
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

Structure Sensitive Tier Projection: Applications and Formal Properties

Anonymous ACL submission

Abstract

Recent research in computational linguis-
tics suggests that unbounded dependencies
in phonotactics, morphology, and even
syntax can all be captured by the class of
tier-based strictly local languages. Here,
grounded in the fact that there are phono-
tactic processes that cannot be described
with a simple tier-based account, we ex-
plore a new class of subregular languages
obtained by relaxing a particular con-
straint on the tier-projection mechanism.

1 Introduction

The complexity of linguistic dependencies has
been a topic of great interest in the last decade.
While many dependencies in phonology are local,
and thus can be described with n-gram models, un-
bounded dependencies have proven problematic.
But in fact a minor extension of n-gram models —
tier-based strictly local (TSL) grammars — is suf-
ficient to capture a large number of these processes
(Heinz et al., 2011; McMullin, 2016; McMullin
and Hansson, 2016).

TSL grammars build on the idea of phonologi-
cal tiers, pioneered in representational theories of
phonology for the study of tone systems, among
other things (Goldsmith and Club, 1976). But
Heinz et al. (2011) were the first to argue that a
formal notion of tier could be used to capture long-
distance dependencies. Thus, the class of TSL lan-
guages was introduced, in which a tier is defined
as the projection of a subset of the segments of the
input string, with n-gram constraints acting only
over that subset. This paper explores possible ex-
tensions of the TSL class, that are grounded in the
need to describe problematic phonotactic patters.
By modifying TSL grammars projection mecha-
nism, we show how it is possible to capture out-

lier processes, and study the increase in generative
power that arises even from these minor changes.

The paper is structured as follows. Section 2
presents phonotactic processes that are problem-
atic for the TSL account. Section 3 introduces
mathematical notation that is essential for study-
ing subregular languages. This particularly weak
subregion of the Chomsky hierarchy is discussed
in detail in Section 4, with emphasis on TSL and
its intersection closure. The central result of the
paper is in Section 5, which presents new exten-
sions of TSL, and relates them to the rest of the
subregular hierarchy. Section 6 discusses the im-
plications of these results for linguistics and learn-
ability.

2 Linguistic Motivation

The primary motivation for studying the proper-
ties of TSL extensions comes from their relevance
to the study of phonotactic patterns in natural lan-
guages.

As already mentioned, many dependencies in
phonology can be captured by local constraints
that only make distinctions on the basis of contigu-
ous substrings of segments up to some length k.
For example, a (k=2) local dependency requiring
/s/ to surface as [z] when followed by [l] can be
captured by a grammar that only contains the se-
quence zl (or, alternatively, the negative constraint
∗sl). However, (unbounded) long-distance depen-
dencies cannot be captured with local constraints,
and have been characterized instead as tier-based
strictly local. A full introduction to the formal
properties of TSL is given in Section 4.2.

Intuitively, a TSL dependency is a dependency
that is non-local in the input string, but local over
a special structure called a tier. A tier is defined
as the projection of a subset of the segments of the
input string, and the grammar constraints are char-

2

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

acterized as the set of sequences of length k not
allowed on the tier. For instance, the example in
Figure 1 (from Aari, an Omotic language of south
Ethiopia) shows how to enforce long-distance sibi-
lant harmony (in anteriority) by projecting from
the input a tier T that only contains sibilants, and
ban contiguous ∗ÿs and ∗sÿ on T (c.f. (Hayward,
1990)).

ÿ a: e r s e

∗
ÿ s

T: sibilant harmony

Figure 1: Example from Aari showing long-
distance sibilant harmony as a local dependency
over a sibilant tier.

However, several processes have been reported
that cannot be described by the way TSL currently
combines its projection mechanism — used to fil-
ter irrelevant segments — and strictly local depen-
dencies. In particular, sometimes it is necessary to
check some structural properties of a segment in
the input string before projecting it on a tier.

For example, Baek (2016) discusses the case of
unbounded stress in Eastern Cheremis and Don-
golese Numbian, in which the primary stress falls
on the right-most non-final heavy syllable or —
if there is none — on the initial syllable. Baek
shows that no TSL grammar is able to gener-
ate this pattern, which should allow for well-
formed strings like ĹLLLH while also ruling out
ill-formed strings like ∗ĹLLLHH.

In order to discriminate among those strings,
the essential property to be considered is a sylla-
ble non-finality, which is a structural property and
cannot be deduced from the tier — a final heavy
syllable on a tier may be either non-final or final in
the string the tier was projected from. The gram-
mar would need to check the position of a syllable
before projecting it on a tier. However, this is not
something TSL is currently allowed to do.

Similarly, McMullin (2016) discusses the
Samala language of Southern California, in which
a regressive sibilant harmony with unbounded lo-
cality ([s] and [S] may not co-occur anywhere
within the same word, cf. (a)) overrides a restric-
tion against string-adjacent ∗st, ∗sn, ∗sl that results
in a pattern of dissimilation (see also Applegate
(1972) for the original data set). For example /sn/
surfaces as [Sn] (cf. (b) vs (c)), unless there is an

(a)

∗ s n i P

s n
∗

T

(b)

ok s n e t u s

s n s
∗ ok

T

Figure 2: Example from Samala: (a) is ill-formed
because of adjacent ∗sn; (b) is well-formed since
sn is followed by another s later in the string, but
it is still ruled out by the grammar.

[s] following in the string, in which case it surfaces
as [sn] (cf. (d)):

a) okkSuSojin “I darken it”

b) okSniP “his neck”

c) ∗sniP “his neck”

d) oksnetus “he does it to him”

Figure 2 exemplifies why it is not possible to
capture this overall pattern with a single TSL
grammar. Since [sn] is sometimes observed in a
string-adjacent context (as in (d)), it must be per-
mitted as a 2-gram on a tier (even though it is
only allowed when a segment such as [s] follows
them later in the string). But then, a TSL grammar
would have no means of banning ∗sn when there
is no subsequent [s] in the string (as in (b) vs. (c)).
Vice-versa — as shown is Figure 2 — if we ban
∗sn on T , then the grammar will not be able to al-
low it when another [s] follows on the tier.

A careful reader might point out that the differ-
ence between Figure 2.a and Figure 2.b can be re-
solved by extending the tier-grammar to consider
3-grams. However, in order to ban ∗sn, every oc-
currence of [n] in the input string must projected
on the tier. Since the number of [n] segments be-
tween two sibilants is potentially unbounded, no
TSL grammar can generally account for this pat-
tern, independently of the dimension of the tier k-
grams.

