains in which attempts to a subregular anal-
ysis are just at the beginning (i.e. morphotactics
(Aksënova et al., 2016), syntax, or even semantics
(Graf, 2017)) should improve our empirical under-
standing of the TSL extensions in Figure 5.

6.3 Implications for Syntax

Since the current consensus is that the require-
ments of syntax greatly exceed the computational
power of regular languages1, it is probably not par-
ticularly surprising that most of the work connect-
ing notions in the subregular hierarchy to natural
language processes has been done in phonology.

Recently, Graf (2014) proposed that syntactic
dependencies are finite-state over MG derivation
trees (Stabler, 1997), in the same way phonolog-
ical dependencies are finite-state over strings (see
also (Graf and Heinz, 2015)). Following up on this
proposal, Graf and Heinz (2016) explore links be-
tween syntax and the subregular hierarchy, show-
ing that Merge and Move are in fact TSL oper-
ations — given some assumption on the proper-
ties of the MG used to encode the language. In
this account, a grammar projects a node on a tree-
tier based on that node label (e.g. project a tier
of nodes labeled TP or DP). However, in standard
MGs merge nodes are not explicitly labeled, since
the grammar is always able to reconstruct the type
of a node via the features that lead to that con-
stituent’s formation. Thus, to really be able to
project tiers on a MG tree, a grammar needs to re-
construct the type of a node from the properties
encoded in the features of the head of the con-
stituent rooted in that node. While this would be
tricky to accomplish with a purely TSL grammar,
the projection of a node based on the properties of
its neighbors is exactly what SS-TSL allows.

7 Conclusions

A growing body of literature is exploring TSL lan-
guages as a good computational hypothesis for
the complexity of phonotactic patterns. However,

1There is still some disagreement about the maximum
complexity of syntactic patterns. See (Kobele, 2006),
(Shieber, 1985) for discussions on this issue.
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the TSL class comes with particularly tight con-
straints on the projection function. Here we relax
some of these constraints, allowing for more gen-
eral definitions of tier-projection. The resulting
new class naturally extends TSL, and easily cap-
tures patterns — previously problematic for TSL
accounts — in which local and non-local depen-
dencies interact. The fact that a few minor modi-
fications to TSL allow us to cover previously un-
accounted patterns, while keeping the generative
power in check, supports future studies of this re-
gion. This also suggests that understanding the
way constraints on the projection mechanism re-
strain TSL generative power could help identify
fundamental underlying properties of phonotactic
dependencies, and opens the way to significant fu-
ture work both in formal language theory and in
subregular approaches to linguistic phenomena.
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