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attaché — si j’en juge d’après ces malaises qui s’apparentent
aux premiers symptomes de l’être.
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Introduction

Since the very first moment of its inception, the Principles-and-Parameters approach

(P&P) (Chomsky 1981; Chomsky and Lasnik 1993; Chomsky 1995c) has been character-

ized by a strong longing for explanatory adequacy. This has been reflected in a preference

for underspecification and “rule-of-thumb” generalizations over precise implementations

of technical aspects. Unnoticed by a great number of its advocates, this methodological

decision nurtures a style of scientific exposition whose vague wording and reliance on in-

tuitive notions gives rise to numerous problems related to descriptive adequacy as well as

tractability.

This thesis is a case study of how various obscurities in the definitions of the very

basics of a theory may endanger research based on it, and thus the whole enterprise. In

particular, I will look at Reuland (2001) and his changes to the feature checking mech-

anisms developed in Chomsky (1995c). Depending on how one interprets the relevant

details, there are two possible outcomes of Reuland’s modifications, both undesirable: ei-

ther the new theory is inherently contradictory and inapt to capture Reuland’s main ideas,

or it uses highly specific assumptions that render it incompatible with a great number of

concurrent explanations of completely unrelated phenomena. Reuland’s paper was picked

because it is a condensation of typical P&P-traits; while the ideas put forward are very

attractive and inspirational on an intuitive level, they fall short of formal soundness.

Because of the formally adept consideration of the relevant syntactic issues, the merits

of my thesis go beyond simply advertising a technically more enlightened take on linguis-

tics. It offers an ambitious exploration of feature checking in classical Minimalism, in

particular how checking theory can be made more explicit and in which ways it must

not be altered. Those results are of immediate importance to anyone who is still enter-

taining the idea that checking is feature deletion, not feature valuation. Furthermore, it

is a first tentative step towards a comprehensive typology of minimalist feature checking

mechanisms and how they compare on conceptual and formal grounds.

The thesis is laid out as follows: chapter 1 gives a short introduction to classic

Minimalism. Readers still familiar with the details of this dated framework can easily skip

that section and proceed to chapter 2, where I sharpen the notion of feature checking as put

forward in Chomsky (1995b). The final result of those 30+ pages of conceptual discussion

is a typology of feature checking systems which will lay the ground for the analysis of

Reuland (2001) in chapter 3. There I show that Reuland’s theory is incompatible with

some classes of feature checking systems and that the remaining feature checking systems

in conjunction with Reuland’s modifications of Chomsky (1995b) are highly stipulative,
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2 Introduction

or empirically inadequate, or inherently contradictory. I take this as evidence for how the

lack of formal rigor may cause a theory which shines at an intuitive level to fall apart

when subjected to a low-level inspection. I conclude that linguists have to take a more

careful approach to theory construction that is neither dependant on intuitive notions nor

prone to omitting crucial details. Building on this judgment, I assess the pervasiveness of

vagueness in P&P-research and what its origins might be in chapter 4. I then investigate

in how far logic or formal language theory might mitigate the impact of vagueness and

infer that those tools, albeit highly useful, can show positive effects just in case linguists

are already devoting a good deal of their attention to technical accuracy. That is to say,

the solution to the problem won’t be found in mathematical notation, but in a general

awareness of the drawbacks of the current situation.



Chapter 1

Minimalism: A Minimal

Introduction

1.1 A Word of Caution

In this thesis, discussions of Minimalist syntax, as interesting as they may be in and

of themselves, ultimately serve the single purpose of establishing a firm base which the

investigation of Reuland (2001) can be based on. Although Reuland’s paper appeared

when Minimalism had already matured (or at least changed) a lot compared to initial

instantiations, it is set within the framework of that early version of Minimalism, i.e.

Chomsky (1995b). Considering the dazzling mutability shown by the technical apparatus

of Chomsky’s youngest theory, refamiliarizing oneself with the original mechanics of the

Minimalist Program is a wise move. That is exactly what this chapter is meant for.

Consequently, Chomsky’s later articles (Chomsky 1998, 2001, 2004, 2005a, 2007) will only

play a minor role here.

But be aware that despite space restrictions I do not have the slightest intention

to water down the formal aspects of the framework any more than absolutely necessary.

Therefore this chapter is not meant for those who are completely unfamiliar with Mini-

malism. If a real introduction is needed, rather than a simple revision, I wholeheartedly

recommend to start with Hornstein et al. (2005) and complement it with Boeckx (2006)

and the first chapter of Uriagereka (1998) for a healthy dose of fanaticism (whether pro

or contra Minimalism is up to the reader).

1.2 General Architecture

Let me start this section with a methodological note. Since its introduction in Chomsky

(1995c), the most often stated and most seldomly understood fact about Minimalism has

been that it is a framework, not a theory. Minimalism isn’t a coherent set of proposals and

analytical tools, it is a guideline for how one should do linguistic research, what constitutes

an interesting question, which criteria one should apply for judging a theory’s value, and

so forth. At least that is what Chomsky asserts he intends it to be. Unfortunately, even

3



4 1.2. General Architecture

most Minimalists apparently do not fully grasp this shift in perspective. They continue

to follow their old habit of looking at Chomsky’s main proposals, tinkering with some

mechanism and molding the final result into a respectable paper which nonetheless won’t

enjoy notable resonance in the linguistic community because most Minimalists are mainly

considering Chomsky’s proposals as the point of departure for their own research. Due

to this specific trait of the community, phase theory (Chomsky 2001, 2004) found rapid

adoption despite various logical and empirical flaws (cf. Frampton et al. 2000; Epstein

and Seely 2002; Abels 2003; Boeckx and Grohmann 2004), while other well-known and

respectable flavors of Minimalism, like Level-free Syntax (Epstein et al. 1998; Epstein and

Seely 2002, 2006) or Prolific Domains (Grohmann 2003) did not manage to increase their

following. So, despite Chomsky’s saying otherwise, Minimalism as the community views

it is more like a theory than a framework and therefore I will present it here as if it were

a coherent theory.1

An unintended consequence of this approach is that it mistakenly conveys that the

shift to Minimalism was a revolution, rather than an evolution. For example, one could

be under the impression that Chomsky (1995c) marked a sudden change in the technical

framework, while in effect the first Minimalist lectures and manuscripts already appeared

in the early nineties. Notions of economy in general were already present in Government

and Binding Theory from the very beginning (in fact they can already be found in his

earliest publications), for instance in the form of the Avoid-Pronoun principle. Features

already played a certain role, too, as only a tensed I0 with agreement features was assumed

to assign Nominative Case. Minimalism thus did not introduce a completely new point

of view, rather it emphasized up until then neglected aspects and tried to do as much

work with them as possible. See Freidin and Vergnaud (2001) and Adger and Harbour (to

appear) for further information on this issue.

In contrast to its predecessor, Government and Binding Theory (GB), Minimalism is

derivational in nature, not representational.2 GB opted for a single rule Move α, which

generated all possible permutations of a given Deep Structure. Most of those representa-

tions were filtered out later on at one of three levels — Surface Structure (SS), Phonological

Form (PF), Logical Form (LF) — if they violated a well-formedness condition of one of

the numerous modules distributed over these levels.

Minimalism, on the other hand, employs no such modules and even strives for a

reduction of the number of linguistic levels. As a counter measure, the number of structure-

building and structure-manipulating operations is increased. The work formerly done by

filters is now captured by the properties of those new operations and the restrictions on

their application. Instead of generating myriads of representations that are filtered out

later on, a single representation is built up incrementally by hierarchical concatenation

1In chapter 2 it will become obvious that, given the numerous uncertainties in Chomsky’s work,
this treatment is justifiable only from a pedagogical perspective.

2Nevertheless Chomsky (1995c) isn’t devoid of a certain representational flavor, just think of
chains, the uniformity condition, the definition of c-command and the checking domain. In addition,
the entire assembled structure is accessible to syntactic computation, which leads Brody (2002) to
classify Chomsky (1995c) as a weakly representational theory.
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and manipulation of lexical items through various operations. The final shape of the

representation is not due to some filter but to the properties of the operations needed to

create it in the first place.3

The overall architecture Chomsky ascribes to the language faculty (also referred to

as CHL) is a simplification of the inverted T-model.

(1) Numeration

Spell-Out

PF

Sensory-motor

system

LF

Conceptual-interpretative

system

A so-called numeration stores all lexical items (LIs) of the intended utterance. From those

LIs, narrow syntax constructs the set of all derivations which satisfy the conditions imposed

by the interface levels PF and LF. Among the members of this set, the most economic

derivation is chosen. A single Spell-Out separates the overt from the covert cycle, in

stark contrast to the younger phase theory (Chomsky 2001, 2004, 2005a). Deep Structure

and Surface structure are dispensed with in Chomsky (1993), leaving PF and LF as the

only levels where certain well-formedness conditions apply. Presupposing that language is

an extremely economic device, Chomsky concludes that the conditions enforced by these

two levels, referred to as the Bare Output Conditions (BOC), are the driving force for all

syntactic processes. Syntax is reduced to a device that supplies the means needed to create

trees that are legitimate at both PF and LF. As PF and LF are uniform across languages,

the BOC in conjunction with the assumption that the language faculty is economic and

parsimonious suffice to derive all syntactic principles.4 Parametric variation is captured by

lexical differences between languages (cf. Borer 1984), encoded by the feature composition

of LIs.

So far for the commonplaces on Minimalism, let us get a wee bit more formal now.

Following Potts (2002), we define a derivation as a partially ordered set of trees.5 Assuming

3This is actually a slight misrepresentation of Chomsky (1995b), just like the comment on
Minimalism being not representational. Later on, in 1.4, we will see that classic Minimalism makes
use of global economy conditions, which are in some sense mimicking the behavior of filters.

4This is to be understood as a research principle, not as an actual statement about the current
status of the theory. Beyond some general intuitions, nobody knows what the BOC are, so it is
obviously impossible to logically derive anything from them.

5 This is a model-theoretic perspective on transformational frameworks (see section 4.2.3), and
we will encounter it again several times. It does not reflect the stance of mainstream Minimalism,
which the definition in Gärtner (2002:56) comes closest to.

(i) A derivation is a sequence of stages Σ0,. . . ,Σn such that for each i (0 < i ≤ n), Σi is the
outcome of exactly one syntactic operation applied to Σi−1.

(ii) A derivational stage Σ is a set of syntactic objects (Σ = {SO1, . . . ,SOn})



6 1.2. General Architecture

that the final tree in this set serves as input for the interfaces, syntax as a whole is to be

regarded as a function mapping sets of LIs to trees. This analogy begs the question how

the function is to be provided with arguments, i.e. LIs, and which properties of the input

it is sensitive to.

LIs are stored in the lexicon, wherefrom they can be added to the numeration. The

numeration is a multiset containing all the LIs from which the utterance is to be built.

More precisely, it contains ordered pairs 〈LIi, o〉, where o ∈ N+ is the occurrence index of

LIi. Said index encodes the number of LIi’s occurrences in the tree and is decreased by

1 when LIi is selected and enters the derivation.6 Crucially, a derivation can’t converge

before all indices in the Numeration are 0. If one contends that a derivation won’t yield a

legitimate representation unless the entire numeration is exhausted, a precise mechanism

for the correct construction of the latter becomes indispensable. Otherwise, the numeration

could contain material not needed for the derivation, hence preventing it from converging.

This task is handled by a nameless economy principle which ensures that only the smallest

numeration needed for the intended utterance is constructed.7

(2) α enters the numeration only if it has an effect on output. (Chomsky 1995b:294)

When an LI enters the derivation, its feature composition is already fully specified and

has an immediate impact on the steps syntax has to take in order to cause the derivation to

converge. The set of features that constitute an LI comprises phonological, semantic and

formal features, with only the latter playing a distinctive role for syntactic computation.

The set of formal features is not known in its entirety, but it is usually said to contain

categorial features, Case features, φ-features and the EPP-feature.

In contrast to phonological and semantic features, formal features can be subclassified

with recourse to two properties, feature interpretability and feature strength. Uninter-

pretable features must not reach LF if the derivation shall converge, and strong features

have to get eliminated as soon as they enter the derivation.

(3) a. [±interpretable, +strong]: Eliminated immediately

b. [-interpretable, -strong]: Eliminated before LF

c. [+interpretable, -strong]: Does not need to get eliminated

The necessity to purge specific features is the driving force behind movement, as the reader

will soon see for himself.

In my opinion, the model-theoretic definition often is the more illuminating one and easier to work
with, so I will switch between both points of views as it fits my needs.

6Indices express the occurrence of one specific LI with a single referent, i.e. two numerations
N1 := {〈John, 1〉 , 〈John, 1〉 , . . .} and N2 := {〈John, 2〉 , . . .} differ with respect to the referents
of John. In the utterance generated from N1, the speaker is referring to two distinct individuals
that coincidentally share the same name, whereas N2 encodes that a specific individual called John
enjoys the honour of being mentioned twice in a single utterance.

7It does not take a lot to figure out that this principle is highly problematic when it comes to
computability. I shall postpone the relevant discussion until 1.4, where economy conditions and
reference set computation will get all due attention.
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1.3 Operations and Conditions

In order to decrease the number of illegitimate derivations, LIs have to be chosen from the

numeration in a principled manner, i.e. via a syntactic operation, in this case Select.

(4) Select (Chomsky 1995b:226)

Suppose that the derivation has reached the stage Σ, which we may take to be a set

{SO1, . . . ,SOn} of syntactic objects. One of the operations of CHL is a procedure

that selects a lexical item LI from the numeration, reducing its index by 1, and

introduces it into the derivation as SOn+1.

Select comes in two different variants, c-selection and s-selection (cf. Adger 2003). The

former refers to the usual mechanism of subcategorization, while the latter denotes se-

mantic selection, i.e. selection of LIs due to their semantic impact, e.g. in the case of

adjunction or when it can’t be decided by any other means which DP should become the

object of the verb. Although it remains a difficult issue how s-selection could be modeled

in a Minimalist theory, the operation is assumed as a given without further questioning

(hence without further research on its specifics).

Select is the only option to supply syntax with the material from which phrase markers

are built. Syntax cannot make use of anything that was not stored in the numeration prior

to the first rule application. This constraint is also known as the Inclusiveness Condition.

(5) Inclusiveness Condition (Chomsky 1995b:228)

[A]ny structure formed by the computation [...] is constituted of elements already

present in the lexical items selected for N [the numeration; TG]; no new objects are

added in the course of computation apart from rearrangements of lexical properties

(in particular, no indices, bar levels in the sense of X-bar theory, etc.; [...]).

Selection of LIs evidently does not suffice for the generation of an utterance, at least

one additional operation that concatenates the selected LIs into a string is indispensable.

If hierarchical relations are to be expressed as well, even more is needed. The operation

Merge fulfills both duties by taking two arguments and concatenating and labelling them.

The structure of the label may vary: arguments are set-merged, while adjuncts are pair-

merged.8

(6) Set-Merge (cf. Chomsky 1995b:243)

Merge(α, β) =
{
γ, {α, β}

}
, where α, β are terms and γ ∈ {α, β} is the label.9

8Pair-Merge in its current form does not fit well into Minimalism and there is remarkably little
literature on the topic, with the notable exception of Chametzky (2003), who provides a devastating
critique on conceptual grounds.

9The status of labels is not made explicit in Chomsky (1995b), and Chomsky (1995a:397) simply
states that the label of {α, β} is “one or the other of α, β”. Citko (2006) notes that they have to be
copies of the head of a phrase, according to the Inclusiveness Condition (5). This conclusion does
not carry over to the system of Chomsky (1995b), though, for Chomsky states that copies are not
accessible to further syntactic computation. This leaves us with two options, either the projecting
head is not accessible anymore, ruling out Head-Movement, or the label is not accessible, defeating
the purpose of the entire labeling mechanism.
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(7) Pair-Merge (cf. Chomsky 1995a:402)

Merge(α, β) =
{
〈γ, γ〉, {α, β}

}
, where α, β are terms and 〈γ, γ〉 , γ ∈ {α, β}, is the

label.

Both definitions contain a notion we did not encounter yet, namely term. Simplifying

somewhat, terms are maximal and minimal nodes, so the respective definitions of Merge

allow both merger at the root of the tree and at one of its leaves. Things will become

clearer when we consider how terms are defined, but before we can do this we have to

familiarize ourselves with the relation between trees and the sets generated by Merge.

The attributes of phrase structure follow directly from the definition of Merge. Merge

is a binary operation, hence phrase structure has to be binary branching. Neither unary

nor n-ary (n ≥ 3) branching nodes exist in syntax, because there is no operation to

generate them. For the same reason, there are no bar-levels. Instead, the status of

the projection is determined relationally. The highest instance of a label γ is a maximal

projection, the lowest instance a minimal projection, all other projections are intermediate.

The simple phrase structure thus described is termed Bare Phrase Structure (BPS). In

contrast to classic X-theory, BPS relies solely on naive set-theory, which is an integral part

of human cognition according to Hauser et al. (2002). This is an instance of rather abstract

Minimalist deduction: phrase structure is not a linguistic construct in and of itself, but

a byproduct of the interaction of a general cognitive mechanism, namely set formation,

and the faculty of language, allowing us to use a language which relies on hierarchical

information. That way, phrase structure comes for free and does not need to be stipulated

as a linguistic primitive (cf. Chomsky 2005b).10

The following tree can easily be expressed in set-theoretic form.

(8) a. CP

C0 TP

DPi

D N

T′

T0 vP

ti v′

v VP

b. {C,{C,{T,{{D,{D,N}},
{T,{T,{v ,{{D,{D,N}},{v ,{v,VP}}}}}}}}}}

Let us now return to terms, for which I did not supply any definition yet.

(9) Terms (Chomsky 1995a:399)

a. K is a term of K;

10Actually, this only applies for the concatenating part of Merge, one still has to stipulate the
existence of labels and different bar-levels.
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b. if L is a term of K, then the members of the members of L are terms of K.

Take a look at the structure in (10), represented both as a tree and as a set.

(10) a. XP

UP

U W

X′

X YP

Y Z
b. {X,{{U,{U,W}},{X,{X,{Y,{Y,Z}}}}}}

Applying the definition in (9), we get the following terms (indicated by boxes). As can be

seen, only terminal nodes and syntactic objects constructed from them qualify as terms,

labels do not.

(11) a. XP

UP

U W

X′

X YP

Y Z

b. {X,{ {U,{ U , W }} , {X,{ X , {Y,{ Y , Z }} }} }}

The reader can verify for himself that Merge always applied to terms during the construc-

tion of this tree.

Besides Merge, there is another structure-building operation, Move. Move functions

like Merge, except that one of its arguments is provided by the operation Copy, instead of

Select. Copy targets the element α which is to be displaced, creates a duplicate of it and

hands this as input to Move.11 If movement takes place in the overt cycle, both α and the

landing site are terms. If it is delayed post Spell-Out, only the formal features of an LI

have to move covertly and adjoin to a head.

11Chomsky (2005a) criticizes that this point of view is actually mistaken, for already in Chomsky
(1993) he intended the copy theory to be what is currently known as Remerge. This will be mooted
in 4.1, but let me mention in advance that I find it highly amusing that the canonical theory is
actually due to a misreading of Chomsky’s dubious writings. On the other hand, I can’t help but
wonder why it took Chomsky 12 years to clarify this misunderstanding.
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(12) Move12

Let α and β be terms, or β a head and α an LI’s set of formal features. Then

a. Move(Copy(α), β) :=
{
β, {α, β}

}
, if Move is triggered as an instance of sub-

stitution.

b. Move(Copy(α), β) :=
{
〈β, β〉, {α, β}

}
, if Move is triggered as an instance of

adjunction.

c. Move(Copy(α), β) is immediately followed by the construction of a chain CH

:= (α, tα). Every chain obeys the conditions in (13).

(13) Conditions on chains (Chomsky 1995b:253)

a. C-Command Condition

α must c-command its trace.

b. Uniformity Condition

A chain is uniform with regard to phrase structure status.

While (13a) prohibits any kind of lowering or sidewards movement, (13b) blocks

movement of α into a position β with a different bar-level. Move itself is subject to

various constraints, too.

(14) Conditions on Move

a. Minimal Link Condition (Chomsky 1995b:296)

α can raise to target K only if there is no legitimate operation13 Move β

targeting K, where β is closer14 to K.

b. Procrastinate (cf. Chomsky 1995b:254)

Covert movement is cheaper than overt movement.

c. Last Resort (Chomsky 1995b:280)

Move F raises F to target K only if F enters into a checking relation with a

sublabel of K.

While (14a) and (14b) are easy to understand, (14c) is painfully incomprehensible

given our current vocabulary, so let us simplify it: movement is allowed only in those

cases where it leads to the checking of a feature. A feature is checked if it is strong or

uninterpretable and in a specifier-head configuration with an identical feature.

Consider example (15). When T is merged with vP, a strong categorial D-feature

(better known as the EPP-feature) is added to the tree, and it has to be checked immedi-

ately. The DP bears the corresponding checker and hence has to move to [Spec,TP]. The

12This is a somewhat simplified definition. Actually, there are two movement operations, Move
F and Move α. Move F copies a formal feature (or the entire set of formal feature), and adjoins it
to a head. Move α, in turn, is a complex operation such that some feature of LIi is adjoined by
Move F to a head, say X0, followed by copying LIi and merging the copy with XP. Then, by some
undefined repair mechanism, the formal features adjoined to X0 move back into the copy of LIi.

13A “legitimate operation” satisfies Last Resort as it is stated in (14c).
14 Closeness is to be defined in terms of c-command and equidistance. The notion of equidistance

relies on Minimal Domains, defined in (48) in chapter 2. “γ and β are equidistant from α if γ and
β are in the same minimal domain.” (Chomsky 1995b:356)



Chapter 1. Minimalism: A Minimal Introduction 11

strong feature is checked and removed from the structure, while the interpretable catego-

rial feature of the DP remains accessible for further computation. As a byproduct of the

immediate dislocation, both the DP and T can check their uninterpretable Nominative

features prior to Spell-Out.15

If T did not have a strong D-feature, Case would have to be checked covertly, due to

Procrastinate. After C has been merged with TP, all occurrence indices in the numeration

are zero and Spell-Out takes place. V covertly raises and adjoins to v, which in turn adjoins

to T, such that V ends up as a possible feature checkee of the DP, and consequently its

uninterpretable φ-features are checked by the DP’s interpretable φ-features.