Another example of such processes can be
found in Yaka, where [+nasal] segments start a
harmony domain only if they are not immediately
followed by voiced oral stops (Walker, 2000), or
among culminativity patterns (cf. Heinz (2014)).

All the processes above are beyond the reach of
TSL because projection of a segment is no longer
determined solely by that segment’s label, but also
by other surrounding segments.

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

In Section 5, we demonstrate that a very mi-
nor and natural change in the definition of TSL
grammars is sufficient to allow for this kind of
structure-sensitive projection.

3 Preliminaries

Familiarity with set notation is assumed. Given
a finite alphabet Σ , the set of all possible finite
strings of symbols from Σ and the set of strings of
length ≤ n are Σ∗ and Σ≤n, respectively. A lan-
guage L is a subset of Σ∗, which we also refer to as
a Σ-language. The concatenation of two languages
L1L2 = {uv : u ∈ L1andv ∈ L2}. For all strings w
and non-empty strings u, |w| denotes the length of
the string, |w|u denotes the number of occurrences
of u in w, and λ is the unique empty string. Left
and right word boundaries are marked by o,n /∈ Σ

respectively.
We define generalized regular expressions

(GREs) recursively. GREs include λ , /0, and ev-
ery symbol σ ∈ Σ. If R and S are GREs, then
RS, R+ S, R× S, and R∗ are also GREs. The lan-
guage of a GRE is defined as follows. L(/0) = /0.
For all σ ∈ Σ ∪ {λ}, L(σ) = {σ}. If R and S
are regular expressions, then L(RS) = L(R)L(S),
L(R+ S) = L(R)∪L(S), L(R× S) = L(R)∩L(S).
Also, L(R∗) = L(R)∗. A language is regular iff
there is a GRE defining it.

A string u is a k-factor of a string w iff ∃x,y∈Σ∗

such that w = xuy and |u| = k. The function Fk
maps words to the set of k-factors within them.

Fk(w) := {u : u is a k-factor of w}

For example, F2(aab) = {aa,ab}.
The domain Fk is generalized to languages L ⊆

Σ∗ in the usual way: Fk(L) =
⋃

w∈L Fk(w). We also
consider the function which counts k- factors up to
some threshold t.

Fk,t(w) := {(u,n) : u is a k-factor of w and

n = |w|u iff |w|u < t else n = t}

For example F2,3(aaaaab) = {(aa,3),(ab,1)}.
The set of prefixes of w is Pref (w) = {p ∈

Σ∗|w = ps for some s ∈ Σ∗} and the set of suffixes
is Suff (w) = {s∈ Σ∗|w = ps for some s∈ Σ∗}. For
all w ∈ Σ∗ and n ∈N, Suff n(w) is the single suffix
of w of length n if |w| ≥ n , and Suff n(w) = w other-
wise. For any given string w, P≤k(w) is a function
that maps w to the set of subsequences up to length

k in w. Following Oncina and García (1991), for
any function f : Σ∗→ T ∗ and x ∈ Σ∗, the tails of x
with respect to f are defined as:

tails f (x) := {(y,v)| f (xy) = uv∧u = lcp(f (xΣ
∗))}

where lcp(S) is the longest common prefix of a set
of strings S.

Following Oncina et al. (1993), a subsequen-
tial finite state transducer (SFST) is a 6-tuple
(Q,q0,Σ,Γ,δ ,σ), where Q is a finite set of states,
Σ and Γ are finite alphabets, q0 ∈ Q os the initial
state, δ ⊆ Q×Σ×Γ∗×Q is a set of edges, and
σ : Q→ Γ∗ is the final output function that maps
states to strings that are appended to the output if
the input ends in that state. δ recursively defines
a mapping δ ∗ : (q,λ ,λ ,q) ∈ δ ∗; if (q,u,v,q′) ∈ δ ∗

and (q′,σ ,w,q′′) ∈ δ then (q,uσ ,vw,q′) ∈ δ ∗.
In order to simplify some proofs, we rely on

first-order logic characterizations of certain string
languages and string-to-string mappings. As
usual, we allow standard Boolean connectives (∧,
∨, ¬,→), and first-order quantification (∃, ∀) over
individuals. We let x≺ y denote precedence, x≈ y
denote identity, and x,y denote variables ranging
over positions in a finite string w ∈ Σ∗. The re-
maining logical connectives are obtained from the
given ones in the standard fashion, and brackets
may be dropped where convenient. For example,
immediate precedence is defined as x / y ↔ x ≺
y∧¬∃z[x≺ z∧ z≺ y].

We add a dedicated predicate for each label
σ ∈ Σ we wish to use: σ(x) holds iff x is labelled
σ , where x is a position in w. Classical results
on definability of strings represented as finite first-
order structures are then used (McNaughton and
Papert, 1971). If Σ = {σ1, . . . ,σn}, then a string
w ∈ Σ∗ can be represented as a structure Ms in
the signature(σ1(·), . . . ,σn(·),≺). If ϕ is a log-
ical formula without any free variables, we use
L(ϕ) = {w ∈ Σ∗|Ms � ϕ} as the stringset exten-
sion of ϕ .

4 The Subregular Hierarchy

As mentioned earlier, the TSL languages are part
of the subregular hierarchy. Originally defined in
McNaughton and Papert (1971) and subsequently
extended in Rogers et al. (2010), the subregular hi-
erarchy categorizes subclasses of the regular lan-
guages according to their complexity. The hierar-
chy has become very intricate in recent years, and
the reader is referred to Rogers and Pullum (2011),

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

Rogers et al. (2013) for details. We only provide
the basic definitions for a few relevant classes 4.1,
and focus instead on TSL, as well as well as its in-
tersection closure (MTSL, (De Santo, 2017)) since
they are central to our results.

4.1 Basic Definitions

Definition 1. (Strictly k-Local) A language L is
strictly k-local iff there exists a finite set S ⊆
Fk(ok−1Σ∗nk−1) such that

L = {w ∈ Σ
∗ : Fk(ok−1wnk−1)⊆ S}

We also call S a strictly k-local grammar. A lan-
guage L is strictly local iff it is strictly k-local for
some k ∈N.