(15) a. TP

T

sD

uNom

vP

DP

iD

uNom

iφ

v′

v V

uφ

b. TP

DP

iD

uNom

iφ

T′

T

sD

uNom

vP

tDP v′

v V

uφ

c. CP

C TP

DP

iD

uNom

iφ

T′

T

T

sD

uNom

v

v V

uφ

vP

tDP v′

tv tV

1.4 Economy and Reference Set Computation

Up to now I neglected the role of economy in the Minimalist Program. This shortcoming

has to be rectified, firstly because it is the center piece of Minimalist reasoning, and

15Spell-Out takes place as soon as the numeration has been exhausted, unless there are still
strong features present that have to be checked. This is the case only if the strong feature is
introduced into the derivation by the last item selected from the numeration. After the strong
feature has been checked (if there was one), Spell-Out takes the current structure Σi as its input
and generates an identical Σj which is sent to PF, while a different representation ΣL which is
devoid of any material solely relevant to PF is sent to LF (cf. Chomsky 1995b:229).
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secondly because the technical implementation of economy in Chomsky (1995b) differs

significantly from his later works. The general role of economy in Minimalism has already

been discussed many a dozen times in various articles and interviews the interested reader

can get immersed in (see Chomsky 2002 and Uriagereka 2000, among others). I do not see

any point in replicating those fine expositions. The technical aspects of economy, however,

are a challenging topic well worth closer scrutiny.

The conjecture that syntax were a device optimally tailored to doing its job while

obeying the constraints imposed by other cognitive modules entails that the language

faculty is as economic as possible, for computational ressources are limited and thus to

be saved whenever possible. Unfortunately, determining what constitutes a maximally

economic device is anything but trivial. The first thing to decide is whether it is global or

local economy conditions it adheres to. Global economy conditions compare all possible

outputs and pick the most economic one as sole viable input for further computation. Local

economy conditions, on the other hand, define certain economically motivated restrictions

on the computation itself such that only economical output can be generated. Consider

the following minimal pair taken from Chomsky (1995b:344).

(16) a. * there seems someone t to be in the room.

b. there seems t to be someone in the room.

Given the technical apparatus of Chomsky (1995b), both sentences should be fine. Neither

seems nor someone ends up with some crucial feature unchecked, because it does not

matter whether features are checked overtly or covertly. Just like someone in (16a) can

raise overtly to Spec,TP of the embedded clause and thus get its features checked, so can

its formal features do covertly in (16b). If checking features is the only thing that matters,

the results are basically the same. However, with recourse to global economy we are able

to capture the contrast and rule out (16a) as ungrammatical. We do so by comparing both

constructions and concluding that the first one violates Procrastinate, while the second

one does not. But we could also explain the difference by a local economy condition which

prefers Merge over Move wherever possible.

Most readers are probably familiar with local economy conditions from recent Mini-

malist research, whereas global economy conditions perhaps feel awkward to them. This

isn’t particularly surprising given that global economy is one of the most overlooked, yet

decidedly distinctive traits of classic Minimalism. Nevertheless it is one of the most disfa-

vored, too, and that for good reasons indeed.

Chomsky (1995b) has both local and global economy conditions in his repertoire.

The Minimal Link Condition is an important example for the former, while the latter

is represented by reference set computation. Instead of constructing a single well-formed

and economically optimal representation which is shipped to the interfaces later on, syntax

produces a set comprising all representations that it can generate from the numeration, and

from this set it chooses the most economic one — a system of overgeneration and filtering

reminiscent of GB. The crucial difference between a grammar using global economy and

one using local economy then is that in the case of the former, it does not suffice for a
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representation to be well-formed in order to be grammatical, it also has to be the most

economic candidate.

Obviously, the computational load of global economy conditions peaks way higher

than that of local economy conditions. In an attempt to reduce the computational overhead

of his theory, Chomsky introduces a distinction between what one could call local and

global reference sets. The terminology is particularly misleading here, as both kinds of

reference sets belong to the class of global economy conditions. A local reference set is a

subset of a global reference set, as it contains only those converging derivations which are

compatible with the current derivational stage. That is to say, only possible continuations

of the derivation are considered, in contrast to a global reference set, which also contains

all derivations already obsoleted. Johnson and Lappin (1997) point out that this does not

reduce computational load at all, because a local reference set is only a subset of a global

reference set, not a proper subset. At the very first stage of the derivation, when no LI has

yet been selected from the numeration, the sets are identical. Therefore, local reference

sets may eventually require less memory, but the computational load of constructing one

equals that of global reference sets, if it isn’t even higher. After all, derivations in a

local reference-set have to be detected as incompatible with the current stage and marked

accordingly, which might be more resource-consuming than expected.

Collins (1996), Sternefeld (1996), Johnson and Lappin (1997) and Potts (2001, 2002)

provide even more arguments against global economy conditions, but I will stop my general

critique here, as the main point should be sufficiently bolstered by now: global economy

is a computational nightmare.

Despite the questionable status of global economy conditions, I will exemplify Chom-

sky’s implementation a little bit more in detail, since it is not without relevance for our

discussion of Reuland (2001). Chomsky employs three principles as global economy metric,

two of which we are already familiar with.

(17) Economy metrics

a. Procrastinate

Covert movement is cheaper than overt movement.

b. Smallest Derivation Principle (SDP) (Johnson and Lappin 1997:21)

Let OD be the set of distinct operations in a derivation D. [...] For any two

convergent derivations D and D’ from a numeration N, D is more optimal than

D’ if |OD| < |OD’|.

c. Has an Effect on Output Condition (HEOC)

α enters the numeration only if it has an effect on output.

We already looked at (16) as an example for Procrastinate, so let us immediately

proceed to the SDP. Chomsky (1995b:357) gives the following example for its usefulness:

in Icelandic, v may host an optional D-feature in order to allow for overt object shift.

T evidently has a D-feature too. In such a configuration, two different derivations can

converge, but only one actually is grammatical.
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(18) a. TP

DPSubj T′

T vP

DPObj v′

tSubj v′

v VP

V tObj

b. TP

DPObj T′

T

T FF[DPSubj ]

vP

tObj v′

DPSubj v′

v VP

V tObj

In both derivations, all Case and φ-features are checked, just like T’s strong D-feature.

There are no instances of feature mismatch either. Such a mismatch would induce can-

cellation of the derivation, but as the Case feature of the object is checked prior to its

movement to Spec,TP, no conflict arises with T’s Case feature. Nor does a violation of

the Minimal Link Condition ensue, because the subject and the object occupy specifiers

of the same phrase and are thus equally close to TP (cf. footnote 14). If both derivations

converge, but only the first one is grammatical, it follows from our definition of a gram-

matical structure as the most economic converging derivation that the second derivation is

less economic. Resorting to the Smallest Derivation Principle reveals that this is the case

indeed. While they do not differ in the number of Select and Merge operations, the second

derivation needs three applications of Move, the first one only two. Hence the latter is

more economic.

The third metric, called HEOC (due to Johnson and Lappin 1997), is very special

insofar as it introduces reference sets for different numerations, with far reaching conse-

quences. In order to determine whether adding an LI has an effect on output, one has to

construct a set containing at least two numerations, such that all numerations in the set
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differ in their cardinality at most by 1. For each of those numerations a full reference set

of converging derivations has to be computed, followed by selection of the most economic

derivation for each set. Then those derivations are sent to LF, where their denotations are

computed, which are in turn compared to each other. If the denotations of the respective

derivations turn out to be equivalent, the numeration containing the fewest LIs is chosen

as starting point for the derivation. If the denotations differ, the numeration with the most

LIs is chosen. That way, if we have three numerations N1 := {LI1}, N2 := {LI1, LI2},
N3 := {LI1, LI2, LI3} and JN1K 6= JN2K = JN3K16, N2 is chosen as the optimal numeration.

As is to be expected, Chomsky does not give any hints how equivalence classes at

LF should be defined, and the issue inevitably gets even more complex as soon as PF and

pragmatics are taken into account. Furthermore, the principle is deeply flawed insofar

as it apparently does not allow N3 to be chosen in cases where there is an additional

N4 := {LI1, LI3} such that JN1K = JN2K = JN4K 6= JN3K, because neither LI2 nor LI3 make

a difference to output on their own, wherefore neither is allowed to enter the numeration.

One may doubt the viability of the whole discussion and maintain that the HEOC

should not be taken as a metric for economy but as a methodological guideline or as

an allusion to the performance mechanisms responsible for choosing LIs according to the

speaker’s conceptions. Both conjectures lack rhyme and reason. The latter deprives the

principle of any relevance for any theory of grammar considered to be a theory of compe-

tence, while the former is almost cynical in claiming that Chomsky intended to create a

doppelganger of Occam’s razor, a somewhat amusing, yet misguided idea.

When it comes to the empirical foundations of the principle, Chomsky himself does

not provide any supporting data, but see Fox (1995) for a possible application in ellipsis

constructions and Johnson and Lappin (1997) for a rebuttal.

1.5 Recapitulating the Crucial Differences

After having read this chapter, those readers primarily acquainted with the latest incarna-

tion of Minimalism will have discovered several traits that distinguish Chomsky (1995b)

from its successors.

First, LIs enter the derivation with all their features fully specified, in contrast to

Chomsky (2001) and subsequent works, where some features may lack a value which has

to be provided later on via Agree. Consequently, movement is driven by the need to check

any uninterpretable features, whereas only specific features may trigger movement in an

approach based on Agree. In addition to uninterpretability, features are also specified for

strength such that a strong feature has to be checked immediately after it has entered the

derivation.

Second, there is a clear division between the overt and the covert cycle, marked

by a single Spell-Out. Neither is covert movement allowed to take place at any time

16My notation here is rather sloppy, for a numeration obviously cannot have a denotation. I
am confident that everybody realizes that it is meant to be read as “the denotation of the most
economic converging derivation to be constructed from this numeration”.
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— although this could easily be implementend given that it is couched in terms of pure

feature movement — nor is there any segregation of the derivation into smaller units akin

to phases or structured numerations.

Third, Chomsky (1995b) features three global economy conditions, Procrastinate, the

SDP and the HEOC. Most of the time, these conditions act invisible and do not have any

impact on empirical analysis, wherefore one is prone to overlook them. Yet they represent

classic Minimalism’s most distinctive trait and most significant weakness.



Chapter 2

Exploring Feature Checking

This chapter will deal with the details of features and feature checking in Chomsky (1995b).

I will examine the status of features, feature bundles and explore the mechanics of the

feature deletion processes Delete(α) and Erasure. These steps have to be taken in order

to analyze the feasibility of Reuland’s proposal, which will be the topic of chapter 3.

I proceed as follows: first I discuss the status of features in Chomsky (1995b) and in

which way it differs from the assumptions in later version of Minimalism, beginning with

Chomsky (1998). Then I show how lexical items can be defined set-theoretically without

jeopardizing the strict division between lexical items and syntactic structure. This is

followed by a simpler reformulation of feature strength by making use of the sharpened

notion of feature bundles. The new solution provokes some intricate questions concerning

the encoding of feature interpretability, which I will address in section 2.4.

In section 2.5, I finally move beyond features and their architecture and focus on

feature checking instead. Interestingly, this section also marks a step into realms of much

higher lucidity. As we will see more than once, Chomsky’s exposition is surprisingly

conclusive as long as it does not need to drop below the syntactic level. As soon as the

structure of LIs and the manipulation of features themselves becomes a part of the picture,

things get messy.

In order to clarify the gloomy parts, I first introduce the relevant notions entertained

in Chomsky (1995b) and then give a more explicit formulation of feature matching and

feature identity. I look at the properties of Erasure and Delete(α) and demonstrate that

the latter faces some conceptual problems which can easily be accounted for by measures

already familiar from my implementation of feature strength. Building on Nunes (2000),

I then show the redundancy of having both Erasure and Delete(α), and that theories

employing only one feature checking process still cover a comparable range of empirical

phenomena. I conclude with a classification of feature checking systems compatible with

the main assumptions in Chomsky (1995b).

With regard to my methodology, a clarifying note is in order: ultimately, I am in-

terested in a valid analysis of the consequences of Reuland’s modifications to feature

checking. Collecting the bits and pieces scattered over Chomsky (1993, 1995a,c) is a nec-

essary evil, not my main objective. Consequently, I will prefer precise stipulations over

17
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vague derivations whenever it suits my needs, as long as the result does not look totally

“unminimalistic”. However, I do realize that many syntacticians will consider this chapter

the most relevant one of the thesis, and I do not want to put off this part of the audience.

Therefore I decided that the inclusion of a notable amount of what is sometimes referred

to as minimalist reasoning would not do any harm, as long as it did not interfere with

the rhythm and pace of the presentation. As for the fundamental conceptual issues, like

interpretability, I also consider more recent proposals in the literature, although their re-

sults evidently are not represented in the early formulations of Minimalism. The result

of this painstaking enterprise is a number of explicit variants of the Minimalist Program

which are sufficiently close to Chomsky (1995b) for being considered a viable basis of Reu-

land (2001) while at the same time retaining the overall minimalist spirit of the system.

Hopefully, this will satisfy the expectations of the entire audience, diverse as it might be.

2.1 Features

In Minimalist Syntax, a representation is constructed derivationally by application of

several operations to a specified input, with the input consisting of LIs and nothing else.

An LI, in turn, is a feature bundle. This is a very vague way of putting it, but unfortunately

it is as good as it gets in Chomsky (1995c), where features and related topics definitely are

not treated with due precision. Whoever wants to correct his shortcomings has to start

by providing clear answers to two questions: first, what is a feature, and second, what is

a feature bundle? I will now turn to the first question, leaving the latter to section 2.2.

The status of features1 within minimalist syntax has changed over the course of

time. The underlying concept in classical Minimalism (Chomsky 1993, 1995a,b) is neatly

captured by the notion building block, inspired by Kobele (2005). Metaphorically speaking,

features are the atoms from which bigger molecules, that is LIs, are assembled. Just like

atoms, they exist on their own and can be manipulated separately. Therefore it is perfectly

possible to move only formal features after Spell-Out and nothing else, leaving the LI in

situ. Furthermore, syntax can directly affect the features themselves, for example by

marking them as invisible at LF. The introduction of Agree in Chomsky (1998), on the

other hand, marks the change to a characterization of features as properties. It is no

longer possible to move features without moving the whole LI, nor is syntax capable of

manipulating any attribute of a feature except its value. Just like the mass of a particle,

features cannot be separated from their host or be affected independently, and they also

can’t be present more than once in an LI, which is at least in principle compatible with

the metaphor of features as building blocks.

Under their most common reading, both views of features imply a one-to-one relation

between features and linguistic phenomena.In layman’s terms this means that every feature

should represent at most one aspect of natural language. The feature PAST, for instance,

represents a certain aspect of language we want to capture explicitly, just like case or

1In best minimalist tradition, I will neglect PF- and LF-features, devoting my attention entirely
to formal features.
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categories. I am just highlighting the habit of Minimalists to represent integral parts of

natural language as features, by no means am I adding an unprecedented assumption to

the properties of features.

The one-to-one relation implicitly entertained by Minimalist researchers is a direct

consequence of the assumptions on the nature of features and those traits of language,

which I will now simply refer to as functions. Features are taken to be relatively inde-

pendent of each other, so we do not want to map any function to anything bigger than

a feature. If we did, we would accept the possible existence of a feature fi that does not

have any contribution to make unless the structure contains a feature fj , too. This would

amount to a direct attack against compositionality. As far as functions are concerned,

they are by convention atomic too and hence cannot be spliced into smaller units, so we

should not map functions to any non-atomic units. Considerations of parsimony finally

dictate that no two different features may represent the same function. Taken together,

this yields (19).

(19) One-to-one relation between features and functions (F→F)

Every feature represents exactly one function and every function is represented by

at most one feature.

Could this principle be strengthened, such that we arrive at (20)?

(20) One-to-one correspondence between features and functions (F↔F)

Every feature represents exactly one function and every function is represented by

exactly one feature.

The short answer is “no”. The main difference between both principles lies in the relevance

of structural configurations. The weaker formulation, F→F, allows certain functions to be

expressed in a purely structural way, e.g. Θ-roles.

But didn’t I just say above that functions cannot be decomposed, and that we there-

fore should not represent them by any decomposable unit?2 Yes, indeed, but the crucial

point to observe is that the set of atomic elements does in fact comprise more than just

features, e.g. chains, which consist of complex structure yet can’t be decomposed. Doing

so gives a set of identical LIs, but none of them is in any way relevant for the properties

of the chain. Nor can a chain be reduced to the rule of chain-formation, which would

be as pointless as reducing all features to the process which added them to UG many

tenthousand years ago. So F→F is still an adequate summary of the preceding discussion.

Adopting F↔F, on the other hand, is equivalent to banning non-feature-like con-

structs from narrow syntax. This might be a wise move in the case of Θ-roles, but a lot

of interesting research on the interaction of syntax and semantics would then be ruled out

as well, e.g. Svenonius (2002). For this reason, F→F is a more accurate representation of

the underlying intuitions of the community, and I will stick to it for the rest of my thesis.

2There might of course be functions that seemingly are not atomic, e.g. if it turned out that LIs
are classified as adjectives by virtue of spanning less structure than verbs. But then it is mainly
a matter of definition what the function actually is, the concrete, discrete category label, or the
interaction of structure that results in different behavior for different LIs.



20 2.1. Features

Now let us see what concretely qualifies as a feature according to F→F, and what does

not. Imagine a feature-like object which marks an LI as both definite and singular. Such

an object collides with the postulated homomorphism, as both functions can already be

expressed by separate features whose distribution isn’t necessarily the same. That nothing

qualifies as an atomic building block if there are already two of them whose conjunction

serves the same purpose is plausible from an intuitive point of view, too. If, however, we

consider a language Li where all definite LIs are singular and all singular LIs are definite, it

makes sense to treat a feature fi encoding both singularity and definiteness as a building

block. As the features can never surface separately, one should also dispense with the

separate features fg and fk denoting singularity and definiteness, respectively.

There are two alleged counterexamples to F→F. The first one is constituted by work

like Pesetsky and Torrego (2001, 2007) and Kratzer (2004), where it is assumed that one

and the same feature can serve very different functions on different LIs, depending on the

categorial feature of the LI. Pesetsky and Torrego assume that nominative case and tense

are related, following a suggestion by Williams (1994), whereas Kratzer relates accusative

case to telicity. This apparent conflation of functions, though, does not entail that the

relevant feature represents two or even more functions. Rather the function encoded by the

feature is very abstract and may be influenced indirectly by the presence of other features;

in the specific instances above, the value of the categorial feature has an effect on the

interpretation of the “ambiguous” feature. Crucially, that is not a property of the feature

itself but of its interpretation at the interfaces.3 Paraphrasing what I just said, Kratzer

or Pesetsky and Torrego do not claim that one feature accounts for two phenomena, they

maintain that there is actually only one phenomenon, although surface properties may

lead us to expect otherwise.

The second problem concerns dependencies between features: what if an LI may

contain f1 without f2, but not the other way round? Are both features, none, or only one

of them, and if the latter, which one? And what are the ramifications for F→F? First of

all, let us exclude all the cases where f2 is always present when f1 is, but the effects of f2

unfortunately can’t be detected in all instances. Even if UG did in fact list both features,

F→F would then force us to replace them by a single feature f1+2 which exhibits a special

behavior in some situations. For example, some parts of the denotation of a feature may

already be entailed by the remaining structure. If in some of those cases the feature is

spelled out differently, a situation arises where a single feature seems to consist of two.

But this is not the logical possibility the question forces us to address, so let us return

to the main case, f2 always showing up together with f1, but not the other way round. Such

dependencies between features cannot threaten F→F either. Firstly, the interpretation of

f2 might rely on some element that has to be supplied by f1. As can easily be verified, this

3The assumption that the content of a feature and its interpretation at the interfaces may diverge
is needed independently. Just think of a third person feature. At LF, we want it to be an identity
function introducing some presupposition, whereas at PF it is needed for the correct inflection.
Furthermore, we want the feature to give rise to different morphology depending on whether its
LI is a pronoun or a verb. Those in principle unexpected quirks should not be attributed to the
feature but to the interpreters at the interfaces.
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is just a generalization of my account for feature ambiguity in the sense of Kratzer and

Pesetsky&Torrego, but now f1 is obligatory in some instances and optional in others for

independent reasons. Secondly, that f2 depends on the presence of f1 isn’t necessarily due

to the functions of the features, a feature geometry reflecting well-formedness conditions

on LIs (Harley and Ritter 2002a,b) could cause a similar behavior. Whether one assumes

such a construct is a purely empirical issue and completely independent of F→F.

From this discussion of possible counterexamples, I conclude that F→F is a good rep-

resentation of Minimalists’ take on features and that it does not face any insurmountable

challenges, neither conceptual nor empirical ones.4

Speaking of empirical challenges, some readers are perhaps missing considerations of

a distinctively more grounded nature, namely in how far morphological reflexes should

be relevant to the postulation of (formal) features, given that a very strong connection

between morphology and syntax is already assumed in Chomsky (1993). Chomsky argues

that LIs enter the derivation fully inflected, that is to say with all their formal features

specified. Those features have to be checked against various inflectional heads and whence

drive movement.

First of all, Chomsky’s idea should not be confused with accounts which try to estab-

lish a connection between the richness of the morphological paradigms of a specific lan-

guage and which movement happens overtly in that language (Vikner 1997; Rohrbacher

1999). The interdependence they maintain between syntactic movement and morphologi-

cal richness is rather puzzling from a conceptual point of view and faces several empirical

problems (cf. Bobaljik 2003). Therefore one should not ascribe too much importance to

the overt realization of a formal feature within a specific language. Nevertheless the rel-

evance of morphology on a universal level must not be underestimated. If we adopt the

null hypothesis that the mapping from features to sounds is arbitrary, it follows that for

every feature there must be some overt reflex in some language. A formal feature that

never surfaces overtly in any language of the world is at odds, although it is not unthink-

able considering that the set of possible languages most likely is a superset of the set of

languages known to us.

Returning to the assumption that LIs enter the derivation fully inflected, let me

briefly discuss the criticism it was subjected to. Halle and Marantz (1993) note that the

architecture proposed in Chomsky (1993) draws a dubious distinction between inflectional

heads which are not pronounced in general, and other terminal nodes which are. However,

this argument loses its force with the abandonment of Agr-nodes in Chomsky (1995b),

because C, T and v do show PF reflexes even in English, at least sometimes.5

4From an epistemological point of view, this was to be expected anyway, for F→F is an axiom.
It is indispensable for the partitioning of the empirical realm, so there is no empirical method to
refute it.

5Whereas instantiations for C and v are rather trivial, the evidence for T being pronounced at
rare occasions is slightly more intricate. Consider (i):

(i) He did not arrive yesterday.

Assuming that unaccusative verbs lack a vP-shell, supportive do in (i) has to reside in T.
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But Halle and Marantz (1993) are not the only ones who doubt the validity of Chom-

sky’s lexicalist assumptions, semanticists do too. Look at the example in (21), which is

discussed by Kratzer (1998) and which she attributes to Irene Heim.

(21) Only I got a question that I understood.

This sentence has two readings, a strict one where I understood no question save the one

that I got, and a sloppy one where nobody except me got a question that he understood. If

the bound pronoun I in the embedded clause had entered the derivation with all its features

specified, only the strict reading should be possible at LF, because a variable specified for

first person arguably cannot be bound by any non-first person entity without giving rise to

a presupposition failure.6Semanticists therefore commonly assume that pronouns enter the

derivation without their morphological features specified (Heim 2005; Kratzer 2006). Yet

there are accounts which opt for deletion of the features of a bound variable at LF, foremost

Stechow (2003a,b). Evidently, such approaches work flawlessly within the framework of

Chomsky (1993, 1995b).

In summing up we conclude that the stance taken in classical Minimalism isn’t neces-

sarily inferior to the feature valuation system of Chomsky (1998) on conceptual or empirical

grounds. But still we should not put too much emphasis on the role of morphology when

it comes to determining the set of features in natural language. Furthermore, I assert

that there should be no instance where morphology could be more than just one of many

indicators.

2.2 Feature Bundles

Now that we have familiarized ourselves with the very nature of features, we will turn

to feature bundles, another concept whose specifics are rarely made precise. That, of

course, is in line with the general indeterminacy of lexical structure within the Minimalist

Program. Obviously the specifics of lexical structure form a huge area of (potential)

research that can’t be treated in all due detail here, but that isn’t what I am heading for

anyway. Rather, I want to determine the smallest set of conditions we have to stipulate

for bundles and LIs in order to arrive at a working theory of syntax. Being aware of those

conditions will in turn provide us with solutions to syntactic problems we did not even

have the chance to look at yet, as we will see in 2.3.

The idea behind feature bundles is a very simple one: feature bundles are the pots

into which features are put to keep them tightly together. Bundles are crucial for the

operation Select (both s-selection and c-selection). If there were none, only categorial and

semantic features would be selected from the numeration, and as a result, no derivation

could converge, for the numeration would never be completely exhausted. If features are

grouped in bundles, the selection of a feature is equivalent to the selection of the whole

bundle, as required.7 In addition, Merge depends on feature bundles, too. Merge can be

6I will give a more thorough discussion of the denotation of features in section 2.4.
7This is a stipulation, of course. It is based on the idea that a feature cannot leave the bundle
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viewed as the complex function label(concatenate(LI1, LI2)) (cf. Chametzky 2000), so if

LIs were not feature bundles, dozens of features would have to be taken as arguments,

violating the diadicity of the operation. Bundles also play a role in pied-piping of features

and hence movement, for they encode which features have to move simultaneously with the

attracted feature such that the derivation does not crash. It follows logically from those

three arguments that feature bundles are visible to narrow syntax and differ significantly

from features in their syntactic status.

When it comes to turning the intuitive notion of feature bundles into a formal one,

there are two competing views. Chomsky (1995a:392) explicitly treats them as sets,

whereas Uriagereka (1998) defines them as matrices. To decide which one is a better

fit, it helps to remind oneself that bundles do not have a lot of work to do except contain-

ing features. This is exactly what sets do, whereas matrices also encode linearity. Unless

linearity is obligatorily needed in syntax as well as at the interfaces, we should stick with

sets for reasons of parsimony.

Odd as it might sound, matrices nevertheless have an advantage over sets by virtue

of not being sets. Consider (22), a set-theoretic definition of the structure of an LI.

(22) Lexical Item (LI) (to be revised)

F := {fi : fi is a feature }
LI ⊆ F

In the set-based approach, an LI is a set of features, which gives rise to a rather perplexing

conflict. Recall that BPS builds directly on set theory, that is, a tree is a graphical

representation of a set consisting of either an atomic element and a set (Set-Merge) or two

sets (Pair-Merge).8 So how does one keep syntactic and lexical structure separate, although

they are based on the same concept, namely sets? If we take our technical implementation

seriously, that’s anything but a trivial question, and the whole applicability of the set

approach relies on a convincing answer to that question, as the consequences of a failure

to do so would be devastating: feature bundles subjected to a structural analysis along the

lines of BPS are not necessarily binary, whence misinterpreting them as a part of phrase

structure is equivalent to looking at phrase markers where at least one non-terminal node

is not binary branching. This is a violation of the Linear Correspondence Axiom (LCA)

of Kayne (1994), and as every representation shipped to PF contains feature bundles,

by which it is immediately contained. However, this intuition does not apply to Select, given that
selection of an element from the numeration isn’t related in any way to movement, but to External
Merge of a copy of the selected element plus reduction of the numerical index of this element by
one (see 1.2 and 1.3). To account for this technical problem, we have to assume that features
do not bear such a numerical index and that selection obligatorily has to reduce the index of the
selected item — if there is no such index, the operation is illicit and the whole derivation crashes.
Hypothesizing further that a parser should create as few crashing derivations as possible, no object
will be selected if there is a bigger object containing it. It follows that nothing but LIs can be
selected. This way we also prohibit the selection of FF[LI].

8For Pair-Merge, this isn’t obvious at first sight, as the label is by definition a pair 〈γ, γ〉. But
such pairs can easily be defined in purely set theoretic terms, such that 〈γ, γ〉 = {{γ} , {γ, γ}} =
{{γ} , {γ}} = {{γ}}. Therefore, a term generated by Pair-Merge is a set containing two sets.
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virtually every derivation should crash at PF, the locus of the LCA. If this problem is

unsolvable, adopting matrices instead of sets is a wiser choice.

One could stipulate a representational pattern matching algorithm which tries to find

the typical structures associated with BPS, {a, {a, b}} and
{
〈a, a〉, {a, b}

}
, where a and b

are LIs and a, 〈a, a〉 are the respective labels. Whatever does not fit that bill, for instance

the set {f1, f2, f3, f4, . . . , f32, f33}, could then be considered an LI. This is anything but

computationally efficient, and in addition, it crucially relies on labels, which renders it

incompatible with current attempts to simplify phrase structure (Collins 2002). Even

worse, it is prone to failure when encountering LIi := {{f1} , {{f1} , {f2}}} or comparable

LIs.9

We could considerably improve on that if the structure of LIs was more principled.

Fortunately, that is exactly what Chomsky (1995a:392-394) assumes.10

I assume that an item in the lexicon is nothing other than a set of lexical
features, or perhaps a further set-theoretic construction from them (e.g. a set
of sets of features). [. . . ] We assume then that each lexical entry is of the form
P, S, F, where components of P serve only to yield π (phonological features),
components of S serve only to yield λ (semantic features) and components
of F (formal features, e.g. the categorial features [±N, ±V]) may enter into
computations but must be eliminated (at least by PF) for convergence.

If we adopt this proposal, we get (23).

(23) Lexical Item (LI) (to be revised)

LI := {PF,LF, FF}
FPF := {fi : fi is a PF-feature }
FLF := {fi : fi is a LF-feature }
FFF := {fi : fi is a formal feature }
PF ⊆ FPF
LF ⊆ FLF
FF ⊆ FFF

Distinguishing the structure of an LI from BPS is now a trivial task. Every set {a, {a, b}}
is a non-terminal node, and every set of the form {PF,LF, FF}11 is a terminal node. If

one uses a variant without labels, it suffices to redefine non-terminal nodes as sets of the

9The simpler LIj := {f1, {f1, f2}} isn’t problematic, because terminals in BPS are now sets.
Hence the confusion should only arise with LIi, not LIj .

10Uriagereka (1998:250) assumes a similar structure for matrices.
11Two minor points are in need of clarification. First, LF and FF are disjoint sets, i.e. inter-

pretable features belong to FF , but not LF . Second, an LI can be defined as a set instead of
a triple without any side-effects for the following reason: syntax obviously recognizes syntactic
features, so it has no problem with detecting which set FF is. Similarly, it is aware of the inter-
pretability of features at LF (cf. section 2.4), so it is perfectly able to recognize LF . It follows that
if the content of one of the sets cannot be read by syntax, this set is PF . Spell-Out is a syntactic
operation and hence recognizes the sets correctly, too. At LF, an LI contains only interpretable
material, so the partitioning of the features does not matter. The same reasoning applies to PF,
if we maintain, contra Chomsky (1995b), that Spell-Out deletes LF-features in the PF-copy of the
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form {a, b}. As even an LI with only two features won’t ever have that form, no confusions

arise.

When studying the definition in (23), most Minimalists will probably wonder why

PF , LF and FF must not contain sets besides features. Sure, there may be no com-

pelling reason for adding additional structure, yet nothing prohibits it either, and follow-

ing minimalist traditions, we should shun every stipulation which is not forced onto us by

conceptual or empirical necessity. Moroever, although nothing explicit is said about the

microstructure of LIs in Chomsky (1995b), Chomsky (1998:40) insinuates that the set of

φ-features is a proper subset of FF : “We take deletion to be a ’one fell swoop’ operation,

dealing with the φ-set as a unit. Its features cannot selectively delete: either all or none.”

This is additional support for generalizing the current definition of LIs such that an LI

is a set of the three sets PF , LF , FF , which in turn may contain features and sets of

arbitrary complexity.

(24) Lexical Item (LI) (final version)

LI := {PF,LF, FF}
FPF := {fi : fi is a PF-feature }
FLF := {fi : fi is a LF-feature }
FFF := {fi : fi is a formal feature }
FF is either the empty set or a finite subset of the smallest set M such that

(i) ∀x[x ∈ FFF ∪ {∅} → x ∈M ], and

(ii) ∀x[x ⊆M → x ∈M ]

Analogously for PF and LF .

Allowing LIs to be highly structured introduces some notational hurdles. In principle,

we can no longer write fi ∈ LIi to designate some feature of LIi, because fi could belong

to a set M ∈ LIi. I will therefore adopt my notation such that ε denotes the transitive

closure of ∈. That is to say, if fi is a member of set A, I still write fi ∈ A, and fi /∈ A if

it is not. If fi is a feature contained by A, no matter how deeply it is embedded, I write

fi ε A. This covers both A := {f1, . . . , fi, . . . , fn} and A := {f1, . . . , fn, {. . . , fi, . . .}} and

other variants.

(24) licenses more complex structures than (23), e.g. LIs with all their φ-features

grouped together as a subset.

(25) {{PF-features}, {LF-features}, {FF, {φ-features}}}

But that is just the tip of the iceberg, (26) is licensed by (24), too.

(26) {{stressed, {vowel, {ATR, {back,high}}}} ,
{alive, {mammal, ∅, {cat, {tomcat}}} , {black,white} , {{{has stripes}}}} ,
{N, {masculine, third person,plural}}}

phrase marker. Consequently, there is no risk of confusing sets at any point, even if their order
with respect to each other is not fixed.
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Such complex structures allow us to emulate both feature geometries and feature hierar-

chies, which are then to be interpreted as additional conditions on the well-formedness of

LIs imposed by other components of grammar.12 Owing to the new complexity of LIs, a

serious question arises concerning parsing. If they can indeed have such a rich structure,

don’t we predict that trees are parsed top-down at the interfaces? Only by proceeding

in a top-down manner does the parser recognize an LI immediately when it has reached

it. Bottom-up parsing is more demanding, as an LI may contain a set which is itself

tripartitioned, wherefore the parser can never be sure whether he has already left the LI

and entered syntactic structure. If resource usage matters at the interfaces, a top-down

parser should have to be used. This reasonsing, however, holds just in case syntax could

not classify features. If formal features can be told apart from LF- and PF-features (cf. fn.

11), the problem does not arise because the highest level of an LI can be unambiguously

determined in a strictly local fashion.

Our pattern-matching algorithm can effectively work with both definitions, (23) and

(24), even if an LI lacks features of a specific type, e.g. PF-features, because the LI still

contains three subsets, one of them the empty set. Unfortunately we encounter a problem

as soon as the two empty sets are present. Particles merged at PF, for example, may lack

both semantic and formal features. Some semantic operators arguably contain nothing

but LF-features, and some inflectional heads might only have formal features (at least

in classical Minimalism). But by definition a set never contains the same element twice,

hence those LIs are of the form {{f1, . . . , fi} , ∅}, rather than {{f1, . . . , fi} , ∅, ∅}. This

structure isn’t recognized as an LI by the parser and again disaster is bound to strike.

We can easily overcome the problem if we assert that LIs are multisets (just like

the numeration). In a multiset, an element can occur multiple times, wherefore A :=

{{f1, . . . , fi} , ∅, ∅} 6= B := {{f1, . . . , fi} , ∅}. Adopting multisets also offers us an elegant

solution to our original problem, namely how to distinguish LIs from BPS. If LIs are

multisets, we just need to add the provision that syntax and the interfaces can distinguish

between sets and multisets.

In addition, multisets are able to account for yet another problem, namely covert

movement. Covert movement is pure feature raising, i.e. a copy of the set of formal

features is merged with syntactic structure in the covert cycle. If we look at LIs as sets,

this puts us back to where we started. The set of formal features with its flat structure is

more or less a variant of an LI as it was defined in (22). Logic dictates that this requires

the resurrection of the first algorithm to prevent disaster. Well, logic did not scrutinize

the facts with due care. In Minimalism, movement creates chains which are visible and

parsed at the interfaces, and chains can thus encode the origin of some element in a

straightforward way. The only thing left to do for the parser is to determine the status of

the element in its original position, the rest is taken care of by the Uniformity Condition

(see 13b). However, chains face some serious problems on their own, for they do not fit

12This allows for a conception where the lexicon functions more or less like an unrestricted
generator whose final inventory is directed by linguistic input during language acquisition and the
restrictions of the computational system.
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well into a derivational framework (Brody 2002) and are technically flawed (Epstein and

Seely 2006). Besides, having some very fundamental and mostly theory-neutral issue like

the detectability of terminal nodes depend on a specific high-level device like chains does

not look like a farsighted decision to me. We can spare ourselves the complications and

just assume that FF is a multiset, too. That way, we also adhere to the metaphor of

features as building blocks which insinuates that features may be present more than once.

But multisets also open the door to new complications. Consider an LI∅ := {∅, ∅, ∅}.
We definitely don’t want it to enter the numeration, as it can neither be s-selected nor

c-selected. As a result, a numeration containing LI∅ will never be exhausted and the

derivation won’t converge. If LIs are sets, LI∅ := {∅} is no licit LI anyhow and the whole

issue does not arise. If LIs are multisets, though, we would better come up with a neat

solution. Either we add an additional well-formedness condition on LIs, according to which

every LI must contain at least one feature, or we stipulate that such an LI would never

enter the numeration in the first place. I will do the latter, referring to Chomsky’s HEOC

discussed in section 1.4.13

Independent of multisets, a rather perplexing asymmetry arises as the immediate

result of allowing LIs to have subsets. Neither features nor subsets can leave the set they

are contained by, except in the case where the subset in question happens to be FF . If

an LI is a set just like any other, why can its subset FF move separately? And why is

the same impossible for PF and LF? Apparently this is due to the conception of covert

movement in Chomsky (1995b) and nothing else. There is little use in arguing about the

soundness of that assumption, so I can’t do much but capture this quirk explicitly.

(27) Impermeability of bundles

For all features f and all sets M,N , such that f ∈M ε N ∈ LI:

a. f cannot move out of M , and

b. M cannot move out of N , and

c. N cannot move out of LI, unless N = FF

To sum up, we saw that bundles must be visible to syntax. Treating LIs as sets of

features initially creates some tough challenges when it comes to keeping the distinction

between LIs and phrase structure easily tractable, but this can be rectified by defining

them as multisets. As an additional benefit we don’t need any specific algorithms, nor are

we locked into a specific kind of parsing method. Further, we do not have to depend on

chains and we do not encounter any problems with LIs whose features belong to only one

class. We can faithfully maintain that we have found a powerful yet simple alternative to

matrices that does not obligatorily comprise linearity. In the next section, we will use our

13The details work out as follows. Suppose that the numeration contains pairs of LIs and
numerical indices, such that two numerations N1 := {〈LIi,m〉} and N2 := {〈LIi,m〉 , 〈LI∅, n〉},
m,n ∈ N+, can be constructed. By the HEOC, all derivations based on those numerations have
to be constructed in order to determine the effect of LI∅ on the output. If we refine Chomsky’s
ideas and maintain that a derivation crashes if all possible operations have been carried out but
the numeration still isn’t completely exhausted, we conclude that N1 will always be preferred over
N2.
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new knowledge about the properties of feature bundles and the structural conditions on

LIs for a simpler implementation of feature strength.

2.3 Strong Features and their Consequences

Chomsky (1995b) does not give a complete list of formal features, stressing that there just

isn’t enough research done on that topic. But he contends that FF comprises at least the

following features (Chomsky 1995b:277):

(28) a. categorial features

b. φ-features

c. Case features

d. strong F , where F is categorial [my own notation: F := f ∈ FFF ; TG]

I do not have a lot to say about (28a) to (28c). Categorial features are mainly needed

for subcategorization and may thus proof superfluous provided that somebody comes up

with a different version of the operation Select which does not need c-selection in addition

to s-selection. They also fall short on grounds of explanatory adequacy, as they are just a

restatement of the facts. Regarding Case features, they were one of the main mechanisms

for triggering movement, but with the introduction of Agree in (Chomsky 1998) this

duty was delegated to the EPP-/OCC-feature (Chomsky 2004), so Case features lost

importance. Svenonius (2002), among many others, started their foreseeable demise and

Sigurðsson (2003, 2006a,b) tries to get rid of them completely. Concerning φ-features,

their microstructure recently entered the focus of linguistic research (cf. Adger and Béjar

to appear), so new results can be expected soon. Diverse as the current state of (28a)

to (28c) might be, we see that each of them is at least partially a matter of empirical

research. As such, they are beyond the scope of my thesis.

Strong features, on the other hand, are purely theory internal constructs and merit

further discussion. Chomsky (1995b) entertains a strict division between an overt and a

covert cycle, which are separated by a single Spell Out. Strong features are used as a

device to enforce overt movement, i.e. movement before Spell Out. If a strong feature isn’t

checked immediately after entering the derivation, the derivation is canceled. Whether

this behavior is due to PF- or LF-requirements is issue to debate — Lasnik (1999) gives

reasons to prefer an analysis whereby properties of PF are the main culprit.

Feature strength has been subjected to a lot of criticism from the very beginning.

Various arguments have been made against its empirical implications (cf. Sauerland 1995;

Broekhuis 2000), and the soundness of the whole concept has been questioned, too. Both

Lotfi (2002) and Þráinsson (2003) object that the methodology behind feature strength is

fundamentally flawed.

(29) Tautology of strong features (Lotfi 2002:6)

If a moves then a moves and [if it is not the case that a moves then it is not the

case that a moves and F moves iff two features enter a checking relation.
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Paraphrasing (29), strong features are merely a description of the basic facts without

any added explanatory value. If it is assumed that LI1 moves overtly, one assigns its

attractor LI2 a strong feature, and if it is the case that LI2 has a strong feature, then LI1
moves overtly. This is one of those coding tricks Chomsky explicitly condemns (Chomsky

1995b:224).

Leaving aside its tautological status, we see that feature strength is rather odd in

another respect. Consider (30).

(30) If F is strong, then F is a feature of a nonsubstantive category and F is checked

by a categorial feature. (Chomsky 1995c:232)

If we assume that a feature can be checked only if it is identical to its checker (as Chomsky

does, see 2.5), it follows from (30) that strong features are categorial. This is explicitly

confirmed by Chomsky (1995b:232): “If so, nouns and main verbs do not have strong

features, and a strong feature always calls for a certain category in its checking domain

(not, say, Case or φ-features).” Recall that F→F, Minimalists’ underlying intuition of

features, establishes a tight relation between features and functions. Apparently it is not

respected by strong features, for they are not only strong, but also categorial.

Confronted with this rather unexpected clash, we may seek help from other linguists

who tackled the issue in their work. Unfortunately, this does not prove helpful at all, quite

to the contrary. One encounters claims about heads having a strong Case feature (Bobaljik

and Jonas 1996; Collins and Þráinsson 1996) or a strong wh-feature (Müller 1999), which

obviously isn’t in agreement with Chomsky’s quote above. The only piece of advice we

can gain from this detour is that we should not restrict our attention to the details of

feature strength in Chomsky (1995b), because the concept has been generalized in such

a way that any feature can be specified for strength. This puts F→F even more at odds

than the original proposal.

Yet we do not want to give up on our axiom, as it is more or less the only guiding

rule we have for what constitutes a good feature system in Minimalism. However, if it

is impossible to reconcile feature strength with F→F, one of them has to go, and at first

sight it is more likely that feature strength won’t be the one to be dropped, as it forms an

integral part of Chomsky’s technical machinery. Fortunately, the first option, redefining

feature strength such that it does not conflict with F→F, is indeed valid. Incidentally,

this move is needed anyhow if we want to prevent feature strength from undermining the

internal machinery of the Minimalist Program. Let me explain this in more detail. The

field of linguistics is home to a multitude of feature based systems of differing complexity

that can be hierarchically grouped as follows (cf. Adger 2006):14

(31) Types of features (from less to more complex)

14Adger’s hierarchy is challenged by Asudeh and Toivonen (2006), who observe that it is not a
priori evident that two grammars that differ in no aspect but their feature system do not show
the same level of power. Rather than a real argument, that is an example of how simplicity
and economy can be understood in different ways — although Asudeh and Toivonen’s notion of
simplicity is at least well-defined.
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a. privative features

b. binary features

c. non-recursive attribute-valued features

d. recursive attribute-valued features

Privative features are the simplest option, they have no values but are either present

or not. Such a system is entertained by Government Phonology (Kaye et al. 1985, 1990), for

example. Binary features are familiar from Chomsky and Halle (1968), they can be valued

[+] or [−]. Non-recursive attribute-value systems are frequently used in morphology, for

instance when specifying a specific verb form as [Category: V; Tense: Present; Number:

Singular; Person: 3rd]. This system is also being used in Minimalist syntax since Chomsky

(1998). The most powerful framework is provided by recursive attribute-value feature

systems, which are a distinctive trait of Head-driven Phrase Structure Grammar (Pollard

and Sag 1994). In such a system, it is possible for a feature to take another feature or

feature bundle as its value, resulting in very powerful feature structures that can do a lot

of work which is handled by separate syntactic mechanisms in the Minimalist Program.