For example, the set of strings (ab)n is a strictly
2-local language licensed by the grammar G =
{oa,ab,ba,b×}, and Σ = {a,b}. Basically, SL
languages describe patterns which depend solely
on the relation between consecutive symbols in a
string.

One note regarding left and right edge-markers:
for S to be k-local, it needs to contain only fac-
tors of length k. Thus, strings are augmented with
enough left and right edge-markers to ensure that
this requirement is satisfied. However, it is often
convenient to shorten the k-factors in the defini-
tion of strictly k-local grammars, and write down
only one instance of each edge-marker, with the
implicit understanding that it must be augmented
to the correct amount. We adopt this simpler nota-
tion throughout the paper, unless required to make
a definition clearer.

Strictly k-local languages are characterized by
k-local suffix substitution closure. This makes it
much easier to show that certain languages are not
strictly local, which greatly simplifies some of the
later proofs.

Definition 2. (Suffix Substitution Closure) A lan-
guage L satisfies k-local suffix substitution clo-
sure iff for all strings u1,v1,u2,v2, there exists
k≥ 1∈N such that for any string x of length k−1,
if u1 · x · v1, u2 · x · v2 ∈ L, then u1 · x · v2 ∈ L.

Theorem 1. A language is strictly k-local SLk iff
it satisfies k-local suffix substitution closure.

Strictly local languages are at the very bottom of
the hierarchy. Closer to the top we find the class
of locally threshold testable languages.

Definition 3. (Locally t-Threshold k-Testable) A
language L is locally t-threshold k-testable iff
∃t,k ∈ N such that ∀w,v ∈ Sigma∗, if Fk,t(w) =
Fk,t(v) then w ∈ L⇔ v ∈ L.

Intuitively LTT languages are those whose
strings contain a restricted number of occurrences
of any k-factor in a string. Practically, LTT lan-
guages can count, but only up to some fixed
threshold t since there is a fixed finite bound on
the number of positions a given grammar can dis-
tinguish.

Properly included in LTT, locally testable (LT)
languages are locally threshold testable with t = 1.

Higher in the hierarchy than TSL are also the
piecewise testable languages discussed by Rogers
and Pullum (2011).
Definition 4. (Piecewise k-Testable) A language L
is piecewise k-testable iff ∃k ∈N such that ∀w,v∈
Σ∗, if P≤k(w) = P≤k(v) then w ∈ L⇔ v ∈ L.
A language is piecewise testable if it is piecewise
k-testable for some k.

Piecewise languages are sensible to relation-
ships between segments based on precedence
(over arbitrary distances) rather than adjacency
(immediate precedence).

The last subregular class relevant to our discus-
sion is the class of star-free languages, a proper
subset of regular languages closed under Boolean
operations. Multiple characterizations are know
for star-free languages. Here we prefer the one
in terms of first-order logic (McNaughton and Pa-
pert, 1971), which is more helpful to some of the
proofs in this paper.
Definition 5. (Star-Free) Star-free (SF) languages
are those that can be described by first order logic
with precedence.

In other words, SF languages are those lan-
guages that can be obtained from a set of unary
predicates by using the operations of union, com-
plement, and concatenation, and which contain no
instances of the Kleene star (∗).

4.2 Tier-based Strictly Local
Tier-based strictly local languages (Heinz et al.,
2011) are an extension of SL languages, where k-
local constraints only apply to elements of a tier
T ⊆ Σ. An erasing (string projection) function is
introduced to delete all symbols that are not in T .

Given some σ ∈ Σ, the erasing function ET :
Σ→ Σ∪λ maps σ to itself if σ ∈ T and to λ oth-
erwise.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

ET (σ) :=

{
σ if σ ∈ T
λ otherwise

We extend ET from symbols to strings in the
usual pointwise fashion.

Definition 6. (TSL Language) A language L is
strictly k-local on tier T iff there exists a tier T ⊆ Σ

and a finite set S⊆ Fk(ok−1T ∗nk−1) such that

L = {w ∈ Σ
∗ : Fk(ok−1ET (w)nk−1)⊆ S}

We also call S the set of permissible k-factors on
tier T .

As can be gleaned from Definition 6 states that a
language L is TSL iff it is strictly k-local on tier T ,
for some tier T ⊆ Σ and k ∈N. Note that the eras-
ing function defines an input strictly local map-
ping as described by (Chandlee, 2014).

Definition 7. (Input Strictly Local Function) A
function f is input strictly k-local (ISL-k) iff there
is some k such that f can be described with a SFST
for which:

1. Q = Σ≤k−1 and q0 = λ

2. (∀q ∈ Q,∀a ∈ Σ,∀u ∈ Γ∗)
[(q,a,u,q′) ∈ δ ⇒ q′ = Suff k−1(qa)]

Given an ISL function, the output for input symbol
σ only depends on the last (k−1) input symbols.

Proposition 1. The erasing function of a TSL lan-
guage is input strictly local with k = 1.

start

σ ∈ T : σ

ε : σ /∈ T

Figure 3: Transducer D

A TSL grammar G can be decomposed into a
cascade of three transducers. The first one is the
ISL-1 transducer for the projection function ET .
The output of that transducer is filtered by the
strictly local grammar S of G. The filtration step
can be implemented by composing ET with the
identity function over L(S). Finally, a third trans-
ducer computes the inverse of ET , mapping every

string s to some s′ such that ET (s′) = s. The trans-
ducer D computing the inverse of ET is shown in
Figure 3.

The transducer perspective gives us interesting
insights into the relation between tier-projection
and strict locality, and further simplifies many
proofs in the paper.

4.3 Multi-Tier Strictly Local Languages
As mentioned in Section 2, while TSL captures
many unbounded dependencies in phonotactics,
the conjunction of distinct TSL languages has
been used in the literature to characterize more
complex patterns.

However, De Santo (2017) shows that TSL lan-
guages are not closed under intersection. Then,
to account for processes requiring more than one
grammar, he introduces multi-tier strictly local
(MTSL) languages as a generalization of TSL
based on a more explicit formal characterization
of the conjunction operation over tiers.

Informally, MTSL can be viewed as TSL lan-
guages projecting over multiple tiers and enforc-
ing a — potentially different — set of constraints
for each tier. Then, a string is in the language iff
each substring is well-formed on every projected
tier. Not too surprisingly, the MTSL class is ex-
actly the intersection closure of TSL.

Definition 8. A multi-tier strictly k-local ((k,n)-
MTSL) language L is the intersection of n dis-
tinct k-TSL languages L1, . . . ,Ln, with k,n ∈ N.
For succinctness, we write that a language is k-
MTSLn, where k,n can be omitted when not rele-
vant to exposition.

The following two theorems sum up most of
the properties of MTSL languages that are rele-
vant to the current work. The reader is referred to
(De Santo, 2017) for proofs of these results.

Theorem 2. The class of MTSL languages is not
closed under union, relative complement, and re-
labelings.

Theorem 3. TSL (MTSL, MTSL⊂ SF, and MTSL
is incomparable to LTT and PT.

4.4 Logical Definability and Subregularity
The variants of TSL discussed in this paper are
properly contained in the class of star-free lan-
guages. These containment relations are obvi-
ous if one adopts a perspective grounded in first-
order logic. Recall from Definition 5 that a lan-
guage is star-free iff it can be defined in first-order

6

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

logic (FO). The TSL variants can easily be defined
as highly restricted fragments of first-order logic,
wherefore they are all star-free.

The logical characterization of SL as conjunc-
tions of negative literals provides the general tem-
plate which all TSL variants build on. A string sat-
isfies the property pS iff it contains the k-gram p of
grammar S. For example, the strings that are well-
formed with respect to S = {∗ob,∗ bb,∗ aa,∗ an}
are those for which the following holds:

¬ob∧¬bb∧¬aa∧¬an

This statement is a formula of propositional logic,
where each k-gram corresponds to a proposition p,
also called a literal.

Therefore, a strictly k-local grammar S can be
written as a formula

φ =
∧
p∈S

¬p

where

p := ∃x1 . . .xk

[∧
1≤i<k

xi 6= xi+1∧ xi / xi+1

]
It is easy to extend this characterization to TSL

languages. We can define tier-precedence with re-
spect to tier T ⊆ Σ as the binary predicate:

x/T y↔T (x)∧T (y)∧ x≺ y

∧¬∃z [T (z)∧ x≺ z∧ z≺ y]

and

T (x)↔
∨
t∈T

t(x)

Thus, every TSL language is defined by an
FO formula like φ above, except that immediate
precedence is replaced by tier-precedence in the
definition of each p. Since every MTSL language
is the intersection of finitely many TSL languages,
the formulae for MTSL languages are conjunc-
tions of TSL formulae.

5 Structure-Sensitive TSL Languages

With all the preliminaries finally in place, we re-
turn to the initial question of how the projection
mechanism of TSL can be extended to handle the
problematic phenomena discussed in Section 2.

The projection mechanism of TSL languages is
based on each segment’s 1-local properties (i.e. its

label and nothing else). This section presents a
new class of grammars: structure-sensitive TSL
(SS-TSL). The projection mechanism of SS-TSL
grammars is generalized from strictly 1-local to
strictly k-local, which makes it possible to project
segments based on the structural context they ap-
pear in. In terms of the transducer perspective
of TSL given at the end of Section 4.2, SS-TSL
grammars are transducer cascades where the first
transducer is expanded from ISL-1 to ISL-k.

5.1 Definition

We define a context c∈C as triple (g,σ ,g′), where
σ ∈ Σ, g is an n-gram and g′ an n′-gram, such that
0≤ |g|+ |g′|< m.

Given w ∈ Σ∗, T ⊆ Σ and a set of contexts
CT , the erasing function ET : Σ → Σ ∪ λ maps
σ to itself iff ∃(g,σ ,g′) ∈ CT s.t. gσg′ ∈
Fm(om−1wnm−1), and to λ otherwise. In other
words, ET (σ) is an ISL-m function projecting a
segment on a tier iff there is at least one matching
context. A TSL erasing function with m > 1 can
also be referred to as structural projection.

Then, the definition of SS-TSL languages mir-
rors the one for TSL.

Definition 9. (Structure-Sensitive TSL) A lan-
guage L is structure-sensitive tier-based strictly
local ((k,m)-SS-TSL) with tier-sensitivity m iff,
given a set of contexts CT and T ⊆ Σ, there ex-
ist an ISL-m erasing function ET , and a finite set
S⊆ Fk(ok−1T ∗nk−1) such that

L = {w ∈ Σ
∗ : Fk(ok−1ET (w)nk−1)⊆ S}

For succinctness, we write L is k-SS-TSLm, where
k and m can be omitted unless required from con-
text.

As an example, assuming Σ = {a,b}, Figure 4
presents an ISL transducer with input and output
alphabet {a,b} that computes the erasing function
ET with structure sensitivity m = 2, projecting on
the tier only a,bs in initial/final position.

In order to characterize SS-TSL in terms of FO,
one has to modify the notion of tier-membership
that is used to determine tier-precedence. For ev-
ery segment, we need to re-define what it means to
belong to a tier based on its m-local properties.

7

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

λstart

a : a

b : b

a : a

b : b

a : λ

b : λ

b : λ

a : λ

Figure 4: ISL2 transducer for tier of first/last a,b

T (x)↔

(∨
t∈T

t(x)

)

∧∃y1 . . .ym−1

[∧
1≤i≤m−1

(∨
γ∈Γ

γ(x,yi)

)]

where γ is a FO predicate defining for each yi a
set of possible labels and precedence relationships
to x, In other words, Γ is the set of contexts defined
for tier T .

To give a practical example, suppose we want
an SS-TSLm language such that it projects a tier of
initial/final as. Then:

T (x)↔ a(x)∧∃y[(o(y)∧ y/ x)∨ (n(y)∧ x/ y)]

For ease of exposition, we will refer to
tier-precedence employing this notion of tier-
membership withJT . Then, a SS-TSL language is
described by an FO formula just like the one given
for TSL, using JT instead of /T to define the tier.

5.2 Relations to other Sub-regular Classes

Having provided a complete characterization of
SS-TSL languages, we now establish their posi-
tion inside the subregular hierarchy. In particular,
we show that SS-TSL generalizes TSL in a dif-
ferent ways than MTSL, while still remaining a
proper subset of SF.

Theorem 4. TSL (SS-TSL.