Chomsky (1993, 1995b) probably uses a mixture of privative, binary and valued fea-

tures. It must not use a recursive attribute-valued feature system, as most of its operations

would then be devoid of virtual conceptual necessity. That is to say, if most of the technical

apparatus can be emulated by complex feature structures, methodological concerns force

us to simplify one of them. Introducing second-order features, that is diacritic features

like [±strong] that assign additional properties to features, is a kind of recursive feature

system. It might be restricted to special features and does not allow for more than one

instance of recursion,15 but as soon as this is a valid option in our theory, we have to

explain why it is restricted to special features, why deeper embedding is impossible and so

forth. If the reader still has some doubts, he or she may take a look at the following two

notations for a strong feature, and think off a reason why they should not be considered

equivalent:

[fSi : y] ≡ [strong : [fi : y]]

The dilemma is rectified in Chomsky (1998) by abandoning feature strength alto-

gether. Instead, movement is said to be induced by an EPP feature taking a feature type

as its value. That the value of the EPP feature is restricted to general types such as Case

or Person, but ignores the actual value of the feature, prevents the issues depicted above.16

Yet this workaround forces us to commit ourselves to an attribute value feature system, for

which there is no compelling reason in the older framework of Chomsky (1995c). But due

to our refined notion of feature bundles, we can accommodate a feature neutral alternative.

(32) Feature strength

15Actually, Chomsky’s treatment allows for two instances of recursion, because checking of a
strong feature entails marking it for removal at Spell-Out.

16Note though that we are then forced to treat the wh-feature as a discrete feature, whereas its
interpretable counterpart, Q, should be the value of the clause type feature of C0.
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If Fi and FS are members of a feature bundle B, FS privative17 and interpretable,

then the closest feature Fj which is identical to Fi has to move immediately to

check Fi (pied-piping whatever is needed for reasons of convergence). Else the

derivation is canceled.

The logic behind (32) is simple. Strong features merely force the immediate deletion of

every feature that is a member of the set they are a member of. From this point of view,

a strong Case feature is actually a bundle B :=
{

Case, FS
}

. FS itself won’t be checked,

as we take it to be interpretable (it denotes the identity function). That is in line with the

claim in Lasnik (1999) that strong features have to be checked due to requirements at PF,

not LF. What more to say, not allowing FS to be checked has the distinctive advantage

that we need not concern ourselves with the question which features may under which

circumstances check FS , which is a vacuous question anyhow considering the doubtful

status of feature strength. From a practical point of view, (32) does the same work as

(30).

It might be objected that (32) still introduces bloat into the feature system. This

criticism is only partially warranted. The new implementation requires nothing but that

FF may contain subsets and that syntax is sensitive to the presence of bundles. Both

assumptions were already established independently. We also do not need to worry about

the new implementation of feature strength obsoleting parts of the Minimalist apparatus,

for the bundles themselves do not interfere with syntax as long as no feature makes us

of them. All the power resides in FS , so keeping the number of such privative features

small guarantees an unchanged syntax. I have to admit, though, that the system can in

principle model recursive attribute-value systems if the definition of LIs and the number of

such diacritic features is adopted accordingly. Nevertheless I chose to implement feature

strength in this way, because the idea can be generalized to other diacritic features, as we

will see later on. This is not the case for Chomsky’s EPP-based account.18

Cautious readers may further point out that another, rather special assumption is

indispensable, namely that the numeration is not only able to add feature bundles to

an LI, but also to generate a completely new bundle and fill it with features. This is

due to the timing of the insertion of optional features. Intrinsic features might already

come bundled with a strong feature from the lexicon, but optional features are not added

17If FS was a binary feature [±strong], it would have a [-strong] feature itself, which would in
turn have such a feature too, and so on.

18A third implementation is proposed in Gärtner (2002), where features aren’t treated as atomic
units but as 4-tuples 〈A, V, i, j〉, where A is the attribute, e.g. Case, V is the value, e.g. nominative,
and i, j ∈ {0, 1} such that i = 1 iff the feature is strong and i = 0 otherwise, and j = 1 iff the feature
has been checked and j = 0 otherwise. This solution is straightforward and does not introduce the
problem of recursiveness, but it isn’t in line with F → F , nor with general Minimalist intuitions. In
section 2.6, we will see in particular that it isn’t faithful of Chomsky’s own ideas regarding checking.
Finally, it is always a wise move to push existing tools to their limits before introducing additional
machinery. In the worst case, we simply learn that we can’t reach our goal without enhancing the
technical apparatus. To the end of sticking with what we already have at our disposal, I opt for a
feature and bundle based approach.
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earlier to an LI than in the numeration. If an optional feature is strong, it has to be

bundled with FS in the numeration, it seems. This argument, though, is only conclusive

if a certain optional feature can be present in both strong and weak instances within

the same language. Otherwise the optional features may already be marked as strong or

weak in the lexicon, that is before entering the numeration. One could even claim that

the lexicon could contain two instances of an optional feature, the single feature and a

bundles containing the feature and FS . In the numeration, one of the two is added to an

LI depending on its categorial feature. Finally, we can simply maintain that every FF

contains a set
{
FS
}

to which optional features can be added in the numeration. That

way we can stick to the assumption that the bundling of features can only be done in the

lexicon, where it is indispensable for the assembly of LIs.

2.4 (Un)Interpretability

Besides feature strength, Chomsky (1995b) makes heavy use of another diacritic feature,

namely interpretability. Naturally, the question arises whether this property of features

should be handled the same way as feature strength. I conjecture that it does not.

There is one fundamental property that distinguishes interpretability from feature

strength. The latter is language specific, hence coded in the lexicon (Borer 1984) and

thus a feature by minimalist assumptions.The interpretability of a given feature F , on the

other hand, is universal. Granted, F may be interpretable on a noun and uninterpretable

on a verb, but even this variation will never be subject to parametric variation. True as

this assumption may be, it is only an indication that we need not use diacritic features,

it does not tell us whether there are viable alternatives to those second-order features. If

there aren’t any, interpretability should indeed be treated analogously to feature strength

and I have to withdraw my previous claim.19

The first proposal is due to Chomsky himself, who implicitly treats interpretability

as a part of UG. The interpretability of a feature in relation to a category is stored in UG,

telling narrow syntax that e.g. φ-features are licensed on a noun, but have to be deleted

when they belong to a verb. Feature strength is a parameter, so the values cannot be fixed

in UG for every feature. Consequently, a lexical mechanism is needed to set the property.

Chomsky’s treatment of interpretability is reasonably sound and definitely an im-

provement over encoding it by features. Unfortunately, it is not without its caveats. The

Inclusiveness Condition demands that syntax has no access to any non-syntactic infor-

mation that isn’t encoded by features. Yet interpretability is usually considered an LF

property, so it is rather questionable why syntax should have access to this information

if it isn’t represented by features. If we allow syntax to know about interpretability, why

19Asudeh and Potts (2004) propose to capture the distinction between interpretable and unin-
terpretable features by typing features. It remains to be seen how such an approach fares for the
behavior of those features whose interpretability changes in accordance with the categorial feature
of the LI. If there is an elegant way to implement this, it could be extended to strong features to
circumvent the problems mentioned in the previous section.
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does not it also know about QR or type shifting? Apparently there is something about

interpretability which makes it less of a pure LF property than the latter two, so letus do

a short investigation of this concept.

Interpretability allows us to partition the set of features into three sets. First those

which are always interpretable, then those which are always uninterpretable, and finally

those which can be both, depending on where they occur. Regarding the first group, it is

interesting to note that being interpretable is not equivalent to being interpreted. Recall

the discussion of Heim (2005) in section 2.1. There we saw that in some instances, φ-

features may not be interpreted even if they are interpretable. The relevant example is

repeated here for the reader’s convenience.

(33) Only I got a question that I understood.

From this we conclude that an interpretable feature is a feature with a specific semantic de-

notation, but whether this denotation is actually interpreted depends on other conditions.

That is to say, being interpreted implies being interpretable, but the entailment does not

hold in the other direction. The denotation of at least some interpretable features is the

identity function plus some presupposition (cf. Heim and Kratzer 1998; Sauerland 2003).

Relevant examples (due to Heim 2005) are given in (34).

(34) a. JsgK= λxe : x is an atom. x

b. JplK= λxe : x is a plurality. x

c. J1stKc= λxe : x includes sc. x

d. J2ndKc= λxe : x includes hc and excludes sc. x

e. J3rdKc= λxe : x excludes sc and hc. x

If this treatment can be generalized to all interpretable features, we can claim to have

a certain understanding of what constitutes an interpretable feature, although we have to

keep in mind that this still does not correlate directly with LF-behavior. We are also still

lacking an account for what the precise properties of an uninterpretable feature are, a

more pressing question for syntacticians.

Without a doubt the most striking property of uninterpretable features is that they

might not exist. This is an unexpected conjecture, but it definitely has a certain appeal.

Consider the set of purely formal features, that is the set of those features which are

always uninterpretable. The cardinality of this set is very low, as its only members are

Case features and the EPP-feature. I already mentioned attempts to get rid of the former,

or at least tie them closer to semantics, and comparable research is currently done on the

EPP-feature (Epstein and Seely 2006). So it might well turn out in a few years that the

set of purely formal features is the empty set.

As a consequence, the “androgynous” features remain as sole instance of uninter-

pretable material. φ-features are the most prominent example of this group. They are

interpretable on nouns and uninterpretable on verbs. Yet it should be doubted that those

features really have uninterpretable instantiations. Zeijlstra (2006) emphasizes that there

is no way to determine that features of this group sometimes aren’t interpreted. Consider
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the case of plural, which is uninterpretable on the finite verb of the sentence, but inter-

pretable on the subject. Both categories are in a direct relation to each other, such that the

verb cannot surface inflected for plural without a corresponding DP in its neighborhood.

Given that logically A∧A⇔ A, no one can prove that the plural feature on the verb isn’t

actually interpreted, because interpreting this feature does not add any new information.

If the allegedly special behavior of “androgynous” features is nothing but an artifact,

i.e. if they are always interpreted, but in some cases they have no tractable effect on

interpretation, we can treat them as purely interpretable features. And even if those

features aren’t always interpreted, this does not necessitate that they are uninterpretable,

as we already saw above. If, in addition, the EPP and Case features are also shown to be

interpretable, or even non-existent, interpretability is no meaningful category any longer,

for all features (except PF-features), are then interpretable.

No matter whether Minimalist research will eventually reach this ambitious goal or

not, it shows that the notion of interpretability does not neatly line up with LF behavior

and is rather immature and bound to change. Therefore we should not needlessly con-

cern ourselves with the contradictions and obscurities it might give rise to. Instead, I

recommend to accept them as symptoms of our failure to fully capture the phenomenon.

Although it is quite strange that syntax knows about interpretability even though it isn’t

encoded via features, we should not hesitate to assume it nevertheless.

2.5 The Primitives of Checking Theory

In the preceding sections, I was concerned with ensuring a stable ground on which I could

base the next steps of the discussion. I focused especially on the status of feature bundles,

using the technical implications of feature strength as a way to establish the usefulness of

bundles. In the following sections, I will turn to the center piece of both Minimalism and

this paper, namely feature checking.

I will start by providing the exact definitions (most of them are indeed exact) and

analyzing the interaction between checking theory and movement. Later on, I will give a

detailed treatment of Delete(α) and Erasure, resulting in various formulations of feature

checking, some of them more plausible than others.

Let us begin with the introduction of the vocabulary we need in order to define the

checking domain. (35)–(44) are taken from Nunes and Thompson (1998), who, to my

knowledge, are the only ones to provide a set-theoretic definition of those basic notions.

Concerning the definitions of domination and containment, a very important point needs to

be mentioned beforehand. They are cited unchanged, although the wording is dangerously

sloppy insofar as it is in no way obvious that (36b) and (37b) can be applied recursively.

Yet if those conditions were not recursive, domination and containment could not reach

further down the tree than three levels.

(35) Syntactic object

σ is a syntactic object if it is

a. a lexical item or the set of formal features of a lexical item, or
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b. the set K =
{
γ, {α, β}

}
or K =

{
〈γ, γ〉, {α, β}

}
such that α and β are syn-

tactic objects and γ or 〈γ, γ〉 is the label of K.

Given a syntactic object K such that K =
{
γ, {δ, µ}

}
or K =

{
〈γ, γ〉, {δ, µ}

}
:

(36) Domination

K dominates a syntactic object α if and only if

a. for every set L such that L ∈ K, α ∈ L, or

b. for some set M , K dominates M and M contains α.

(37) Containment

K contains a syntactic object α if and only if

a. for some set L such that L ∈ K, α ∈ L, or

b. for some set M , K contains M and M contains α.

(38) Minimal Projection

A syntactic object α is a minimal projection if and only if there is no syntactic

object β such that α dominates β.20

(39) Maximal Projection

A syntactic object α is a maximal projection if and only if there is no syntactic

object β such that β dominates α and β has the same label as α.

(40) X0max

The syntactic object K is an X0max projection if and only if

a. K is a minimal projection, and

b. there is no minimal projection L such that L contains K.

(41) Max(α)

Max(α) is the maximal projection P such that P dominates α and for every max-

imal projection Q 6= P , if Q dominates α, then Q dominates P .

(42) Sisterhood

The syntactic objects α and β such that α 6= β are sisters if and only if for every

syntactic object such that γ contains α, γ also contains β, and conversely.

(43) Specifier

A syntactic object α is a specifier of the head H if and only if α is a sister of an

intermediate projection P such that P has the same label as H.

20This definition is rather tricky, so let me elaborate on it. Consider the case where V has
undergone head-movement and adjoined to T. As we are dealing with an instance of adjunction,
the projected label is a set, so we get the term A := {{{T}}, {V, T}}. According to our definition of
domination, A does not dominate V or T . Consequently, A (represented as T0 in a tree structure)
is a minimal projection.
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(44) Complement

A syntactic object α is a complement of the minimal nonmaximal projection H if

and only if α is a sister of H.

I continue with my own paraphrases of the relevant domain definitions in Chomsky

(1993).21 Note that domination as defined above isn’t a reflexive relation, but of course

this does not imply that it is illicit to make reference to its reflexive closure.

(45) Domain of α (D(α))

Let D(α) := {x : x 6= α ∧ x does not contain α ∧Max(α) contains x} be the do-

main of α.

(46) Complement Domain of α (DC(α))

Let DC(α) := {x ∈ D(α) : x is (reflexively) dominated by the complement of the

X0max projection (reflexively) dominating α} be the complement domain of α.

(47) Residue of α (DR(α))

Let DR(α) := D(α)−DC be the residue of α.

(48) Minimal Domain of α (DM (α))

Let DM (α) be the smallest subset M of D(α) such that for every x ∈ D(α) there

is a y ∈M that (reflexively) dominates x. We call DM (α) the minimal domain of

α.

(49) Internal Domain of α (DI(α))

Let DI(α) := DC(α) ∩DM (α) be the internal domain of α.

(50) Checking Domain of α (C(α))

Let C(α) := DR(α) ∩DM (α) be the checking domain of α.

Let us see how we can derive from (45)–(50) that C(α) comprises α’s specifier as well

as anything adjoined to α, but nothing adjoined to Max(α).

(51) XP

Y

Q R

X′

X0

A X

AP

Z

S T

A′

tA W

U V

21The definitions given in Nunes and Thompson (1998) produce slightly different results with
regard to first-merged constituents.
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I will first determine C(α) for α = X, as this represents the most common case. It is

obvious that Max(X) is XP and that D(X) is {Y, Q, R, A, AP, Z, S, T, A’, tA, W, U, V}.
Note that if some category YP was adjoined to XP, the lower XP would still be Max(X)

because adjuncts have a different label generated by Pair-Merge instead of Set-Merge.

DC(X) is a proper subset of D(X), namely {AP, Z, S, T, A’, tA, W, U, V}. It follows

that DR(X) contains Y, Q, R, and A. The members of DM (X) are a little bit more difficult

to retrieve. Trivially every node in D(X) is reflexively dominated. We are looking for the

smallest subset, though. This subset is formed by the nodes in D(X) which are only

reflexively dominated by one member of D(X). The set DM (X) therefore contains Y, A

and AP. We can now enumerate the nodes within C(X), as those are the nodes which are

both in DM (X) and DR(X), in our case Y and A. And as the reader can see for himself,

Y is the specifier of X and A a head adjoined to it.

If we want to know C(A), we have to keep in mind that the checking domain of the

head of a nontrivial chain is the checking domain of the chain, in our case C((A,tA)). The

domains of (A,tA) are as follows:

(52) a. D((A,tA))= {Y, Q, R, X, Z, S, T, W, U, V}

b. DC((A,tA)) = {W, U, V, Z, S, T}

c. DR((A,tA)) = {Y, Q, R, X}

d. DM ((A,tA)) = {Y, X, Z, W}

e. C((A,tA)) = {Y, X}

Y and A are in a spec-head-relation and X is the head to which A is adjoined. Hence the

predictions for nontrivial chains are the same as for trivial ones.

I conclude that Chomsky’s proposals on how to specify C(α) do indeed work as

expected and no further revisions are necessary. There are many pieces of the checking

theory left to scrutinize, though. First of all, nothing has been said yet about how a

functional node may get the opportunity to check its features. In other words, I didn’t

talk about the connection between checking and movement yet. Thus a cautious look at

the concept of attraction and related terms is in order.

(53) Term (Chomsky 1995b:247)

For any syntactic object K,

a. K is a term of K;

b. if L is a term of K, then the members of the members of L are terms of K.

(54) Sublabel (Nunes and Thompson 1998:513)

σ is a sublabel of K if and only if

a. σ is a formal feature of a term of K, and

b. K is an X0max projection.22

22Observe that owing to the second condition, K being an X0max projection, the definition of
DC introduces some redundancy into the system. I defined DC such that it comprises only the
complement of X0max, even for nodes adjoined to it. This however, isn’t actually necessary. If
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I will abbreviate “a sublabel of K” as
∫

(K).

(55) Attract (cf. Chomsky 1995c:247)

A term K attracts a feature F if F is the closest feature that can enter into a

checking relation with
∫

(K).

(56) Closeness (cf. Chomsky 1995c:356)

If β c-commands α and τ is the target of raising, then β is closer to τ than α is to

τ , unless β is in the same minimal domain as τ or α.

(57) Conditions on Attract (Chomsky 1995c:304)

Only the head of a chain CH enters into the operation Attract/Move. [...] Where

CH is a a (possibly trivial) chain headed by α,

a. α can raise, leaving the trace t, a copy of α.

b. Formal features of the trace of A-movement are deleted and erased.

c. The head of CH can attract or be attracted by K, but traces cannot attract

and their features can be attracted only under narrow conditions [...].

Sloppily paraphrasing (55), whenever an LIi contains a feature F2(=
∫

(LIi)), LIi attracts

the closest feature F1 that can check F2. F1 then moves in order to enter a checking

relation with F2.

(58) Checking Configuration

F is in a checking configuration with
∫

(K), iff F is in C(K).

(59) Checking Relation

F is in a checking relation with
∫

(K), iff F and
∫

(K) are in a checking configuration,

and F and
∫

(K) match. If F and
∫

(K) mismatch, the derivation crashes.

A crucial point and at the same time the weakest one in (59) is the requirement that F

and
∫

(K) match. As often before, Chomsky is imprecise when tackling issues that dwell

below the level of syntactic terminals, and consequently feature matching remains a fuzzy

concept. I shall try to improve on this.

In Chomsky (1995b) a distinction is entertained between Match, Non-Match and

Mismatch. Chomsky states that two features match if they are identical and mismatch

if they are incompatible. Non-Match refers to situations like an aspect feature and an

accusative feature being in a checking configuration.

Ignoring for a second the technical aspects, we can safely assume a system along the

lines of (60) to be a good replication of Chomsky’s idea.

(60) The Matching System (Informal)

Two features F1, F2 stand in one of the following three relations to each other:

DC contained only the complement of the current node, the checking domain of an adjoined head
would be limited to its sister, yet its features would be sublabels of the relevant X0max projection
and could hence be checked by features belonging to syntactic objects in C(X0max).
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a. Match

F1, F2 match iff they are identical.

b. Mismatch

F1, F2 mismatch iff they are not identical and in the same feature class.

c. Non-Match

F1, F2 non-match iff they are not identical and not in the same feature class.

Two aspects of (60) need clarification, identity and feature classes. Even though their

precise characterization may be an empirical issue, it is tenable to provide simple definitions

as preliminary approximations.

First we have to group all features into classes. Due to the lack of an extensive list of

features, such a grouping will be anything but conclusive, wherefore the short compilation

in (61) only serves the illustratory purposes.

(61) Feature classes

A feature F may belong to one of the following classes:

Case, Person, Number, Gender, Tense, Mood, Aspect, Voice, Clause Type, Cate-

gory . . .

I repeat, the overall number of classes as well as the categorization of specific features is

an empirical matter. The intricacies of the latter are shown by attempts to reduce Case

to tense (Pesetsky and Torrego 2001, 2007) or telicity (Kratzer 2004).23

Next we have to define identity.

(62) Identity

Two features F1, F2 are identical when replacing F1 in LI1 with F2 affects neither

LI1’s syntactic behavior nor its interpretation at the interfaces.

This principle is meant to be understood as a methodological guideline — obviously syntax

isn’t actually carrying out such calculations in order to determine whether two features

are identical. The version of identity we entertain by adopting the definition is a very

strong one, probably too strong for a recursive attribute-value system. Weaker versions

may not require the feature values (if one assumes valued features) to be the same, but it

is unknown in how far that might be empirically adequate.

With a more explicit concept of Match in place, (59) can be considered a viable basis

for further definitions, which allows us to continue our exploration into the connection

between feature checking and movement. According to Chomsky (1995b:269f), feature

movement is constrained in various ways:

(63) Constraints on Move F

a. F is an unchecked feature.

b. F enters into a checking relation with
∫

(K) as a result of the operation.

23In an attribute-value feature system, the implementation of feature classes is straightforward.
If one wants to use a privative or a binary feature system, it has to be stipulated that syntax knows
which features belong to which classes. Explicitly encoding this knowledge would probably require
some sort of typing for features.
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c. FF[F ], the set of formal features containing F , raises along with F .

d. A category a containing F moves along with F only as required for convergence.

e. Covert operations are pure feature raising.

(63a) and (63b) are a more precise formulation of Last Resort.

(64) Last Resort (cf. Chomsky 1995b:280)

Move F raises F to target K only if F enters into a checking relation with
∫

(K).

(63c)–(63e) are derived by Chomsky from bare output conditions, although the logic of

the argument is debatable.

Interestingly, (63) does not prevent other features of FF[F1] from checking further

sublabels of the target. This has two non-trivial consequences: first, if
∫
1(K) attracting F1

is a strong feature, additional
∫
i(K) can be checked by the corresponding Fi ε FF[F1] before

Spell Out. Second, if
∫
j(K) and Fj ε FF [F1] are mismatching features, the derivation will

crash even though Fj is not attracted by
∫
j(K).

Another defining property of checking in MP is its asymmetry, apparently an epiphe-

nomenon of the overall layout.

(65) The Asymmetry of Checking Theory (cf. Chomsky 1995b:278)∫
(K) is always uninterpretable. The attracted F may be uninterpretable.

After having digested various definitions concerning checking domain and checking

relation, the reader most certainly agrees with me that checking is strictly speaking not

an operation, despite the derivational nature of the overall framework. Instead, it is a

descriptive term for the effects of two features being in a certain structural configuration

to each other. Yet I do not mean to insinuate that there are no operations involved in

checking. Move evidently is an essential prerequisite. And ultimately, checking is about

getting rid of features, which is accomplished by the feature deletion operations Delete(α)

and Erasure. Those will be the main theme of the remaining sections.

2.6 Siamese Twins — Delete(α) and Erasure

It is commonly left implicit what ”checking a feature” actually means, as it is seldomly of

any importance for the empirical analysis. I will do the very opposite and look at feature

checking from various angles and define it in various ways. The general aim is to obtain

as many sound formalizations of feature checking as possible, such that there is a broad

spectrum of candidates to apply Reuland’s proposals to.

Chomsky (1995b:280) bifurcates checking into two operations, such that:

(66) a. A checked feature is deleted when possible. (Delete(α))

b. Deleted α is erased when possible. (Erasure)

Two aspects of (66) have to be refined. It’s neither apparent what the difference between

deleting and erasing a feature is, nor do we know what the cryptic condition“when possible”

is alluding to. The latter is clarified on page 280 of Chomsky (1995b) by the Principle of

Recoverability of Deletion.
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(67) Principle of Recoverability of Deletion

Interpretable features cannot delete, even if checked.24

It follows that uninterpretable features delete as soon as they are checked. However, (67)

only covers Delete(α). Erasure of deleted features is subjected to different constraints

which are in turn imposed by parametric variation and bare phrase structure. The former

regulates how often an uninterpretable feature has to be deleted before it can be erased,

whereas the latter disallows Erasure of the last formal feature, because this is said to be

equivalent to erasing the whole term, which would corrupt the phrase structure.

The phrase structural ban against Erasure is quite odd. The underlying logic seems

to be that a set is erased if it is empty. This conjecture is debatable and definitely

incompatible with my assumptions on the structure of LIs and the status of bundles.

Furthermore, the argument implies that the constraint is only relevant for LIs which

contain nothing but uninterpretable features, that is no PF-features, no LF-features, nor

any interpretable formal features. This description probably only fits covert expletives or

overt expletives after Spell-Out, for only expletives may have an uninterpretable categorial

feature. Irrespective of the empirical merits of the constraint, it simply cannot be derived

from any phrase structural considerations. It is a stipulation, but that does not mean that

we should not embrace it. To the contrary, it implies that we can easily adopt it without

worrying about its soundness in our slightly different framework.

Chomsky’s attempt to derive the constraint from phrase structure requirements is

nevertheless illuminating, because it insinuates that Erasure of α is equivalent to remov-

ing α from syntax altogether. That erased material becomes inaccessible to syntax is

additional evidence for this interpretation. Erasure thus represents the intuitive concept

of deletion (not to be confused with Delete(α)).25

(68) Erasure

A checked feature F marked n times as invisible at LF, n ∈ N+ and subject to

parametric variation, is eliminated from the syntactic phrase marker (and therefore

inaccessible to further computation), unless F is the only remaining formal feature

of its LI, save any FS .

Hopefully, we will find an equally simple meaning for Delete(α). Chomsky seemingly

offers us one when he claims that the operation will “leave the structure unaffected apart

from an indication that α is not ’visible’ at the interface” (Chomsky 1995c:250). That sure

sounds simple: Delete(α) does nothing save marking a feature α as invisible at LF.26 Now

the conclusions of my discussion of feature strength in section 2.3 show further merits.

Recall how I reimplemented feature strength with recourse to bundles, thereby evading

any problems for F → F . If we cling to Chomsky’s claim that Delete(α) adds a property

to features, namely invisibility, it is a troublesome operation for the very same reasons.

24The interpretability of features can be evaluated in syntax as discussed in section 2.4.
25For non-privative feature systems, we can also conclude that Erasure eliminates the whole

feature, not only its value.
26Whether a feature is marked as invisible at PF too is immaterial here.
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Building on our sharpened notion of feature bundles, we can rectify this shortcoming and

define Delete(α) as an operation which creates an invisibility feature and bundles it with

the checked feature.

This definition, however, is not the only conceivable one. In the case at hand, there

are two ways to obtain the desired results. Either one proceeds as just proposed and

bundles the checked feature F with an invisibility feature F INV , or one stipulates that

every FF comes with a subset containing a single F INV to which a checked feature is

copied before being erased. Both approaches have in common that the invisibility feature

has to be interpretable, otherwise its deletion would be obligatory, which clearly would

prevent it from serving its purpose at LF. At LF, the denotation of an (in)visibility feature

is the identity function which has the feature it is bundled with both as input and output.27

(69) JF INV K= λf : f ∈ D〈e,e〉.f

While being closer to Chomsky’s wording, the first approach, according to which a

deleted feature is bundled with F INV , faces two severe threats. The first one is acknowl-

edged by Chomsky himself when he points out that Delete(α) comes down to a violation

of the Inclusiveness Condition (Chomsky 1995b:228). That is to say, adding a feature in

the middle of the derivation isn’t actually a valid operation. As features aren’t syntactical

nodes, they cannot reside in the numeration, waiting to be selected and merged. They

have to come from somewhere else, which is forbidden by the Inclusiveness Condition.

The second problem is due to the way I chose to implement diacritic features. I

assumed that a so-called “strong feature” is created in the lexicon by bundling F with a

feature strength marker FS which encodes that every feature which is a member of the

same set as FS is a strong feature. If this account is to be extended to Delete(α), we have

to stipulate that narrow syntax is perfectly capable of creating new feature bundles. That

is suspicious for various reasons. First, it isn’t foreseeable in how far the expressive power

of syntax would be affected by this move, second, it begs the question why we should stick

to treating LIs as terminal nodes if syntax has no problem whatsoever to manipulate them

by adding as well as deleting their structure and elements.

If one assumes a kind of “invisibility bag”, on the other hand, those problems vanish

immediately. No violation of the Inclusiveness Condition is induced, as
{
F INV

}
is an

integral part of every LI and hence does not need to be added during the computation.

The relevant copy mechanism is already an integral part of syntax, although up to now

it could not copy single features. Reuland (2001), however, entertains this possibility

anyhow, so there is no compelling reason why I should refrain from doing so. Erasure of

features, finally, is needed independently, so it can easily be employed after the feature

has been copied to
{
F INV

}
. Just by making use of a more general version of the copy

operation and an additional constraint on the structure of LIs, we therefore arrive at a

more parsimonious system that does not require both a separate deletion mechanism and

the concomitant bundling in syntax.

27The actual denotation may vary depending on whether features are bundled individually or
simply copied into

{
F INV

}
.
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But there is still a third option waiting for us to be explored. Suppose that every

feature in the lexicon was bundled with a visibility feature F V IS , such that Delete(α)

was simply Erasure of the respective visibility feature. Evidently, no violation of the

Inclusiveness Condition is induced by Delete(α), as every F V IS is already bundled with

a corresponding feature in the lexicon. Nor is it necessary to allow any new bundling in

syntax. Besides showing none of the conceptual issues of the first implementation, making

use of visibility features is just as parsimonious as the second one, because it allows defining

Delete(α) as the Erasure of F V IS . Furthermore, the condition that a feature F has to be

deleted n times, n ∈ N+, before being erased can easily be captured by bundling F with

n instances of F V IS . This is a very welcome result indeed.

Now that looks like a breath-taking victory for F V IS . Unfortunately, the approach

is not without its own acute problems. Its appeal lies in Delete(α) being defined as

Erasure of F V IS . For a feature to be erasable, it must not be interpretable. But if it

isn’t interpretable, by simple logic it is uninterpretable. If F V IS were uninterpretable, it

inevitably had to be erased before reaching LF, depriving all features of their visibility

at LF and hence every sentence of its semantic interpretation. Now that is certainly

something we do not want our theory to predict. But there is an easy, albeit sneaky,

way out. Nowhere in Chomsky (1995b) does it say that interpretable features must not

erase. Such a stipulation would be redundant, for it is already covered by two constraints,

namely that only deleted features may be erased and that interpretable features cannot

be deleted. But if we stipulate that F V IS does not need to be deleted prior to its Erasure,

restricting Erasure to uninterpretable features suddenly is a contentful condition on its

own.

We are then faced with the simple decision, whether the PRD should carry over

to Erasure as well or rather not. Conceptually, the former is the only reasonable move,

thereby putting a sudden stop to any kind of F V IS-approach. But as I already pointed

out numerous times, this chapter isn’t mainly about elegance but about establishing a

testing ground for Reuland’s theory. From this perspective it seems advisable to refrain

from generalizing the PRD to Erasure for the sake of broadening the set of possible test

scenarios, giving us a total of three different versions of Delete(α).28

(70) Delete(α) (Bundling version)

Deletion of F is equivalent to bundling F with an invisibility feature F INV .

(71) Delete(α) (Bag version)

28Returning to Chomsky’s newer account for feature strength, which assigns an EPP-feature
a specific feature type as its value, we can now see why its generalization to feature checking is
unfeasible. In the case of overt movement, it suffices to assign some Y’s EPP-feature some value,
e.g. Case, and locality conditions and checking requirements ensure that the right XP containing
a Case feature winds up in Spec,YP. For marking the correct feature as invisible, though, we also
need to know the value of said feature. Suppose LIi contains two Case features, one specified for
nominative, the other one for dative. Which one of those features is to be marked as invisible plays
a crucial role, but Chomsky’s account cannot be generalized in such a way that we are able to
unambiguously specify the relevant feature without introducing a recursive attribute value system.
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a. Every FF ∈ LI contains a set INV :=
{
F INV

}
.

b. Delete(α) is copying of α to INV followed by the Erasure of the original α.

(72) Delete(α) (V IS version)

a. Every feature F ε LI is bundled with a visibility feature F V IS in the lexicon.

b. Delete(α) is Erasure of F V ISi ∈
{
α, F V IS1 , F V IS2 , . . . , F V ISi−1 , F

V IS
i

}
, i ∈ N+.

Now that we have all variants of Delete(α) in place, we must also slightly modify the

definition of Erasure.

(73) Erasure

A checked feature F marked n times as invisible at LF, n ∈ N+ and subject to

parametric variation, is eliminated from the syntactic phrase marker (and therefore

inaccessible to further computation), unless F is the only remaining formal feature

of its LI, save any FS or F INV .

2.7 On the Redundancy of Having the Same Twice

One question arises immediately when looking at (66), namely why do we actually need

to split checking into two operations if the second one is totally dependent on the first one

anyhow. From a minimalist perspective, it is even more puzzling that syntax — which

is driven solely by bare output conditions — should bother to erase a feature after it

has already been rendered invisible at LF and thus won’t cause the derivation to crash.

Obviously, a theory employing only one of the two, either Delete(α) or Erasure, would be

more parsimonious.

Chomsky bolsters the division with empirical data, but the implications of his analysis

are refuted by Nunes (2000), who asserts that Delete(α) alone can account for the data

if a checked feature may not participate in further checking relations. Chomsky starts

his argument for Erasure with a treatment of transitive expletive constructions (TEC) in

Icelandic. Have a look at (74), taken from Jonas and Bobaljik (1993:76).

(74) Það
There

lásu
read

einhverjir
some

stúdentar
students

bókina.
book-the.

’Some students read the book’.

Chomsky suggests that the strong D-feature of T in Icelandic has to be deleted twice in

order to be erased. First the subject einhverjir stúdentar moves from Spec,vP to Spec,TP

and checks the strong feature of T, which is in turn deleted, but not erased. Then the

expletive θað is merged with TP, checking the strong D-feature of TP for the second

time and thereby inducing its Erasure. The Merge-over-Move condition wasn’t introduced

earlier than in Chomsky (1998), hence it isn’t unreasonable to move the subject prior to

merging the expletive.

Nunes (2000) notes that in the account for (74) it is the availability of two specifiers

that matters, not how one creates them. Instead of stipulating the Delete(α)-Erasure-

dichotomy and adding the proviso that in some languages features ought to be checked
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several times before they can be erased, one could also contend that Icelandic T has two

strong, uninterpretable D-features, the first one being checked by the subject, the second

one by the expletive. As Nunes (2000:418) puts it: “The point here is not to argue this is

the proper way to handle TECs [...], but rather to show that it is possible to technically

implement Chomsky’s [...] analysis of TECs without resorting to [E]rasure.” Concerning

the validity of his claim, two non-trivial questions have to be sorted out: can an LI contain

the same feature twice? And does a checking relation hold between exactly two features?

The answer to the first question is trivial from a set-theoretic as well as from a

semantic perspective. We defined LIs and FF as multisets, so it is to be expected that

sets contained in FF are multisets too. As a consequence, a feature may be present twice,

in line with the view of features as building blocks. Even if those sets aren’t multisets, a

feature can be present more than once as long as it is a member of more than one set. As

for semantics, I don’t see how any issues could arise. If the feature is uninterpretable, it

won’t ever reach LF, and if it is interpretable, i.e. if it denotes the identity function and

some presupposition, duplicating the presupposition does not hurt either.

What about the second question? Does a checking relation hold between exactly two

features? Evidently this is a matter of definition which cannot be sorted out by recourse to

economy conditions. Consider the case of Merge. On the one hand, it seems to be the least

costly option to merge exactly two arguments at a time, on the other hand this increases

the number of applications of Merge needed to create a converging derivation. Nor are

methodological commitments of any help, as is again illustrated by Merge. Limiting Merge

to two arguments appears to be the least powerful option, but it is definitely not the most

parsimonious one, because the definition of Merge would be simpler without this additional

stipulation. The situation is more or less the same for checking relations. That a checking

relation holds between exactly two features is as plausible as that it does not. Let us

assume the former.

After having settled the conceptual issues and found Nunes’ account sound, we will

now turn to expletive raising in English, another example provided by Chomsky and

discussed by Nunes.

(75) [therei seems [ ti to be a cat on the mat ] ]

According to Chomsky, there has neither Case nor φ-features, and its D-feature is unin-

terpretable. In other words, its set of formal features consists of nothing but its uninter-

pretable categorial feature. As a result, the categorial feature must not be erased after

checking the strong feature of the embedded T in (75), because this would amount to

erasing a term, which is forbidden. That allows there to raise and check the strong feature

of matrix T, too. It’s easy to figure out that the complexity of the analysis is due to there

having an uninterpretable categorial feature. As soon as one assumes that the categorial

feature is interpretable, the analysis is straightforward and does not need two different

ways of checking a feature.

We see that Nunes’ take on the empirical facts in (74) and (75) is tenable, but up

to now his reanalysis only shows that there is no need for both Delete(α) and Erasure,

not which one is dispensable. Things change as soon as additional data is considered.



46 2.7. On the Redundancy of Having the Same Twice

Instead of looking at all phenomena presented in Nunes (2000), I will restrict myself to

one illustrative example, the construction in (75) (Nunes 2000:419).

(76) [TP T seems [CP that it was told John [CP that he was fired ] ] ]

Assuming, as Chomsky (1995c:287) does, that it has D-, Case-, and φ-features, the deriva-

tion could proceed with it checking its uninterpretable Case- and φ-features in Spec,TP

of the embedded clause, such that both are first deleted and then erased. The uninter-

pretable D-feature, on the other hand, can’t be erased, for reasons already mentioned

twice, wherefore it raises further to Spec,TP of the matrix clause and checks the strong

feature of the matrix T, yielding (77).

(77) [TP iti T seems [CP that ti was told John [CP that he was fired ] ] ]

Consequently, FF[John] can be checked by adjoining covertly to matrix T. Intervention

effects are unexpected, for the trace of the expletive contains only a categorial feature

which does not block movement of FF[John]. If it did, (75) could not be well-formed

under standard assumptions, as FF[cat] would not be able to move covertly to matrix T

in order to be checked. This leads to the prediction that (77) is grammatical, contrary to

the facts.

One might object that the categorial feature need not be checked after the Case- and

φ-features, allowing the remaining Case- or φ-feature on the trace to create an intervention

effect, whereby FF[John] cannot be checked and the derivation crashes. But this makes

things even worse, as this would imply that the sentence is grammatical roughly every

third time. The analysis can only be saved if the categorial feature always is the first

feature to be checked — I have my doubts that such a generalization can be shown to be

valid.

Nunes concludes that the best empirical results can be obtained with a system along

the lines of (78).

(78) The feature checking system of Nunes (2000)

a. There is no Erasure.

b. All categorial features are interpretable.

c. Deleted features are invisible at LF and cannot participate in further checking

relations.

d. An LI may contain the same feature more than once.

e. Exactly two features are checked at the same time.

One can now see how the deleted features on the trace of it could yield an intervention

effect, thus leaving FF[John] unchecked and making the derivation crash.

Abandoning Erasure solves a conceptual issue too, namely why features that have al-

ready been erased in the overt cycle nevertheless show PF reflexes. Chomsky (1995b:fn.50)

proposes reinterpreting overt feature deletion as conversion into phonological features, but

this is difficult to implement, requires specific assumptions about the structure of PF and

ultimately draws a division between processes in the overt and the covert cycle, thereby

undermining a cornerstone of minimalist reasoning.
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I agree with Nunes when it comes to the empirical superiority of his account, yet I feel

obliged to emphasize that my goal in this chapter does not lie in adopting the empirically

best minimalist theory but in finding as many plausible versions of Chomsky (1995b) as

possible. Nunes’ version is definitely a highly attractive one, conflating Delete(α) and Era-

sure. Yet one can’t help but wonder whether a theory without Delete(α) isn’t a plausible

variant of Chomsky (1995b) too. If empirical considerations are neglected, it is for sure.

(79) An Erasure based feature checking system

a. There is no Delete(α).

b. All categorial features are interpretable.

c. An LI may contain one and the same feature more than once.

d. Exactly two features are checked at the same time.

Let us see how this reproduces the effects of standard minimalist feature checking. The

analysis of (74) and (75) does not change at all, the former one is still accounted for by

allowing identical features on the same LI, the latter one by (79b). The example sentence

in (76) is still predicted to be grammatical. In this feature checking system, it does not

even matter in which order the features are checked, the only feature remaining is the

interpretable categorial feature. From there on, the analysis is the same, and so are the

results.

2.8 Three Classes of Feature Checking Systems

Combining the results of the last two sections, we define three classes of feature check-

ing systems. D-systems use an adapted version of Delete(α) and forgo Erasure entirely.

E-systems depend solely on Erasure, either by assuming no deletion operation at all or

defining Delete(α) as a special case of Erasure. DE-systems stick to the original assump-

tions of Chomsky (1995b) by using both Delete(α) and Erasure. For every feature checking

class, we encountered at least one member of it in the last two chapters. The list here

probably isn’t exhaustive, but nonetheless it provides a sufficient basis for the analysis of

Reuland (2001) in the next chapter.

(80) D-system

a. There is no Erasure.

b. Deletion of F is bundling F with F INV .

c. F ∈
{
F, F INV

}
cannot participate in further checking relations.

d. All categorial features are interpretable.

e. An LI may contain the same F twice.

f. Exactly two features are checked at the same time.

(81) E-system 1

a. There is no Delete(α).
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b. A checked feature F is eliminated from the syntactic phrase marker (and there-

fore inaccessible to further computation), unless F is the only remaining formal

feature of its LI, save any FS .

c. All categorial features are interpretable.

d. An LI may contain the same F twice.

e. Exactly two features are checked at the same time.

(82) E-system 2

a. Every feature F ε LI is bundled with a visibility feature F V IS in the lexicon.

b. Delete(α) is Erasure of F V ISi ∈
{
α, F V IS1 , F V IS2 , . . . , F V ISi−1 , F

V IS
i

}
, i ∈ N+.

c. Erasure eliminates Fi ∈ {Fi}, unless Fi is the only remaining formal feature of

its LI, save any FS .

(83) E-system 3

a. Every FF ∈ LI contains a set INV :=
{
F INV

}
.

b. Delete(α) is copying of α to INV followed by the Erasure of the original α.

c. Erasure eliminates Fi ∈
{
F INV , . . . , Fi

}
, unless Fi is the only remaining formal

feature of its LI, save any FS or F INV .

(84) DE-system

a. Deletion of F is equivalent to bundling F with an invisibility feature F INV .

b. Erasure of F is equivalent to eliminating the bundle consisting of F and at

least one F INV entirely from the structure.

c. F is erased when it is bundled with n FINV , n ∈ N and subject to parametric

variation, unless F is the last feature contained by FF , save any FS or F INV .

If a system employs both Erasure and some variant of Delete(α), the latter always precedes

the former. Furthermore, the Principle of Recoverability of Deletion holds for every system.