Proof. The inclusion is a corollary of Proposi-
tion 1, which states that the erasing function of
TSL languages is an ISL mapping with m = 1.
For proper inclusion, consider the language L =
a{a,b}∗b∪ b{a,b}∗a. L can be generated by an
SS-TSL2 grammar with T = {a :oa∨an,b :ob∨
bn} and S= {∗aa,∗ bb}. We can show that L is not
TSL. Consider a{a,b}∗a /∈ L: to rule this string
out, a TSL grammar would need to project every
a on the tier and ban ∗aa. However, this would
also ban a{a,b}∗b ∈ L. Thus, L is SS-TSL2 but
not k-TSL for any k

Lemma 5. SS-TSL languages * MTSL.

Proof. It suffices to give an example of a language
that is SS-TSL, but it is not MTSLn for any n ∈N.
Assume Σ = {a,b}, and once again consider the
language L = a{a,b}∗b∪ b{a,b}∗a. As already
stated in the proof of Theorem 4, L can be gen-
erated by an SS-TSL2 grammar with the erasing
function in Figure 4. Now, if L is MTSLn, it is the
intersection of n distinct TSL languages L1, . . . ,Ln.
Since a{a,b}∗a /∈ L, there has to be at least one Li

projecting every a on the tier, and enforcing ∗aa.
But then, this language would also incorrectly rule
out a{a,b}∗b. Thus, L /∈ MTSLn for any number
of intersecting TSL languages.

Lemma 6. MTSL languages * SS-TSL.

Proof. Again, it is possible to give an example
of a language that is MTSL but not SS-TSLm for
any m. Assume Σ = {a,b,c,d}, and consider
L = b∗a{b,d}∗cd∗. This language is not closed
under suffix substitution, thus it is not SL. But it
can be generated by a MTSL3 grammar with:

T1 = {a,c},ST1 = {∗oc,∗ an,∗on}

T2 = {b,c},ST2 = {∗cb}

T3 = {a,d},ST3 = {∗da}

Assume now that L ∈ SS-TSL. To en-
force the constraints of ST1 and ban strings
like {b,d}∗,b∗a{b,d}∗,{b,d}∗cd∗, the grammar
needs to project a and c on a tier T . Since ∗cb
sequences are also out, b is projected on the tier.
Finally, to avoid ∗da sequences, d needs to be on
the tier too. But now T = Σ, and ST is reduced to a
strictly local grammar over the input string. Since
{a,b,c,d} are all on the tier, ST will not be able to

8

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

rule out strings like {b,d}+ which clearly are not
in L, while allowing the well-formed a{b,d}∗c.
Hence, L /∈ SS-TSLm for any m ∈N.

Theorem 7. The class of MTSL languages and the
class of SS-TSL languages are incomparable.

Proof. Corollary of Lemma 5 and Lemma 6.
Moreover, the two classes are obviously not dis-
joint, since TSL languages are both MTSL and
SS-TSL.

Theorem 8. SS-TSL is incomparable to LT, PT.

Proof. That SS-TSL * LT, PT follows from the
fact that it includes TSL, which is neither.

To see why LT is not a subclass of SS-TSL,
consider Σ = {a,b,c} and a sentential logic for-
mula ϕ := aa→ bb defining a language L = {w ∈
Σ∗|w � ϕ}. Thus, aabb,acbcacbcc,babbb ∈ L but
aaaaa,cacacaccaa /∈ L(ϕ). This language is 2-LT,
and clearly describes patterns that require more
than local constraints.

We can show that L /∈ SS-TSLm, independently
of the locality of the structural projection. Since
strings like aa+ are ill-formed, if L ∈ SS-TSL,
there is a tier T containing every a, and the gram-
mar should ban ∗aa. However, this also incorrectly
rules out the well-formed aa+bb. Given that a+b
is also not part of the language, we should also
project every b on T . Since the number of as
on the tier is potentially unbounded, banning a+b
strings will again result in blocking aa+bb, or ab+.
Thus, L is LT but not SS-TSL.

For PT * SS-TSL, we pick the same exam-
ple as before and we assume that, in the formula
ϕ := aa → bb, aa and bb are predicates based
on precedence (i.e. denoting subsequences) in-
stead than based on immediate precedence (denot-
ing substrings). This language is PT, but again not
SS-TSLm for any m.

Finally, the next result follows naturally from
the possibility to define SS-TSL tiers as first-order
predicates just from precedence.

Lemma 9. SS-TSL (SF

5.3 Combining Multiple Tiers and Structural
Sensitivity

The fundamental insight in De Santo (2017) is that
the intersection closure of TSL is obtained by sim-
ply allowing a TSL grammar to exploit multiple
projection functions. Similarly, we can define a

new class of languages that are the intersection of
finitely many SS-TSL languages.

Definition 10. (Structure-Sensitive MTSL) Con-
sider a finite set of (k,m)-SS-TSL languages L =
{L1, . . . ,Ln}, with n = |L |. A structure-sensitive
multi-tier strictly local ((k,n,m)-SS-MTSL) lan-
guage L is defined as L :=

⋂
1≤i≤n Li.

We write k-SS-MTSLm
n instead of (k,n,m)-SS-

MTSL. We omit k,n and m when convenient.

Clearly, it is also possible to characterize SS-
MTSL languages in terms of FO logic, using tier-
precedenceJT as defined for SS-TSL. Since every
SS-MTSL language is the intersection of finitely
many TSL languages, the formulae for SS-MTSL
languages are conjunctions of SS-TSL formulae.

We can now place the class of SS-MTSL lan-
guages with respect to the rest of the subregular
hierarchy.

Lemma 10. MTSL (SS-MTSL

Proof. MTSL ⊆ SS-MTSL follows from defini-
tion, TSL being the set of languages in SS-MTSLm

with m = 1. Proper inclusion is a corollary of
Lemma 7, which states that MTSL and SS-TSL
are incomparable.

This result also clarifies that SS-TSL and SS-
MTSL are in a proper subsumption relationship.

Theorem 11. SS-TSL (SS-MTSL

Proof. Inclusion is trivial. It is proper since MTSL
and SS-TSL are incomparable, and MTSL (SS-
MTSL.

Moreover, from the fact that SS-MTSL gram-
mars are FO definable follows that they are SF.

Lemma 12. SS-MTSL (SF.

Finally, the following result derives the relation
of SS-MTSL to the rest of the hierarchy.

Theorem 13. The class of SS-MTSL languages is
incomparable to LTT, SP.