Chapter 3

Reuland’s “On Primitives of

Binding”

The last chapter was devoted to the obligatory refinement of Chomsky’s feature checking

mechanism. Now I will introduce Reuland’s theory of Binding and specifically its modified

Principle of Recoverability of Feature Deletion, which, as one will soon be evident to the

reader, either does not loosen the restrictions of Chomsky’s feature checking mechanism

that Reuland wants to omit, or maneuvers itself into a position such that only very specific

stipulations at the expense of empirical coverage and conceptual elegance can stop it from

overshooting the mark. This is especially unfortunate considering that Reuland’s general

assumptions and aims are very appealing from a Minimalist perspective.

Concerning the organization of this chapter, I decided against focusing entirely on

the mechanics of feature checking. After all, criticizing an integral part of a theory should

be done against the corresponding backdrop, even though this isn’t indispensable for the

intelligibility of the discussion. Therefore, I will first give a short survey of the status of

binding theories in the Minimalist Program, and where Reuland (2001) is to be located

within this heterogeneous group (3.1.1). Then I will present Reuland’s theory in its en-

tirety prior to the more refined discussion of its syntactic mechanisms (3.1.2 and 3.1.3,

respectively). From there on it is just a small step to showing the technical fallibility of

the proposal (3.2). I conclude with remarks on the general conclusion to draw from the

miserable fate of Reuland’s stimulating ideas, which will be picked up again in chapter 4.

3.1 Reconnoitering Reuland

3.1.1 A General Overview

Considering that Binding phenomena constitute one of the most studied aspects of natural

language, it is not surprising that the set of proposed Binding theories is very heteroge-

neous. Even if one disregards the efforts of researchers in computational linguistics (Liddy

1990), Head-driven phrase structure grammar (Pollard and Sag 1994), lexical functional

grammar (Bresnan 2000) and semantics (Bach and Partee 1980; Keenan 1988; Bonato

49
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2005; Schlenker 2005), as I will do here, it is impossible to identify a non-trivial unifying

axiom that all the remaining theories have in common. Even the assumption that pure

anaphora (i.e. not long distance anaphora) have to be licensed by an antecedent is not

shared by everyone (in particular, Reinhart and Reuland 1991, 1993 and Pollard and Sag

1992 argue against it).

As lively as the research on Binding still is, with the advent of Minimalism it took a

serious hit. The Inclusiveness Condition put a stop to the use of indices, surface structure

(SS) was dispensed with as a level, Binding conditions were considered a classic example

for stipulative, non-derivable definitions without explanatory value, and Governing cat-

egories were a purely representational concept that did not fit a derivational framework

like Minimalism.1 The more Minimalism matured and got rid of its GB remnants, the less

compatible it became with mainstream Binding theories.

As is to be expected, some efforts were directed towards rescuing as much of the

old binding theory as possible. A recent exponent of this line of research is Lasnik and

Hendrick (2003), who — for reasons entirely opaque to me — tout themselves minimalist

but aim for nothing but recasting GB binding theory in minimalist terms. They accept

the axiomatic status of binding conditions without a twinkle and even go as far as showing

how one can emulate SS in Minimalism if one wants to capture binding data in a GB style.

Fortunately, there are more experimental approaches. They all have in common that

their stance on what the size of the binding domain should be and how the data is to be

partitioned is rather difficult to assess. The former is due to the derivational nature of

minimalist analysis, which does not allow for easy paraphrasing in representational terms

like domains. The latter is an immediate result of the comparative immaturity of most

proposals. Usually, only a handful of English utterances is considered, hence it isn’t clear

at all in how far these approaches could be expanded to account for exempt anaphora

or whether the authors even intend them to account for such phenomena. Currently, the

focus seems to be on capturing the core cases.

But even when the researcher’s attention is restricted to those core cases, he or she still

has to decide a question that ultimately could not be solved in GB either, namely which

levels are involved in Binding. Is binding restricted to LF, or does syntax contribute its

fair share? Although Chomsky (1993) called the former the more minimalist assumption

when he got rid of SS, there is neither conceptually nor empirically conclusive support

that Binding is restricted to LF. Considering that the properties of LF are not well-

known (even if one assumes that current research in semantics covers what syntacticians

refer to as LF), decisive evidence is also lacking for claims that syntax has to be involved

because of considerations of locality.

Still, most Minimalist theories attribute some importance to syntax, so just like the

size of the binding domain and the partitioning of the data, this criterion does not allow

1Again it must be noted that Minimalism has its fair share of representational devices that
make it more of a hybrid than a derivational system. While variants that were put forward after
Chomsky (1995c) attempted to decrease representationality, Chomsky himself has moved more and
more towards a less derivational system (Chomsky 2004, 2005a, 2007).
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for fine-grained differentiations of Minimalist Binding theories. Fortunately, there is still

another measuring rod, namely the set of syntactic mechanisms employed. Interestingly,

while this gauge was the least useful one in distinguishing GB binding theories, it is the

most promising one for telling apart minimalist binding theories.

There are four basic tools a Minimalist could put to good use in his binding theory:

movement, phases, economy, and feature checking. Movement based accounts (Kayne

2002; Zwart 2002; Hornstein 2006)2 contend that the pronominal is first merged with the

antecedent as its specifier, yielding a DP which in turn is merged with the verb. The

antecedent then moves further to check its features, leaving the rest of the DP, i.e. the

pronominal, behind. Binding conditions are thus assumed to be derivable from lexical

properties of DPs and restrictions on movement.

Since their introduction in Chomsky (2001), phases initiated a promising line of re-

search too (Canac-Marquis 2005; Heinat 2006). Canac-Marquis (2005), for instance, pos-

tulates that anaphora contain a morphological feature which tells LF to bind the anaphor

immediately after conversion into a variable. Hence the antecedent has to be in the same

phase, for the use of phases entails that the interpretation of a sentence is split into a

sequence of interpretations of multiple phases. Phase-based approaches bolster my claim

that the size of the binding domain is difficult to evaluate for Minimalist approaches: even

though it is evident that a phase is a binding domain in such theories, the size of a phase

is not fixed and so it is impossible to determine the concrete size of the binding domain,

it may be a DP (Svenonius 2004), a vP, or a CP.

Purely economy based accounts establish that some kind of pronominal is more eco-

nomic than another one and then construct an algorithm to select the most economic

form. A well-known exponent of this variety is Safir (2004), who adds the condition that

a less economic form might be chosen for pragmatic reasons. This captures the insight of

Reinhart (1983) (extended by Heim (1998)) that discourse factors may license violations

of binding conditions. However, the downside of such global economy approaches is that

different numerations have to be compared (with all the negative effects, cf. 1.4), unless

pronominals aren’t treated as LIs (cf. fn. 2).

The last group constitutes theories using feature checking as their main tool. To my

knowledge, it comprises solely Richards (1996) and Reuland (2001, 2005). Both theories

presuppose that covert feature movement establishes chains, which can transitively be

connected with each other. Reuland (2001) further assumes that feature checking estab-

lishes feature chains, such that a checking relation between β and FF[α] entails a relation

between β and α.

Compared to other Minimalist binding theories, Reuland (2001) is rather unique in

2Hornstein (2006) diverts significantly from other movement approaches. First of all, he also
wants to account for the distribution of PRO, pro and resumptive pronouns. Second, his approach
enhances syntax with certain repair strategies: pronouns are inserted by narrow syntax to license
illicit movement, e.g. extraction out of an island. A very controversial consequence of this hy-
pothesis concerns the status of pronouns. Given that the Inclusiveness Condition bans addition of
material that is not part of the numeration and the numeration is the only way for LIs to enter
syntax, pronouns must not be considered LIs but grammatical primitives.
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various respects. First, it is one of the oldest genuine Minimalist binding theories. The

actual publication date is definitely misleading here, for a previous version appeared in

1997 as an UiL OTS Working Paper, and the first related talk was already given in 1995

at GLOW in Tromsø. Due to this long development process, the paper’s framework seems

rather dated when compared to other publications that appeared at the same time.

On the other hand, Reuland’s general aims and assumptions are way more minimalist

than those of many later works, e.g. Lasnik and Hendrick (2003) or Canac-Marquis (2005).

Reuland claims that anaphora, pronouns and R-expression can be sufficiently distinguished

by their set of φ-features, i.e. without recourse to the features [± anaphorical] or [±
pronominal]. In the same vein, he does not stipulate any kind of binding principles and

furthermore provides a φ-feature based account for the asymmetry between first and second

person anaphora on the one hand and third person anaphora on the other. In addition, he

predicts that SELF anaphora are structurally more complex than SE anaphora. Finally,

his most Minimalist claim — although it was inherited from Reinhart and Reuland (1991,

1993) — is that binding itself does not show any parametric variation at all. Whatever

apparent differences there might be between languages, they are just epiphenomena of

other syntactic parameters.

One might argue that this position just shifts the locus of variation from binding the-

ory to other areas and thus provides barely more than a noble façade, however, this misses

the crucial point, namely that binding phenomena are predicted to co-occur with specific

structural configurations. What exactly gives rise to those configurations is certainly diffi-

cult to evaluate and it probably needs more refined empirical tests than we currently have

at our disposal, but this does not render the logic behind the argument vacuous. Reuland

and Reinhart (1995) is an interesting example for how one could explain some differences

in binding parameters in the Germanic languages by careful scrutiny of their case system.

Unfortunately, the conceptual appeal of Reuland’s general take on binding theory

does not carry over to its technical implementation. In particular his treatment of φ-

features and feature checking leaves a lot to be desired. For the sake of conciseness, I will

save my criticism on those issues for later on and closely follow Reuland’s exposition for

the remainder of this section and the first half of the following one.

In order to account for the diversity of binding phenomena, Reuland uses both narrow

syntax, LF and pragmatics. Syntax is crucial for the distribution of anaphora and pro-

nouns. Both are DPs that need to check their Case, wherefore their set of formal features

has to undergo covert head-movement and adjoin to V (or v, depending on where one

assumes accusative case is checked). V then moves further and adjoins to T, pied-piping

FF[DP]. Both thus end up with the subject in their checking domain.
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(85) TP

Subject T′

T

T V

V FF[DP]

VP

tV DP

If V-to-T movement takes place in the overt cycle, V is already adjoined to T when

FF[DP] adjoins covertly to V, however, the final result is the same if we follow Chomsky’s

assumption that copies cannot be subjected to further syntactic operations such that only

the highest occurrence of V is a viable Case checker for FF[DP].

As soon as the subject is in C(FF[DP]), a checking relation is established between the

φ-features of the anaphor and the subject. In addition, if the DP is an anaphor, a checking

chain is established as well. This Chain CH := (Subject,FF[DP]) is then linked with the

chain CH := (FF[DP],DP), yielding the CHAIN CH := (Subject,DP). CH encodes that

the subject is the antecedent of the DP. In the case of pronouns, or R-expressions, no

such Chain will be constructed because of special properties of some of their φ-features.

This will be discussed in more detail later on. As a result, the distribution of anaphora,

pronouns and R-expressions is an immediate result of the properties of movement and

φ-features.

LF requirements account for the configurational differences between SE and SELF

anaphora. Upon translation into a structure readable at LF,

[...] within the framework of Chomsky 1995, only terms (minimal and maximal
categories) remain visible. Intermediate stages of projection are not. Unless
one stipulates order, given the definition of occurrence in Chomsky 2000:115
[Chomsky (1998:29f)] this entails that occurrences of arguments that can be
distinguished in syntactic structure become literally indistinguishable at the
interface. If so, notations like P(x,x) are in fact misleading. They effectively
contain only one argument, to be interpreted by just one semantic object.
(Reuland 2001:477)

If one accepts this line of reasoning, one has to come up with means to provide dyadic

predicates with two identical arguments. In other words, if two occurrences of the same

variable are collapsed into one, how is it possible that John hates himself is not translated

as [hates(John,John)], which is indistinguishable from [hates(John)]? Reuland maintains

that SELF anaphora are a structurally more complex type of anaphora, where SELF is a

function that takes SE as its argument.

(86) a. DP

SE NP

SELF
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b. SELF(SE)

No denotation is supplied for f(x), but“it must approximate that of the first argument,

x, without being formally indistinguishable from it.” (Reuland 2001:481f) That way, John

hates himself is translated as [hates(John,f(John)], which gives the same interpretation

[hates(John,John)] would, if occurrences could be distinguished. If we further assume

that verbs occurring with a SE anaphor as their second argument are inherently reflexive,

i.e. monadic, but nevertheless select two DPs (in contrast to middle verbs), we have a

simple account for the distribution of SE and SELF anaphora based on the assumptions of

Chomsky (1995b). Monadic transitive verbs must select a SE anaphor, dyadic transitive

verbs may select a SELF anaphor.3

Pragmatics, finally, determines the presence of coreferent readings and the interpre-

tation of exempt anaphora. The former is regulated by Reinhart’s well-known Rule I

(Reinhart 1983; Grodzinksy and Reinhart 1993; Reinhart 2000; see also Heim 1998), while

the latter is probably subject to some salience scale (Ariel 1990:cf.). Crucially, although

free anaphora are obligatorily interpreted by pragmatics, there is no intrinsic need for

anaphora to be bound, just like R-expressions do not need any special kind of licensing.

This conjecture is in the spirit of Reinhart and Reuland (1991, 1993).

Nevertheless anaphora are subject to specific economy conditions regulating how they

should be interpreted. Those economy conditions determine the distribution of compu-

tational processes over the three submodules, syntax, LF and pragmatics, but they do

not interfere with the internal workings of the modules. The underlying intuition is that

fixing the interpretation of an expression as soon as possible is the most economic choice.

Syntactic computation precedes semantic computation, which in turn precedes pragmatic

computation. Thus if the value of an anaphor is already established in syntax, it can be

immediately translated as a bound variable. Otherwise, this job has to be done in seman-

tics, where it is more costly because semantic computation is less automatic and more

sensitive to interpretative differences. The same reasoning carries over to the relation be-

tween semantics and pragmatics.4 Consequently, bound anaphora are cheaper than free

anaphora, because their interpretation is fixed earlier. This economy hierarchy has far

reaching consequences, for it entails that syntactic processes should always be preferred

over semantic ones, and those over pragmatic ones. This is a bold assumption which, as

far as I know, lacks conclusive support from other areas of research.

Reuland uses his economy hierarchy to derive three global economy conditions, Rein-

hart’s Rule I and his Rule BV and Rule L.

(87) Rule I: Intrasentential coreference

NP A cannot corefer with NP B if replacing A with C, C a variable A-bound by

B, yields an indistinguishable interpretation.

3The special behavior of anaphora in ECM constructions is more involved, cf. Reuland
(2001:465).

4I am using the simpler presentation of Reuland (2005) here. Reuland (2001) actually derives
the differences in cost in a more technical way based on his assumptions about the translation
processes for the various kinds of chains.
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(88) Rule BV: Bound variable representation (Reuland 2001:471)

T5 may not translate an expression E′ in Sem′ with syntactically independent NPs

A′ and B′ into an expression E in Sem in which A is A-bound by B, if there is an

expression E′′ resulting from replacing A′ in E′ with C′, C′ an NP such that B′

heads an A-CHAIN [a CHAIN connecting two A-positions; TG] tailed by C′ and

T also translates E′′ into E.

(89) Rule L: Logophoric interpretation (Reuland 2001:472)

NP A cannot be used logophorically if there is a B such that an A-CHAIN 〈B,A〉
can be formed.

No matter whether one likes the general architecture Reuland is sketching, it couldn’t

be any better for our inquiry. The economy conditions do not tinker with the internal

mechanisms of the modules, so syntax is left unaffected by them. There is no condition

that blocks a syntactic process just because it could eventually produce an unwanted

interpretation. To the contrary, independent syntactic processes giving rise to binding

effects is one of Reuland’s main tenets. This means that we can leave aside major parts of

his theory and devote our efforts entirely to its syntactic aspects without running danger

of skewing the results of the investigation.

3.1.2 Syntax in Close-up

Remember that the job of syntax in Reuland’s theory is to capture that pronouns must

be free in their binding domain, in other words, that no interpretative dependency re-

lation holds between a DP and a pronoun. Such a dependency relation is encoded via

a CHAIN CH, which is established by connecting a normal, movement induced chain

CH := (FF[DPi],DPi) with a Chain CH := (DPj ,FF[DPi]). A Chain is always a direct re-

sult of feature checking, i.e. CH := (DPj ,FF[DP]) is established only if DPj ∈ C(FF[DPi])

and, crucially, DPj can check all φ-features of FF[DPi]. Consequently, we have to make

sure that anaphora can get all of their φ-features checked, such that a dependency between

them and their checker can be established, while pronouns cannot accomplish this.

Reuland’s first step is to determine an anaphor’s set of φ-features by considering its

morphological shape.6 Many Germanic anaphora like Icelandic sig, Dutch zich or German

sich are solely specified for person. Hence, for each of those anaphora, FF contains only

a categorial D-feature and a φ-feature bundle consisting of a single person feature. But

person features are interpretable on nominal elements, so checking them should be barred

5Reuland (2001:471) defines T, Sem and Sem′ as follows:

Chomsky defines a language L to be a device that generates expressions Exp =
〈Phon,Sem〉, where Phon provides the instructions for sensory-motor systems, and
Sem for systems of thought. On the basis of this, CHL can be defined as generat-
ing expressions Exp′ =

〈
Phon′,Sem′

〉
that obey the Inclusiveness Condition. The C-I

interface, then, contains a translation procedure T, which maps Sem′ onto Sem [. . . ].

6As already discussed in section 2.1, this is a questionable move.
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by the Principle of Recoverability of Deletion (PRD) we encountered in (67) and which I

repeat here for the reader’s convenience.

(90) Principle of Recoverability of Deletion

Interpretable features cannot delete, even if checked.

Reuland argues that the PRD in this form is too strong, and that a less restrictive

version actually was more natural. The main insight of the PRD, he asserts, is that the

interpretation of the structure must not be endangered at any time by the loss of unrecov-

erable material. This does not entail that interpretable features are being prevented from

getting deleted, but that such deletion processes are blocked if and only if the denotation

of the feature isn’t recoverable from somewhere else. Given a valid backup for a feature,

deleting the feature should not affect interpretation at all, wherefore there is no need to

protect it from being deleted and erased. This reasoning is summed up in (91).

(91) Reuland’s Principle of Recoverability of Deletion (cf. Reuland 2001:456f)

Interpretable features can be deleted iff their interpretative contribution can be

recovered after deletion.

Recovering a deleted feature is inseparably tied to the presence of an identical feature from

which it can be copied back into its original position. Copies left behind by movement

do not qualify as a backup, because they are inaccessible to syntactic processes.7 The

checking DP, though, does. Therefore, a DP can check and delete every interpretable

feature for which it has a matching feature. After deletion, a copy of the checker’s feature

is created and inserted into the feature bundle of the checkee. If all φ-features of the

checkee are replaced by copies in that way, CH := (DPj ,FF[DPi]) is constructed which

can be further linked with CH := (FF[DPi],DPi) to create CH := (DPj ,DPi).

Replacing (90) with (91) thus provides us with the means to establish the sorely

needed dependency between anaphora and their antecedents. But this achievement is

nullified if we find no way to block pronouns from doing the same. In contrast to anaphora,

pronouns are usually inflected for person, gender and number. There is an interesting

bifurcation here: while person and gender features are inherent, number features are

optional, they aren’t added sooner than in the numeration. Furthermore, the semantic

contribution of number features seems to behave differently from that of person or gender

features. Consider (92), taken from Reuland (2001:458).

(92) The times were rough. Men were betraying men.

Obviously, the interpretation for the person and gender features of the two occurrences

of men does not differ. In both cases the third person feature presupposes that the

individuals are neither the speaker nor the hearer in the present context, and in both

cases does the masculine gender feature presuppose that the individuals referred to are

male. However, the impact of the number features differs, for there is no requirement

7As we already saw above, this stipulation is needed to correctly predict the behavior of
anaphora in languages with covert V-to-T movement, too.
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that both groups contain the same number of individuals. In fact, Reuland argues it is

presupposed that the sets of individuals must not be identical.8 If the behavior of number

features differs indeed from that of other φ-features, it is plausible that the number feature

of the checker cannot function as a backup for that of the checkee. Consequently, deletion

of the checkee’s number feature is blocked, not all of its φ-features can be checked, and

hence no dependency relation ensues. This derives that neither pronouns nor R-expressions

can be syntactically bound.

This result is only partially welcome, as it rules out binding of first and second person

pronouns in all constructions where binding of a third person pronoun is ungrammatical,

against the empirical facts in (93) (Reuland 2001:464).

(93) a. * Oscar
Oscar

voelde
felt

hem
him

wegglijden.
slide away

b. Ik
I

voelde
felt

mij
me

wegglijden.
slide away

c. Jij
You

voelde
felt

je
you

wegglijden.
slide away

Reuland (2001:464) argues that in first and second person pronouns, singular and plural

pronouns do not stand in a grammatical number opposition to each other: “[W ]e does

not denote a plurality of I’s (speakers).” Hence the number feature of a first or second

person pronoun is special insofar as it is not determinded by grammar, but by pragmatics.

The value of e.g. we depends on the current speech situation, the number of speakers

and addressees. Consequently, Reuland claims, all occurrences of a first or second person

pronoun within a single sentence have the same denotation for their number feature and

thus can serve as a backup for each other, such that the number feature can be deleted and

a CHAIN be established.9 Therefore, the special semantic behavior of the number feature

of first and second person pronoun explains why their distribution patterns differently

from that of third person pronouns.

Reuland’s checking approach to syntactic binding also has an interesting answer to

why subjunctive licenses long-distance reflexives in Icelandic. Remember that according
8I have to object. At least to my intuition, things aren’t that simple. First, speaker and

hearer might belong to the set of betrayers or betrayed. This can easily be explained if we adopt
a different denotation for third person features along the lines of Sauerland (2004). The second
point, though, undermines Reuland’s conjecture that number features have special denotations.
To me it is perfectly sensible that both sets contain the same individuals, as long as no relation of
self-betraying ensues. That is, A might well be a betrayer of B and likewise be betrayed by B, such
that we get two identical sets {A,B}, but the relation mapping the first set to the second one must
not map an individual to itself. This constraint arguably isn’t connected to the contribution of the
number feature, but to some kind of Condition C effect. In addition, the ban on coreference can be
lifted for pragmatic reasons if A is not aware that he’s actually committing an act of self-betraying.
This behavior seems to be related to binding phenomena that arise in connection with de se/de
re ambiguities, which could be taken as further support for my hypothesis that number does not
play an exceptional role here.