Proof. That SS-MTSL * LTT, PT follows from
the fact that SS-MTSL properly extends MTSL
and SS-TSL, and from Theorem 8. For the other
direction, we can simply refer to the counter-
examples used in Theorem 8, which are not SS-
MTSL independently of the number of tiers the
grammar is allowed to project.

9

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

5.4 Closure Properties

The current characterization of SS-TSL still lacks
a discussion of its closure properties.

Clearly, SS-TSL is not closed under intersection
This follows from the fact that SS-TSL is properly
included in SS-MTSL, and from Definition 10.

Moreover, both SS-TSL and SS-MTSL are not
closed under relabeling. Simply consider the SL
(thus SS-TSL, SS-MTSL) language Lab = (ab)+

and the relabeling r(L) := {r(w)|w ∈ L} s.t. r :
Σ → {a}: the resulting language is r(Lab) =
(aa)+, which is not even SF.

To shown that SS-TSL is not closed under
union, all we need is to show that the union of SS-
TSL produces languages that cannot be captured
by extending the locality of the ISL erasing func-
tion. In fact, we can exploit the counter-examples
used in De Santo (2017)’s non-closure proofs for
TSL and MTSL languages.

First, we need to introduce some additional no-
tation. Consider a language L over alphabet Σ.
Given {a,b} ⊆ Σ, {a,b}(L) denotes {E{a,b}(s) |
s ∈ L}. Then, T (L) := {ET (s) | s ∈ L}, and
we let the down-projection of T be ↓ T (L) :=
{s ∈ Σ∗ | ET (s) ∈ T (L)}, with T ⊆ Σ. Note that
↓ T (L) is the language resulting from the cascade
ISL→ id(SL)→ D described in Section 4.2, and
may be a proper superset of L.

Now, let Σ := {a,b,c} and L1 and L2 the largest
Σ-languages such that {a,b}(L1) := a+b+ and
{a,b}(L2) := b+a+. L1 and L2 are 2-TSL (thus
2-SS-TSL1) and that L1 ∪ L2 =↓ T (L1 ∪ L2) iff
T := {a,b}. But {a,b}(L1∪L2) = a+b+∪b+a+,
and it is not closed under k-local suffix substitution
for any choice of k:

a a b · · · b a a /∈ L

a b · · · b b ∈ L
b · · · b a a ∈ L

x

Thus, L1∪L2 is not TSL. The problem here is that
the union of two TSL languages results is a tier-
language that is not strictly local. This cannot be
fixed by moving to an SS-TSL grammar. To rule
out strings like b+,a+,{a,b}+a+, we still need to
project a,b on the tier, independently of the local-
ity of the ISL projection function.

Although this is not an exhaustive formal proof,
the counter-example illustrates the essential in-
sight: that the union of TSL includes languages
that need every element of the alphabet on the tier,

and therefore cannot be described by simply in-
creasing the locality of the structural projection.

The actual proof is convoluted and not particu-
larly informative, since it relies even more heav-
ily on technical notation, in order to consider all
possible combination of structural tier-projection.
Thus, we omitted it here, preferring to outline the
essential underlying intuitions instead.

Proposition 2. SS-TSL is not closed under inter-
section, union, and relabelings.

6 Discussion

The TSL class comes with particularly tight con-
straints on the erasing function. The inspiration
behind this paper was to try and explore the effects
of relaxing such constraints, thus allowing for
more general definitions of the projection mech-
anism. The final hierarchy of subregular classes
as discussed in this paper is shown in Figure 5.

This figure also includes a class of languages —
not discussed here — that further extends TSL by
allowing projections of tiers from tiers as a cas-
cade of ISL erasing functions. Preliminary work
indicates that this extension (TESL) properly in-
cludes SS-TSL, and that its intersection closure
(MTESL) subsumes even SS-MTSL languages.
Future work on the properties of these classes
might reveal whether they have any practical use
for linguistics.

Furthermore, we could gain a more comprehen-
sive understanding of the refined subregular hier-
archy as developed in recent years by comparing
SS-TSL and De Santo (2017)’s MTSL to the class
of interval-based strictly piecewise languages in-
troduced by Graf (2016) as an extension of TSL,
SL and SP.

6.1 Learnability Considerations

From a linguistic perspective, the phonotactic
learning problem in concerned with the way a
speaker learns to distinguish between ill-formed
and well-formed strings given a finite set of strings
of the language. As observed by Heinz and Rig-
gle (2011) (cf. Albright and Hayes (2011)), by
focusing on formal classes of languages, a theory
of learning will be able to determine characteris-
tics of the inputs data that fundamentally underlie
learnability/acquisition.

It is known that TSL languages are learnable in
the limit from positive data. Given a fixed alpha-
bet and a fixed k, the number of possible tiers and

10

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

Regular

SF

LTT

LT

SL

PT

SP

SS-MTSL

MTESL

MTSL SS-TSL

TESL

TSL

Figure 5: Proper inclusion relationships among
subregular language classes. This paper estab-
lishes the SS-TSL and SS-MTSL. It also lays
the ground for further explorations of TESL and
MTESL.

permissible tier k-factors is finite, and thus learn-
able, since any finite class of languages is identifi-
able in the limit via an enumeration method (Gold,
1967). Not surprisingly, this result extends to our
new classes, which are finite given upper bounds
on their fundamental parameters (number of tiers,
locality of constraints, locality of projection). In
fact, the true constraints to learnability come just
from the locality of the ISL projection function,
and from the locality of tier-grams, since the num-
ber of useful (i.e. distinct and with separate gram-
mars) tiers is always finite, and bounded by the
size of the alphabet.

Theorem 14. The classes of SS-TSL and SS-MTSL
are learnable in the limit from positive data.

Besides general learnability, proving that sub-
regular classes are learnable with computationally
efficient methods has important consequences for
the cognitive relevance of TSL extensions. Al-
though learners based on Gold paradigm are re-
portedly inefficient, a series of learning algorithms
grounded in grammatical inference and formal
language theory have been proposed in the past.

For example, Jardine and Heinz (2016) present
an algorithm for learning 2-TSL languages, prov-
ing that constraints over phonological tiers can be
learned even when the tier alphabet is not known
a priori. Jardine and McMullin (2016) further ex-
tend this result, and establish a learner that is guar-

anteed to induce a TSLk grammar in polynomial
time and data. The latter seems to be easily adapt-
able to SS-TSL, by inducing a tier of segments
based on their k-local properties. Moreover, Chan-
dlee et al. (2014) also presents an algorithm cru-
cially based on the properties of input strictly local
functions, which offers promising perspectives in
efficiently learning the ISLk erasing function.

As for multiple-tier grammars, McMullin and
Allen (2015) propose a learner for conjoined TSL
languages that exploits search over lattices. While
their implementation still lacks generality, in the-
ory it should also work for SS-MTSL.

Overall, the extensive amount of work on effi-
cient learners for subregular classes encourages us
to propose the following conjecture:

Conjecture 1. The classes of SS-TSL and SS-
MTSL are efficiently learnable from a polynomial
sample size in polynomial time.

Future work will focus on adapting some of the
algorithms described above to SS-TSL, in order
to test this conjecture and compare performances.
Among alternative approaches worth exploring,
Goldsmith and Riggle (2012) propose a tier-based
learner for harmony patterns relying on mutual in-
formation.

6.2 Implications for Phonology

In Section 2, we argued that the classes discussed
in this paper are motivated by the existence of
phonotactic processes that exceed the expressive
power of TSL. These patterns can easily be cov-
ered by SS-TSL languages, which provide an eras-
ing function sensible to local properties of the seg-
ments in the string.

For instance, recall the harmony process in
Samala, which combined a long-distance sibilant
harmony with local dissimilation between /s/ and
/n/. This kind of expressivity can now be accom-
plished by increasing the locality window of the
tier projection mechanism.

For example, Figure 6 shows how, by increas-
ing the locality of the projection to 2, we allow the
grammar to project [n] iff it is immediately pre-
ceded by a sibilant in the input string, and then use
3-local tier constraints to ban {∗sn(¬s),∗Sns}, in
addition to the factors needed to enforce the usual
sibilant harmony patterns.

This time, the possible unboundedness of /n/
is not a problem, since/n/ is now relevant for the
projection only when adjacent to a sibilant.

11

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

(b)

o s n e t u s n

o s n s n
ok

T

(a)

o s n i P n

o s n n
∗

T

Figure 6: Example from Samala: (a) is ill-formed
because of adjacent ∗sn; (b) is well-formed since
[sn] is followed by another [s] later in the string.
Note that [n] is projected on the tier only when
adjacent to [s]

One problem with the additional structure-
sensibility of SS-TSL grammars is that it can lead
to the generation of patterns that are unattested
among natural phonotactics. The grammar for
Samala, for example, can easily be modified to en-
force harmony between the first and last segment
to the exclusion of any other material, by project-
ing only sibilants in initial/final position. Not only
is such a pattern unattested, experimental evidence
suggests that it is never entertained as a possible
phonological dependency (Lai, 2015).

In future, we should see whether it is possi-
ble to carve a subclass of structure-sensitive lan-
guages that covers the desired SS-TSL patterns
while avoiding the unnatural ones.

Another useful direction could be to compare
SS-TSL against the constraint-based approach to
TSL proposed by McMullin (2016) along the lines
of Optimality Theory (OT; (Prince and Smolensky,
2008)). The idea is to account for phonotactic pat-
terns in which local and non-local dependencies
interact, by representing each OT constraint as in-
dividual, ranked, and violable 2-TSL grammars.

Most of the patterns covered by SS-TSL can be
captured this way. However, the operation of rank-
ing TSL languages is still lacking a proper formal-
ization, and it is not clear whether the generative
complexity of the formalism is still subregular.

Interestingly, OT systems can be implemented
through finite-state transducers, if each constraint
distinguishes among only a finite set of equiv-
alence classes of candidates (Frank and Satta,
1998). Then, this paper approach to TSL in terms
of cascades of ISL functions should make it easier

to study TSL rankings, once the effects of com-
posing ISL functions are better understood.

Evidently, to really assess the linguistic useful-
ness of what we can now call the TSL neighbor-
hood, there is need for a more careful typologi-
cal exploration. In particular, moving to linguistic
domains in which attempts to a subregular anal-
ysis are just at the beginning (i.e. morphotactics
(Aksënova et al., 2016), syntax, or even semantics
(Graf, 2017)) should improve our empirical under-
standing of the TSL extensions in Figure 5.

6.3 Implications for Syntax

Since the current consensus is that the require-
ments of syntax greatly exceed the computational
power of regular languages1, it is probably not par-
ticularly surprising that most of the work connect-
ing notions in the subregular hierarchy to natural
language processes has been done in phonology.

Recently, Graf (2014) proposed that syntactic
dependencies are finite-state over MG derivation
trees (Stabler, 1997), in the same way phonolog-
ical dependencies are finite-state over strings (see
also (Graf and Heinz, 2015)). Following up on this
proposal, Graf and Heinz (2016) explore links be-
tween syntax and the subregular hierarchy, show-
ing that Merge and Move are in fact TSL oper-
ations — given some assumption on the proper-
ties of the MG used to encode the language. In
this account, a grammar projects a node on a tree-
tier based on that node label (e.g. project a tier
of nodes labeled TP or DP). However, in standard
MGs merge nodes are not explicitly labeled, since
the grammar is always able to reconstruct the type
of a node via the features that lead to that con-
stituent’s formation. Thus, to really be able to
project tiers on a MG tree, a grammar needs to re-
construct the type of a node from the properties
encoded in the features of the head of the con-
stituent rooted in that node. While this would be
tricky to accomplish with a purely TSL grammar,
the projection of a node based on the properties of
its neighbors is exactly what SS-TSL allows.

7 Conclusions

A growing body of literature is exploring TSL lan-
guages as a good computational hypothesis for
the complexity of phonotactic patterns. However,

1There is still some disagreement about the maximum
complexity of syntactic patterns. See (Kobele, 2006),
(Shieber, 1985) for discussions on this issue.

12

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

the TSL class comes with particularly tight con-
straints on the projection function. Here we relax
some of these constraints, allowing for more gen-
eral definitions of tier-projection. The resulting
new class naturally extends TSL, and easily cap-
tures patterns — previously problematic for TSL
accounts — in which local and non-local depen-
dencies interact. The fact that a few minor modi-
fications to TSL allow us to cover previously un-
accounted patterns, while keeping the generative
power in check, supports future studies of this re-
gion. This also suggests that understanding the
way constraints on the projection mechanism re-
strain TSL generative power could help identify
fundamental underlying properties of phonotactic
dependencies, and opens the way to significant fu-
ture work both in formal language theory and in
subregular approaches to linguistic phenomena.