9The facts for second person pronouns are slightly more complicated than for first person
pronouns, see Reuland (2001:465).
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to Rule L no long-distance reading obtains if a bound reading is possible. This implies that

Icelandic subjunctive somehow blocks the formation of CHAINs, such that the anaphor

remains free until pragmatics, where it can obtain its value from discourse. Reuland

(2001:466f) posits that this is due to a high subjunctive operator covertly attracting T,

thereby forcing the subject out of C(FF[DP]) and hence preventing the creation of a

CHAIN.

(94) a.

OP TP

Subject T′

T

T V

V FF[anaphor]

VP

tSubject V′

tV anaphor

b.

OP

OP T

T V

V FF[anaphor]

TP

Subject T′

tT VP

tSubject V′

tV anaphor

But why should CHAIN-formation be blocked in this case? At the earlier stage of

the derivation, FF[anaphor] did not move yet, whence it is still accessible to syntactic

computation when the Chain should be formed. This Chain could then be linked with

CH := (FF[anaphor],anaphor) to yield CH := (Subject,anaphor).

Reuland apparently wants to delay Chain-formation, such that it does not take place

immediately after checking but only after all covert instances of movement.10 Binding

would then be restricted to those cases where the antecedent does not leave the checking

domain of the anaphor during the course of the derivation. In particular this applies to

10That seems to be the implicit assumption of his otherwise misguided argument on page 467:
“Under a copying analysis the copy δ that the moved V/I left behind is frozen, hence inaccessible
to a further process.”
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both subsequent movement of the anaphor and further movement of the antecedent. A

similar result can be obtained by delaying CHAIN-formation instead of Chain-formation.

Chain linking, no matter of what type the chains are, can only take place where a con-

stituent is the head of a lower chain and the tail of a higher one. If FF[anaphor] moves fur-

ther before a CHAIN can be established, this is subsequently rendered impossible because

the head of CH := (FF[anaphor],anaphor) is not the tail of CH := (Subject,FF[anaphor]).

However, both proposals are highly stipulative and not in accordance with the general

intuition about chains, i.e. that they are created immediately after Move has taken place.

If they adhere to the laws of chain creation, both Chains and CHAINS should be created

as soon as possible, too. Yet we know that Reuland wants his system to account for these

empirical facts, so one of the stipulations has to be adopted. Unfortunately, it can’t be

decided on any principled grounds which one should be chosen. Hence we arrive at a

cumbersome fork induced by Reulandian vagueness, forcing us to check each of the three

different versions in later sections.

Another fork is induced by empirical considerations of a different kind. Have a look

at the utterance in (95).

(95) Whoi did hej ask himselfj ti had ti killed himselfi?

Arguably himselfi is bound by whoi. If it was not, it would be an exempt anaphora and

thus in free variation with pronouns. What more, it even would not need an antecedent

given a suitable context, which clearly is a wrong prediction for English. It also does not

qualify as a logophoric pronoun in the Reulandian sense, for it should then be possible

for the anaphor to take hej as its antecedent, again, contrary to the facts. We may thus

conclude that himselfi is indeed bound by whoi, i.e. there is a CHAIN connecting both

DPs. But given Reuland’s assumptions, that’s plainly impossible.

Let us assume that English himself behaves like a SE anaphor (nothing crucial hinges

on that, an analysis with a SELF anaphor is just slightly more complex). In the overt

cycle, who moves overtly into Spec,CP of the matrix clause with some intermediate landing

sites, among them Spec,TP of the embedded clause. Then FF[himselfi] adjoins to the verb

kill to check its Case feature, and [V V FF[himselfi]] in turn adjoins to T. Usually checking

would take place now, but the subject who already moved further up the structure in the

overt cycle, leaving behind a copy which is not accessible for syntactic processes any longer.

Reuland stresses frequently that copies are inaccessible, because both his analysis of covert

V-to-T movement and the stipulation that copies are no viable backups for feature restoral

rely on it. How are we supposed to solve this unfortunate situation of conflicting empirical

requirements?

We could speculate that the whole T-V-complex moves further after adjunction to

T until it finally adjoins to T of the matrix clause. But then we face some puzzling

situations. First of all, FF[himselfi] and FF[himselfj ] are in each other’s checking domain

and should be perfectly capable of checking each other’s entire φ-feature bundle at the

same time, leading to the creation of both CH := (FF[himselfi],FF[himselfj ]) and CH :=

(FF[himselfj ], FF[himselfi]). After linking those Chains with the respective chains, the

anaphora will be coreferent. Even if just one Chain could be created, that suffices to
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create a CHAIN and induce a coreferent reading. That is bad enough, but it is going to

get even worse: obviously both FF[himselfj ] and FF[himselfi] are in C(hej), and evidently

the pronoun is perfectly capable of checking both anaphora’s entire φ-feature bundles. So

now we have three coreferent DPs, hej , himselfi and himselfj . Yet we still have to somehow

create a CHAIN between whoi and himselfi. The only option left is adjoining the entire

V/T complex to C, giving us both CHa := (who,himselfi) and CHb := (who,himselfj). At

this point, I really don’t feel obliged to discuss whether whoi and hej then are coreferent.

So extending the set of viable dislocation targets has proved to be a glaring failure,

which leaves us with only one option, allowing overt and covert movement to intersperse,

i.e. entertaining a single syntactic cycle instead of two. Now FF[himself i] will raise to T

first, followed by movement of the wh-word into Spec,T. CH is established, and we get the

bound reading. In addition, we also get another fork, this time a binary one. The number

of Reulandian variants hence increases to 6.

The number might increase even more, for there is still another issue waiting to be

resolved. At no time does Reuland mention his most controversial assumption, namely

that checking is asymmetric. One may wonder why this should be controversial, I claimed

the very same thing myself in the preceding chapter. Yet I was not talking about the

checking operations Delete(α) and Erasure, rather I was referring to the fact that only

uninterpretable features can be attractors, which induces an obvious asymmetry in the

set of possible checking configurations. This must not be confused with the properties

of the checking operations themselves, whose symmetry is conceptually indispensable for

checking Case features. Both Case features in a checking relation are uninterpretable and

both get erased. If Delete(α) was not symmetric, only one feature could be deleted (and

in turn erased), and the other one would be left behind without a suitable checker, hence

leading to a crash at LF.

Reuland, on the other side, relies on asymmetric checking operations. Although his

PRD allows every interpretable feature to be checked if an identical feature is present, it

is always the features of the anaphor which are checked, while the features of the subject

remain untouched such that they can function as a backup for the anaphor’s checked

features. Assuming that he probably does not want to change the way Case features are

checked, this entails that the checking of uninterpretable features differs greatly from that

of interpretable features. This is an unwanted result in any Minimalist theory, and it

considerably reduces the soundness Reuland attributes to his generalization of checking.

A related question is why the subject represents the only viable backup. Why are no

other DPs in the tree allowed to serve this function? In particular, consider the case where

the numeration contains him2, i.e. a pronoun ready to be merged twice. In such cases, one

occurrence of him obviously would provide a perfect backup for the other one, such that

local syntactic binding of a pronoun is permitted as long as the other identical pronoun is

accessible. Showing that this prediction is borne out would be an earth-shattering result.

Both issues degrade the elegance of Reuland’s theory, but note that the former can

be derived from the latter. Assume that given a checking relation between interpretable

features, only the features of the c-commanding constituent may be a viable backup. The
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asymmetry of such checking relations then becomes an artifact of global economy condi-

tions if we turn checking into an“anything goes”process. When two features F1 ε LISubject,

F2 ε FF[anaphor] are in a checking relation, syntax has three options: either F1 checks

F2, or F2 checks F1, or both check each other. If F1 and F2 are uninterpretable, only the

derivation choosing the third option won’t crash at LF. The other options will be carried

out as well due to reference-set computation, but we will never see their effects in real-life

because of their deficiency. If F1 is interpretable and F2 is uninterpretable, the first and

the third option are indistinguishable, given that F1 has no suitable backup. The second

checking relation, however, will crash at LF and hence we will never get to see it. Finally,

if both F1 and F2 are interpretable, the first option will be preferred by considerations

of global economy because it allows syntactic binding of the anaphor, in contrast to the

other options. So if we maintain that the c-commanding constituent in a checking relation

provides the only viable backup, we can easily explain away the differences in the checking

of interpretable and uninterpretable features.

The restriction to the subject can in turn be derived from other primitives, too. First,

observe that chains are created by an algorithm which is triggered after the execution of

Move(Copy(α),β). By analogy, we conclude that Chains are established by an algorithm

which is triggered after a sufficient number of applications of Move(Copy(α), β), where

α ∈ FFF and β some set of FF[XP]. This intuition is shared by Reuland (2001:457):

Deletion of a feature Fα in DP1 and recovery of Fα under identity with Fα
in DP2 is tantamount to treating Fα in DP1 and Fα in DP2 as copies, and
in fact as occurrences of the same feature [. . . ]. This operation is therefore
conceptually similar to the operation Agree in [Chomsky (1998, 2001)], which
copies feature values into feature matrices that are underspecified [. . . ].

Moving features arguably differs from moving syntactic objects insofar as no addi-

tional sets are created and no labels projected — the copies are simply inserted into the

targeted bundle as they are. Despite this minor difference, it is plausible that both variants

of Move are subject to comparable economy conditions. The checking domain is the small-

est of all domains, restricting the search space for backups to this domain thus reduces

computational load.11 If we now add the proviso that Chains can only be established if

at least one constituent in the checking relation has all its φ-features checked (which is

needed for independent reasons, as we saw in the preceding sections), it follows that the

subject is the only possible backup, as its φ-feature bundle is a superset of the φ-feature

bundle of the anaphor. Attempting to do the copying in the other direction, from the

anaphor to the subject, won’t allow all φ-features to be checked and no syntactic binding

ensues, which is disfavored by global economy.

Let me sum up the argument. We independently need global economy conditions

preferring syntactic binding, plus the stipulation that an entire φ-feature bundle has to

11It isn’t necessarily more efficient, as this restriction can lead to cases where an anaphor has to
remain free although it could have been bound if the search space for backups was bigger. This
also shows that we need to maintain that this local constraint on search space is ranked higher
than all global economy metrics.
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be deleted and restored in order for a Chain to be created. We further stipulate that the

restoration of features is a kind of Copy and Move process which is subject to local economy

conditions restricting the search space for backups of features of LIi to the smallest domain

possible, C(LIi). As the subject has more φ-features than an anaphor, the former can

restore all φ-features of the latter, while the inverse does not hold true. Consequently, a

Chain can only be established in case the subject checks the features of the anaphor and the

inverse does not hold. Construction of a Chain implies syntactic binding of the anaphor,

which is the most economical option. Consequently, no competing derivation where the

subject did not restore the anaphor’s features will be selected for further computation.

This yields the apparent asymmetry of checking involving interpretable features.

The qualification that Chains are only established if an entire φ-feature bundle is

checked is actually phrased in a different way by Reuland (2001:450):

[. . .] φ-feature bundles, but not the individual φ-features, correspond to vari-
ables at the C-I interface. I will therefore assume that only φ-feature bundles
can be manipulated by CHL and enter syntactic dependencies that can be
interpreted. [. . .] I argued that no dependency between de jongens ’the boys’
and hen ’they’ can be formed since establishing a CHAIN would violate the
PRD owing to the nature of the number feature. Yet de jongens and hen do
share the features of category, person, and gender. From the assumption that
interpretable dependencies can only be established between entire bundles of
φ-features, it follows that no such dependency can be established between de
jongens and hen, since identifying φdejongens and φhen violated the PRD and
there are no identifiable linguistic objects in the structure corre-
sponding to subparts of these bundles [my own emphasis; TG].

This is a significantly stronger assumption than the one I introduced above. Taken

literally, it denies that φ-features are syntactic objects on their own, which violates the

fundamental intuition of features as building blocks from which LIs can be constructed

in a purely compositional way. If we were to adopt this new perspective on φ-features,

a lot of our definitions would need to be revised. First, bundles should be able to act

as a kind of meta-feature that is assigned a checksum calculated from the features it

contains, and if two bundles have the same checksum, they may check each other, unless

the checksum indicates the presence of a number feature. Then we need to redefine our

checking operations such that they can operate on bundles directly, and the relevant

constraints on checking evidently have to be reformulated, too.

It is doubtful that this is what Reuland had in mind on a technical level, so I will

simply assume that he just meant to point out that Chains only hold between syntactic

objects as defined in (35).12 But then the entire φ-feature bundle has to be checked in

one derivational step, i.e. we have to allow multiple applications of Delete(α) and Erasure

at once. Otherwise, we have no way to tell whether the φ-feature bundle of some LIi
was checked by a single LIj exclusively or whether it was actually a result of multiple LIs

12Before anyone jumps to premature conclusions concerning the honesty of this move, though,
let me note that the ultimate results of Reuland’s theory would not improve even if we took the
passage literally and implemented such a checksum approach.
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being in C(LIi), because there are no representationally encoded dependencies between

individual features and syntax has no memories of earlier stages in the derivation (i.e. there

is no lookback). But if there are neither such Chains nor lookback, checking whether all

features have been checked and restored by the same LI becomes an intricate issue.

A simple account builds on the intuition that checking and restoral of features are part

of a bigger operation, just like Move is actually a complex operation (see fn. 12 on page 10).

This is almost trivial if we redefine checking as a complex operation comprising Delete(α),

Erasure and restoral of features.13 If we further maintain that such suboperations never

induce new derivational steps, syntax just needs to keep track of whether all φ-features of

some LI were checked and recovered during a single derivational step.14

This is a plausible assumption without any negative consequences for our checking

systems. However, remember that we maintained that exactly two features are manipu-

lated by one application of a checking operation, for empirical reasons and because it fit

the underlying intuition of checking. It follows that anaphora must not contain the same

φ-feature twice. If they did, their entire φ-feature bundle could only be checked in one

derivational step if the checker had the same feature twice, too. Consequently, we would

predict the existence of anaphora that can only be bound by specific LIs under totally

idiosyncratic conditions. Evidently this behavior isn’t encountered with anaphora, so we

are forced to disallow doubled φ-features for anaphora. But as Reuland wants anaphora

to be normal LIs without any special property except their poverty of φ-features, this

constraint has to be generalized to all LIs. Therefore, no LI is allowed to have the same

feature twice, although it is perfectly possible if we define LIs as multisets.15

3.1.3 Wrapping up

Just like I did at the end of chapter 2, I will now list the definitions of plausible versions

of Reuland’s theory of syntactic binding, which I will abbreviate as R with optional pa-

rameters as sub- or superscripts. Please note that I leave aside semantic and pragmatic

aspects as they are in no way relevant to our enterprise.

(96) Condition of Feature Distinctiveness (CFD)

For every LIi, there are no features Fi, Fj ε LIi, and Fi, Fj /∈ {FS , F INV , F V IS},
such that Fi and Fj are identical.

(97) Principle of Induction by Morphological Paradigm

The set of φ-features of a DP can be determined by investigation of the morpho-

logical alternations within the inflectional paradigm.

13The precise ordering of this suboperations is a non-trivial matter, as will be seen in section
3.2.

14The formal specification is a little cumbersome and will be relegated to 3.1.3.
15This stipulation conflicts with the definition of D-systems and E-system 1, which for empirical

reasons need to assume that some LIs have two identical features. As often before, I will neglect
the empirical aspects and just grant this assumption.



64 3.1. Reconnoitering Reuland

(98) Unity of the φ-feature bundle

For every LIi, there is a smallest set Bφ containing all φ-features F φ of LIi such

that every syntactic operation other than Delete(α), Erasure or Feature-Restoral

has to be applied to Bφ instead of any F φ.

(99) Feature Restoral

Fi ε LIi can be copied into FF[LIj ] after deletion of Fj ε LIj iff Fi and Fj have

the same interpretative contribution and LIi ∈ C(LIj). If Fi has been copied into

FF[LIj ], we say that the interpretative contribution of Fj was recovered from Fi.

(100) Interpretative Contribution of Features

With the exception of number features, all identical features have the same inter-

pretative contribution. The occurrences of a number feature do not have the same

interpretative contribution unless the number feature belongs to a first or second

person pronoun.

(101) Feature Checking

For all Fi, Fj , if Fi and Fj are in a checking relation, they are checked according to

one of the systems in section 2.8, where the original PRD is replaced by the new

one in (102). Furthermore, (99) is a part of checking.

(102) Principle of Recoverability of Deletion

Interpretable features can be deleted iff their interpretative contribution can be

recovered after deletion.

(103) Derivation

Let a derivation ∆ be a set of representations on which a partial order is defined

by syntactic operations.

(104) Syntactic Operations

An n-ary operation, n ≥ 1, is a partial function mapping n representations Ri,

i ∈ [1, n], to exactly one representation Rn+1. We entertain an idiosyncratic

distinction between complex operations Ω (Select, Merge, Move, Checking) and

simplex operations ω (Select, Copy, Delete(α), Erasure, Feature Restoral, Label,

Concatenate, . . . ).16 Without loss of generality let ωi and ωj be unary operations.

Then ωi ◦ ωj denotes the concatenation of simplex operations ωi, ωj , such that

there exist representations Rk, Rl, Rm, and ωi maps Rk to Rl, and ωj maps Rl to

Rm. A complex operation is of the general form Ωi := ω1 ◦ ω2 ◦ . . . ◦ ωn−1 ◦ ωn,

n ≥ 1, where ω and n depend on the specific definition of the respective complex

operation.17

16I abstract away from the details of Delete(α) and Erasure, which are no simplex operations in
the narrow sense according to the definitions in 2.8.

17For example, Merge is a complex function ΩM := ω1 ◦ ω2, where ω1 := Concatenate and
ω2 := Label. Select is defined as ΩS := ω1, where ω1 is the simplex operation Select. Select is
rather special insofar as it is the only operation that maps Rn to itself.
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(105) Formal Definition of Checking

Let ω ∈ {Delete(α),Erasure,Feature Restoral}. Checking is a complex operation

ΩC := ω1 ◦ ω2 ◦ . . . ◦ ωn−1 ◦ ωn, n ≥ 1, where the respective simplex operations are

partially ordered such that ∃x[x ∈ FFF ∧Delete(x)∧Erasure(x)]→ . . .◦Delete(x)◦
. . . ◦ Erasure(x) ◦ . . ., and the conditions in (101) and (102) apply.18

(106) Derivational steps

A derivational step δi is a subset of some ∆i such that the concatenation of the

simplex operations defining a partial order on the members of δi yields a well-

formed complex operation.

(107) Condition of Unique Checking

For every feature Fi, if Fi is operated on by Delete(α) or Erasure in δi, the same

operation may not be applied again to Fi in δi.

(108) Construction of Chains

A Chain CH := (α, β), α and β syntactic objects, is constructed iff for every Fj

in the set of φ-features of β there is an Fi ε α ∈ C(β) such that the interpretative

contribution of Fj was recovered from Fi in one derivational step. The construction

of CH takes place

a. immediately after the recovery of the interpretative contribution of Fj . (R∅
and RCH)

b. after all instances of movement. (RCH)

(109) Construction of CHAINs

Given a Chain CH := (α, γ) and a chain CH := (γ, β), with α, β, γ syntactic

objects, a CHAIN CH := (α, β) is constructed

a. as soon as both CH and CH have been constructed. (R∅ and RCH)

b. after all instances of movement. (RCH)

(110) A-CHAINs

If both α and β are A-positions, CH := (α, β) is called an A-CHAIN.

(111) Syntactic Cycle

a. Syntax has only one syntactic cycle, with overt and covert movement inter-

spersed. (R1C
∅ , R1C

CH , R1C
CH)

b. Syntax has two syntactic cycles, an overt and a covert one, separated by Spell

Out. (R2C
∅ , R2C

CH , R2C
CH)

(112) Rule BV: Bound Variable Representation

T may not translate an expression E′ in Sem′ with syntactically independent NPs

A′ and B′ into an expression E in Sem in which A is A-bound by B, if there is an

expression E′′ resulting from replacing A′ in E′ with C′, C′ an NP such that B′

heads an A-CHAIN tailed by C′ and T also translates E′′ into E.

18The timing of Feature Restoral varies between different theories (see 3.2.2).
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(113) Rule L: Logophoric Interpretation

NP A cannot be used logophorically if there is a B such that an A-CHAIN CH :=

(A,B) can be formed.

3.2 Doomed to Crumble, Blessed to Bloom

3.2.1 D-systems

After a painstaking exegesis of both Chomsky (1995c) and Reuland (2001), we finally

arrived at the point where the technical soundness of Reuland’s proposal can be assessed.

Let us start our actual analysis with D-systems (henceforth, I will refer to the various

feature checking systems by their alphanumerical designation alone). Just like for the rest

of the chapter, I will reason from the canonical scenario depicted in (114), where φ-features

are abbreviated as F φi .

(114) TP

Subject

F φ1

F φ2

F φ3

T′

T

T V

V Anaphor

F φ1

VP

. . . tV . . . tanaphor . . .

According to (108) and (99), F φ1 of the anaphor (henceforth F φ,A1 ) has to be deleted,

such that the subject’s F φ1 (henceforth F φ,S1 ) can be copied to the anaphor.19 In addition,

the CFD blocks copying F φ,S1 onto the anaphor as long as F φ,A1 is still present, as the

anaphor would then contain two identical features, which we had to rule out previously in

order to get the theory flying.

19If we were to follow Reuland as strictly as possible, the anaphor’s entire φ-feature bundle had
to be deleted and replaced by a new set created as a subset of the subject’s φ-feature bundle. From
a formal perspective, it does not matter whether we abstract away from Reuland’s stipulation or
not, it is just a matter of definitions and leaving aside vacuous steps. But during the discussion
of feature checking systems I did already mention that I do not really like the idea of allowing
syntax to rebundle features, so I see no good reason to take this narrow stance. Interestingly, the
checksum approach remains neutral on this issue. Overwriting a string representing B1 := {Fφ1 }
with an identical string still requires that syntax determined that such a string could in fact be
generated from the string of B2 := {Fφ1 , F

φ
2 , F

φ
3 } and then does so. But whether this represents

deletion and restoral of Fφ1 or whether this is actually rebundling in a less set-theoretic guise is
undecidable.
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Now remember how D, inspired by Nunes (2000), is supposed to work. When a

feature is in a checking relation, Delete(α) is triggered, just as usual. The features are

marked as invisible at LF by bundling them with F INV . They are not erased, though,

for D-systems have no operation corresponding to Erasure. Instead, it is stipulated that

deleted features fail to participate in further checking relations. But this implies that

the number of features of an LI can only grow (by adding additional F INV ), under no

circumstances will a feature be lost. Yet if we are not able to get rid of F φ,A1 , copying of

F φ,S1 will always be blocked by the CFD and no Chain will be constructed.