References
Alëna Aksënova, Thomas Graf, and Sedigheh Moradi.

2016. Morphotactics as tier-based strictly local de-
pendencies. In Proceedings of SIGMorPhon 2016.
To appear.

Adam Albright and Bruce Hayes. 2011. Learning and
learnability in phonology.

R.B. Applegate. 1972. Ineseno Chumash grammar.
Ph.D. thesis, University of California,Berkeley.

Hyunah Baek. 2016. Computational representation of
unbounded stress patterns: tiers with structural fea-
tures. Ms., Stony Brook University.

Jane Chandlee, Remi Eyraud, and Jeffrey Heinz.
2014. Learning strictly local subsequential func-
tions. Transactions of the Association for Compu-
tational Linguistics, 2:491–503.

Jane Chandlee. 2014. Strictly Local Phonological Pro-
cesses. Ph.D. thesis, University of Delaware.

Aniello De Santo. 2017. Multi-tier strictly local lan-
guages. Ms., Stony Brook University.

Robert Frank and Giorgio Satta. 1998. Optimality the-
ory and the generative complexity of constraint vio-
lability. Comput. Linguist., 24(2):307–315, June.

E Mark Gold. 1967. Language identification in the
limit. Information and control, 10(5):447–474.

John A Goldsmith and Indiana University (Bloom-
ington). Linguistics Club. 1976. Autosegmental
phonology.

John Goldsmith and Jason Riggle. 2012. Information
theoretic approaches to phonological structure: the
case of finnish vowel harmony. Natural Language
and Linguistic Theory, 30(3):859–896.

Thomas Graf and Jeffrey Heinz. 2015. Commonality
in disparity: The computational view of syntax and
phonology. Slides of a talk given at GLOW 2015,
April 18, Paris, France.

Thomas Graf and Jeffrey Heinz. 2016. Tier-based
strict locality in phonology and syntax. Ms., Stony
Brook University and University of Delaware.

Thomas Graf. 2014. Beyond the apparent: Cognitive
parallels between syntax and phonology. In Car-
son T. Schütze and Linnaea Stockall, editors, Con-
nectedness: Papers by and for Sarah van Wagenen,
volume 18 of UCLA Working Papers in Linguistics,
pages 161–174.

Thomas Graf. 2016. The power of locality domains in
phonology. Ms., Stony Brook University.

Thomas Graf. 2017. The subregular complexity
of monomorphemic quantifiers. Ms., Stony Brook
University.

R. J. Hayward. 1990. Notes on the Aari language.
In R. J. Hayward, editor, Omotic language stud-
ies, pages 425–493. School of Oriental and African
Studies, University of London, London, UK.

Jeffrey Heinz and Jason Riggle. 2011. Learnability.
In Marc van Oostendorp, Colin Ewen, Beth Hume,
and Keren Rice, editors, Blackwell Companion to
Phonology. Wiley-Blackwell.

Jeffrey Heinz, Chetan Rawal, and Herbert Tanner.
2011. Tier-based strictly local constraints for
phonology. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies: Short Papers
- Volume 2, HLT ’11, pages 58–64, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Jeffrey Heinz. 2014. Culminativity times harmony
equals unbounded stress. In Harry van der Hulst,
editor, Word Stress: Theoretical and Typological Is-
sues, chapter 8. Cambridge University Press, Cam-
bridge, UK.

Adam Jardine and Jeffrey Heinz. 2016. Learning tier-
based strictly 2-local languages. Transactions of the
ACL, 4:87–98.

Adam Jardine and Kevin J. McMullin. 2016. Ef-
ficient learning of tier-based strictly k-local lan-
guages. In Frank Drewes, Carlos Martin-Vide, and
Bianca Truthe, editors, Proceedings of Language
and Automata Theory and Applications, 11th In-
ternational Conference, Lecture Notes in Computer
Science. Springer. To appear.

Gregory M. Kobele. 2006. Generating Copies: An In-
vestigation into Structural Identity in Language and
Grammar. Ph.D. thesis, UCLA.

Regine Lai. 2015. Learnable vs. unlearnable harmony
patterns. Linguistic Inquiry, 46(3):425–451.

13

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

Kevin J. McMullin and Blake H. Allen. 2015. Phono-
tactic learning and the conjunction of tier-based
strictly local languages. In aper presented at LSA
89th Annual Meeting, page 137. To appear.

Kevin McMullin and Gunnar Hansson. 2016. Long-
distance phonotactics as tier-based strictly 2-local
languages. Proceedings of the Annual Meetings on
Phonology, 2(0).

Kevin J. McMullin. 2016. Tier-based locality in long-
distance phonotactics?: learnability and typology.
Ph.D. thesis, University of British Columbia, Feb.

Robert McNaughton and Seymour Papert. 1971.
Counter-Free Automata. MIT Press, Cambridge.

J. Oncina and P. García, 1991. Inductive learning of
subsequential functions. Univ. Politecnica de Valen-
cia, Tech. Rep., DSIC II-34.

José Oncina, Pedro García, and Enrique Vidal.
1993. Learning subsequential transducers for pat-
tern recognition interpretation tasks. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
15(5):448–458.

Alan Prince and Paul Smolensky, 2008. Optimality
Theory: Constraint interaction in Generative Gram-
mar. Blackwell Publishing Ltd.

James Rogers and Geoffrey K. Pullum. 2011. Aural
pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Infor-
mation, 20(3):329–342.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Visscher, David Wellcome, and Sean
Wibel, 2010. On Languages Piecewise Testable in
the Strict Sense, chapter Lecture Notes in Computer
Science, pages 255–265. Springer.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel, 2013.
Cognitive and Sub-regular Complexity, chapter For-
mal Grammar, pages 90–108. Springer.

Stuart M. Shieber. 1985. Evidence against the context-
freeness of natural language. Linguistics and Phi-
losophy, 8(3):333–343.

Edward P. Stabler. 1997. Derivational minimalism. In
Christian Retoré, editor, Logical Aspects of Compu-
tational Linguistics, volume 1328 of Lecture Notes
in Computer Science, pages 68–95. Springer, Berlin.

Rachel Walker. 2000. Yaka nasal harmony: Spreading
or segmental correspondence? Annual Meeting of
the Berkeley Linguistics Society, 26(1):321–332.