If we want to circumvent this undesired result, we somehow have to weaken the CFD.

There are two conceivable options: either the CFD is a lexical principle that does not apply

in syntax, or the condition is restricted to active, i.e. non-deleted features. The former

looks plausible at first sight, but loses its appeal when subjected to closer scrutiny. The

reason we introduced the CFD in the first place was to ensure that all morphologically

compatible DPs can in principle function as the antecedent of the anaphor — obviously

this is a purely syntactic issue which should not bother the lexicon at all. And now we

aim to weaken the CFD, again for purely syntactic reasons which the lexicon couldn’t care

less about. Note that we cannot claim that the CFD is “virtually conceptually necessary”,

because it does not affect any crucial part of language. If the lexicon did not adhere to

the CFD, the behavior of syntactic binding would sometimes be rather odd, but otherwise

everything would be fine. Thus turning the CFD into a completely unmotivated lexical

principle is equivalent to viewing the regularity of syntactic binding as a mere coincidence,

which is not particularly satisfying from a Minimalist perspective.

So let us see whether exempting deleted features from the CFD fares any better. For

D, the answer is a resounding yes. We already stipulated that deleted features can’t be

checked several times, although they themselves aren’t special in any way, they are just

sharing a bundle with an F INV . That is, syntax treats deleted features differently from

active ones in D-systems. Stipulating that deleted features are also exempted from certain

syntactic conditions like the CFD is just a natural extension of this line of reasoning. So

we can indeed weaken the CFD as desired and allow the copy procedure to take place.

F φ,S1 is copied onto the anaphor after F φ,A1 has been bundled with F INV and a Chain is

created as desired.

Let us abbreviate theories using the lexical CFD as RL, those using the syntactic

CFD as RS , and those employing the stricter, original CFD as RO. Further, I represent

the combination of a Reulandian variant R and a feature checking system F as a tuple

〈R,F〉. Summing up what we do already know,
〈
RL,D

〉
works flawlessly and is con-

ceptually sounder than
〈
RS ,D

〉
.
〈
RO,D

〉
on the other hand, fails miserably because no

copying can take place. Whether we assume one or two cycles has purely empirical con-

sequences, allowing us to account for binding by wh-words. Consequently,
〈
RS/L,1C ,D

〉
and

〈
RS/L,2C ,D

〉
fare equally on conceptual grounds.

How does 〈RCH ,D〉 behave? The main question we have to ask ourselves is: if the

formation of Chains is delayed until all syntactic covert movement has taken place, as is

the case with RCH , can the Chain be established by syntax later on by examination of
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the antecedent and the anaphor. Maintaining that no LI may start with deleted features

(which is one of Chomsky’s many implicit assumptions), it follows from the CFD that if

LIi has two identical features Fi and Fj , the latter already deleted, then Fi is a copy of a

feature of some DP in C(LIi). If the DP has moved further after checking the features of

the anaphor, the copy has to be investigated instead of the DP. This requires syntax to

be able to operate on copies, which conflicts with both Chomsky’s and Reuland’s claims.

But of course we can always stipulate that copies are accessible to syntax when Chains

have to be established. It isn’t sensible, it is highly unattractive, but technically it works.

In cases where C(LIi) contains multiple LIs (i.e. more than some heads and one

DP), syntax has to look at the φ-features of each syntactic object. If several are suitable

antecedents, multiple representations with different Chains and hence different CHAINS

are sent to LF, giving rise to ambiguity.20 Ambiguity itself is not a problem, it also ensues

when Chains are created immediately if we allow copied features to be checked again such

that another Chain can be constructed later on. But if overt and covert movement are

separated by Spell Out, RCH will possibly overgenerate when more than one DP is in

C(anaphor). Just think of the wh-construction we discussed. When the anaphor reached

T, only a copy was left in the specifier. However, if Chain formation is delayed until

the end of the derivation, there is no way syntax could know that there never was an

accessible DP in C(anaphor). In situations where the anaphor raises to a T-node with

two specifiers, one a copy, the other one still the head of its chain, the anaphor will get

its features checked by the accessible DP, but syntax will eventually create two Chains,

a correct and a false one, the latter connecting the anaphor and the copy. This situation

does not arise if overt and covert movement intersperse, for then it can never be the case

that the anaphor is moved to a head whose specifier is already filled.

We conclude that
〈
R
S/L,1C
CH ,D

〉
is conceptually highly unattractive, but at least it

does not overgenerate, in contrast to
〈
R
S/L,2C
CH ,D

〉
.
〈
RO
CH ,D

〉
, of course, is the same

failure
〈
RO
∅ ,D

〉
was.

For D, we are only left with the task of assessing the behavior of RCH. This is a

matter of a few seconds at most, as it is perfectly obvious that RCH behaves identical to

R∅ when it comes to checking. The only difference is an empirical one, as some CHAINs

established by R∅ would not be constructed by RCH (namely in those cases where the

anaphor moves further after its features have been checked). For the remainder of our

investigation, we can thus conflate R∅ and RCH into R∅/CH, saving us a lot of work.

3.2.2 (D)E-systems

For D, we have just seen that all variants of Reuland’s theory initially fail to work, but

they can be made compatible if we extend the special status of deleted features and hence

weaken the CFD. Do the good results of the weakened CFD hold for E and DE? This

20Allowing the interfaces to take more than one representation as their input does not have
any negative consequences, as long as we do not allow any kind of comparisons between the
representations. Still it isn’t a particularly attractive solution.
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depends on when we want the recovery of features to take place. In the definition given in

(99), I intentionally used the vague term “deletion”, which does not distinguish between

Delete(α) and Erasure. According to Reuland (2001:455), it does not matter whether

interpretable features are deleted or erased before their restoral. This is a fallacy, as we

will see immediately.

If we let the restoral of interpretable features take place after Delete(α) but before

Erasure (denoted RD), nothing changes in comparison to D, except that the deleted

features of the anaphor are now also erased after the copy procedure has applied. In

the case of RCH,D, a new problem is introduced, because now syntax cannot look at the

deleted features in order to assess which features are copies and which belonged to the LI

from the very beginning. The algorithm for such systems thus becomes more complicated.

(115) a. Let Φ[XP] :=
{
F φ : F φ is a φ-feature of XP

}
. For any syntactic object SOi

heading a chain and not analyzed yet by the algorithm, check whether there is

a SOj ∈ C(SOi) heading or tailing a chain such that Φ[SOi] ⊆ Φ[SOj ]. If so,

proceed with the algorithm, else if there is another syntactic object heading a

chain that has not already been analyzed, repeat this step for it, else quit the

algorithm.

b. For every F φi ∈ Φ[SOi], check whether F φi ∈ Φ[SOj ] has the same interpre-

tative contribution. If this is the case for all F φi ∈ Φ[SOi], create CH :=

(SOj , SOi). In any case start the algorithm again for the next syntactic ob-

ject.

As we can see, the algorithm basically duplicates all the work that has to be done be-

fore F φ,S1 can be copied onto the anaphor and furthermore deprives Reuland’s theory of any

chance to meaningfully reduce Chains to feature copying targeting subparts of LIs, rather

than syntactic structure. In comparison to R∅/CH,D, RCH,D boosts higher complexity and

less conceptual appeal. And just like
〈
R2C
CH ,D

〉
,
〈
R2C
CH,D,F

′
〉

, F′ ∈ {DE,E1,E2,E3}, is

at risk of overgenerating, too.

If copying never happens sooner than after Erasure of the relevant features, we are

faced with the peculiar problem that as soon as the features have been erased, syntax has

no clue which features the LI contained just one minute before. This leaves us with two

possibilities. First, no Chain is created, because syntax does not even know that it erased

interpretable features and hence does not copy any φ-features. Obviously no version of

Reuland’s theory can work with this option, so let us look at the second one.

We may assume that if the LI is a DP, syntax still knows that it has to copy some

φ-features into the LI (but not which one), because every DP contains some interpretable

φ-features,21 so if a DP has no φ-features any more, some interpretable features have been

deleted and now have to be restored. If no information must be lost, but one does not

know which features have to be recovered in order to rescue the derivation, the only viable

21Expletives are the only exception to this rule, but their feature composition is special in any
regard.
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option is to copy all φ-features of the checker onto the DP. The result is a Chain and

everything is fine, it seems.

However, we now have a DP probably containing more φ-features than before. So

instead of just being specified for person, the anaphor zich may also be specified for gen-

der or number. Granted, this does not interfere with interpretation, because the bound

variable and the antecedent will have the same φ-features and thus will trigger the same

presuppositions. Similarly, we do not expect the anaphor to change its phonological form,

unless we assume that phonological information is added post-syntactically like in Dis-

tributed Morphology. The system I developed in the preceding chapter assigns every LI a

fixed phonetic content that might, but need not relate to φ-features, so it is agnostic on

this issue. Still, conjecturing that various instances of zich may differ in regard to their

φ-features is at odds with (97), the Principle of Induction by Morphological Paradigms

which Reuland needs in order to assess the φ-feature composition of DPs, unless we inter-

pret it as a purely lexical principle determining the initial φ-feature configuration, not the

final one.

This is a considerable weakening of the principle, and apparently Reuland did not

intend it to be understood this way. On page 475, he claims that his system actually

employs no means of global economy except Rule I, because anaphora can be constructed

locally from pronouns by Erasure of any φ-features except person. We need not concern

us with technical details here (Reuland does not provide them anyway), but two premises

are indispensable for this argument to go through: first, at least some LIs have no fixed

phonetic content, and second, the Principle of Induction by Morphological Paradigms is

not restricted to the lexicon. So we arrive at a contradiction. In order to make assumptions

on the internals of DPs, we introduce a principle that relates φ-features of DPs with their

number of different phonetic exponents in a morphological paradigm. This is the starting

point of our theory. But when we proceed with our theory, an artifact of the checking

mechanism forces us to contradict ourselves by denying that an LI’s φ-feature composition

is necessarily reflected by its phonetic form. From this we conclude that every system

〈RE ,F
′〉 is inherently contradictory, given certain further assumptions of Reuland (2001).

Summing up, we saw that D-systems fail with the strict CFD but can easily accommo-

date a weaker version which excludes deleted features. As a consequence,
〈
R
S,1C/2C
∅/CH ,D

〉
remains functional, while

〈
R
S,1C
CH ,D

〉
overgenerates and

〈
R
S,2C
CH ,D

〉
lacks conceptual

soundness and is computationally less efficient than the variants with R∅/CH. For systems

comprising Erasure, assuming the weaker CFD only does any good for 〈RD,F
′〉, which

works like 〈R,D〉 (with the exception of RCH , which then faces even more problems).

〈RE ,F
′〉, on the other hand, becomes contradictory.

Evidently we are still lacking results for F′ with the strict CFD. But those results can

be easily deduced by pure logic. If the strict CFD holds, no feature can be copied before

Erasure has taken place, and thus
〈
RO,F′

〉
and 〈RE ,F

′〉 are equivalent (and
〈
RO
D,F

〉
always a total failure).

A relevant question I left aside is whether the weaker CFD fits the Erasure systems

as nicely as D. Making the CFD a lexical principle obviously does not become any more
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logical by the introduction of an additional checking operation. The soundness of exempt-

ing deleted features from it, on the other hand, is affected by this enlargement of the set

of syntactic operations, but in a negative way. As I already pointed out, deleted features

in D are given a special treatment that goes beyond simply regarding them as members

of a set containing a F INV . In Erasure based systems, however, deleted features are just

normal features that happen to be invisible at LF, which isn’t of any relevance for syn-

tactic processes. To syntax, deleted features are normal features. That they are erased

when they are in a checking relation is a peculiar property of checking that is primarily

conditioned by other factors, mainly the presence of some F INV or F V IS . Hence there is

no good reason why deleted features should be treated in any special way when it comes

to the CFD. The only exception is E3, which needs the weaker CFD in order to allow for

rendering Delete(α) as copying of α to INV :=
{
F INV

}
plus Erasure of the original α.22

3.2.3 Evaluating the Results

The results we obtained are rather complex, although it could have been much worse.

We had two binary and two ternary parameters for Reuland’s theory and in addition

five different feature checking systems, so there were 180 logically possible theories to be

evaluated. Fortunately we only needed to distinguish two feature checking systems for

most of the parameter settings, so that the workload was reduced dramatically. Still, it

is anything but a sign of scientific preciseness when that many interpretations of a single

theory are indeed imaginable.

The table below aims to summarize the results as clearly as possible. Working the-

ories are indicated by X, non-working theories by #, overgenerating theories by O, con-

tradictory theories by 	, and implausible theories by U. If a feature checking system is

incompatible with some parameter of the respective Reulandian variant, the field is left

empty. Parameter values are only specified where they make any meaningful difference for

the results. So if a theory is contradictory in general, but furthermore implausible with

some specific parameter value, this will be ignored because being contradictory is already

bad enough for the theory to be ruled out.

RE is contradictory under Reuland’s reading of (97), else it would probably be an

empirically inadequate theory, depending on whether there are any situations where an

anaphor enters new checking relations after it has acquired additional φ-features. If LIs do

not have a fixed phonetic exponent, it overgenerates as pronouns are predicted to behave

like anaphora.

This leaves us with variants of RD. RO
D does not work for technical reasons, because

no features can be copied onto the anaphor as long as the original features are still present,

which is a given if there is no Erasure. Any variant of RCH is conceptually implausible, be-

22One could argue that copying being a subpart of Delete(α) is different from copying as a
separate simplex operation, especially considering that Delete(α) and Erasure do not induce new
derivational steps. However, I don’t think that this point is important enough to merit further
discussion. Therefore, I will just assume that the syntactic CFD and E3 fit conceptually, although
it is disadvantageous to my enterprise.
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D DE/E1/E2 E3

RS
∅/CH,D X U/X X

RL
∅/CH,D U/X U/X U/X

R
S/L,1C
CH,D U/X U/X U/X

R
S/L,2C
CH,D U/O U/O U/O

RO
D # # #

RE 	 	

Table 3.1: Feasibility of Reulandian variants

cause it requires that copies are suddenly available to syntactic computation after all covert

operations have taken place. R2C
CH also overgenerates because some copies in C(anaphor)

could be mistaken for actual antecedents. Any variant of RL is conceptually implausible,

too, as it restricts a syntactically needed principle to the lexicon. Similarly
〈
RS ,F′′

〉
,

F′′ := {DE,E1,E2}, is implausible because those feature checking systems provide no

motivation to treat deleted features different from undeleted ones.

If we keep in mind that assuming a single cycle allowed us to account for binding

by wh-words, in contrast to systems with two cycles, and that RCH can account for Ice-

landic long-distance binding, whereas R∅ can’t, it follows that the optimal variants are〈
R
S,1C
CH,D,D

〉
and

〈
R
S,1C
CH,D,E3

〉
. That is, out of 180 possibilities, 2 are conceptually and

empirically sound. If we focus on conceptual soundness alone, the number increases to a

whopping 8, i.e. less than 5 percent.

Ironically, no such system is used in Reuland (2001). Taken literally, he uses the

variant
〈
R
O,2C
CH,D/E ,DE

〉
, which evidently is a total failure. If we grant him the use of the

weakened CFD, as the issue does not really become apparent if one simply adopts Chomsky

(1995b) without further questioning, the result is either
〈
R
S,2C
CH,D,DE

〉
or
〈
R
S,2C
CH,E ,DE

〉
.

Reuland claims that those theories are equivalent, but evidently this is not the case. The

former is implausible and overgenerates, while the latter is in addition contradictory. So

not only do both fail, Reuland also mistakenly asserts that they should fail in the same way.

Even if RCH is replaced by RCH the doubtful status of this conjecture does not improve.

But at least this move gives us a working, although implausible and empirically less than

stellar theory,
〈
R
S,2C
CH,D,DE

〉
. Delaying the moment of feature copying after Erasure, on

the other hand, results in
〈
R
S,2C
CH,E ,DE

〉
, which is still contradictory.

The status of RE would be equivalent to RD if we allowed syntax to browse the

derivational history, i.e. to use lookback, for it could then determine which features were

present prior to Erasure, thereby preventing additional features to be copied. We also

would not need to worry about how syntax can determine whether all φ-features have

been checked by the same LI, and in turn there would be no reason to conjecture that

features must not be present twice on the same LI, with obvious positive repercussions

for the entire proposal. Adopting lookback, though, would remove the last bit of elegance

from Reuland’s theory. Methodologically, supplying a derivational theory with lookback is
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against the basic idea of a derivational system, namely that the input of a transformation

isn’t available later on, because the output of every operation is atomic. It is bad enough

that Minimalism is a weakly representational theory (Brody 2002) that allows parts of the

tree to be visible and available for further computation even after they been manipulated by

syntax. But extending the representationality beyond representations to total derivations

is even more conceptually misguided than it is computationally burdensome.

Attempts to accommodate lookback through global economy are misguided, too.

While lookback is a possible implementation of global economy, it is not the only one.

We could easily assume that every derivation is assigned a score which is increased de-

pending on the operation carried out. As a consequence, we still arrive at a total order of

derivations from which we can pick the most economical one (which is the one with the

lowest score), but in no way is it possible to deduce how this derivation has become the

most economical one.23 Not so surprisingly, the problem of overgeneration could also be

solved by an additional transderivational contraint which when supplied with converging

derivations containing the same CHAINs picks the one with the least number of features.

But remember that we already settled in section 1.4 that the inclusion of global economy

never was a good idea to begin with. Loading it with more and more work is technically

possible, and I actually did this to keep the number of hidden premises in Reuland’s article

artificially low, but it is not a wise move if we want the result to be compatible with other

theories.

The last point highlights a crucial fact we up to now did not pay enough attention to,

namely how does the theory perform if we consider that there are myriads of approaches

to empirical phenomena which we might want to use concomitant with Reuland’s binding

theory, each of them coming with its own set of premises which might not line up with

those we used in this chapter.24 Though it might not be technically trivial, it definitely

is possible to get every analysis flying if one introduces a sufficient number of additional

premises and modifies the old ones until they fit. To some extent, that is what I had

to do in this chapter in order to do any meaningful comparisons. I also tried to derive

assumptions wherever possible, because I do not want to be criticized as unfairly biased

against Reuland. I accounted for the asymmetry of checking from global economy, and I

reduced the restriction to subjects as only viable backup to economy considerations (as

already pointed out in footnote 11 I am not particularly happy with this move), and I

worried about the feature composition of φ-feature bundles. In my variant, Reuland is

uncomfortably dependend on global economy, in the original version he entertains an awful

lot of hidden assumptions.

23The mechanism only captures quantifiable economy, such as the Smallest Derivation Principle,
but keep in mind that the only qualitative global economy metric used in Chomsky (1995b) is the
doubtful and apparently superfluous Has an Effect on Output Condition. Even if we inseparably tie
Reuland’s theory to Tanya Reinhart’s Rule I we are not forced to use lookback. In fact, employing
lookback allows us to state Rule I as a local constraint (Graf 2007), which should be taken as
evidence that lookback is an incredibly powerful device.

24Just consider the following example: D with the CFD (no matter whether weak or strong) is
now incompatible with the checking system of Nunes (2000) which it was actually modeled after.
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Both options inevitably lead to the problem noted above, decreased compatibility

with other theories. For instance, turning checking into an anything-goes option such that

the asymmetry of feature copying can be derived minimizes the set of compatible theories

to those which assume global economy (or at least do not condemn it explicitly). There

is no way to circumvent this than by adding the asymmetry as another stipulation to the

already long list of definitions in section 3.1.3, and this in turn rules out any theories that

rely on symmetric checking in any case. And with every new stipulation, every single one

out of the 180 Reulandian variants becomes less and less attractive, even those 8 that

could be made to work.

Now assume that those other theories we want to combine with Reuland (2001) have

their fair share of vagueness, too. Even if there were only three ambiguous theories and

each of them had exactly two conceivable interpretations, the set of possible variants would

increase to 1440 (which is way better than the usual case of having a vague theory for

which the number of possible interpretations cannot be determinded easily). Sure, many

of those tuples of theories would probably group into classes, reducing the amount of

work needed to assess their soundness, but even then we would face the problem that

we could try to redeem invalid classes by adding new premises that do not conflict with

the other ones. As there are no formal measures for what constitutes a good Minimalist

assumption, this task has to be done by humans. At the same time, those new assumptions

have to be reevaluated every time a new theory is added. Even if we decide to prohibit

the introduction of new postulates, there remains the task of determining all premises

of a given theory, also the implicit ones. At this point, it should be clear that doing so

for a bigger number of papers is a herculean task. I am pretty sure that nobody wants

valuable ressources to be wasted on the exegesis of massive amounts of vague phrasing,

and vagueness, ambiguities, logical holes and contradictions are bound to arise if one isn’t

extremely careful when adopting and combining the ideas of others.



Chapter 4

Employing Formal Tools

This chapter will be concerned with familiarizing the reader with recent developments

in the realm of logic and formal grammar and how they can be used to make linguistic

theories more precise. I start with a discussion of the implications of Reuland’s failure,

and to which degree it is typical of other Minimalist articles. In connection with this I

speculate on the reasons for why there seems to be so little concern about this issue in

contemporary linguistics. Afterwards, I demonstrate how logic can be used by linguists

to decrease vagueness and how it could simplify the evaluation of theories. Section 4.3

focuses on formal grammar, especially Minimalist Grammars (Stabler 1997) as a current

area of research that produces many valuable results relevant to syntacticians. Crucially, I

do not want to insinuate that formal approaches were superior to mainstream linguistics,

I merely wish to demonstrate how generative grammar can benefit from adopting logic

as a metalanguage and paying attention to results from more mathematically inclined

areas. In contrast to the occasionally very aggressive critique coming from outside the

P&P-community, I am not striving for a replacement of Minimalism, I am merely offering

ways to enhance Minimalist research.

4.1 Some Personal Reflections on Vagueness in

P&P

My careful examination of Reuland (2001) demonstrated the negative impact of vague

definitions on scientific theories, with only 2 out of 180 possible interpretations being

somewhat conceptually and empirically tenable, albeit not particularly attractive (and

those 2 are unlikely to represent the system Reuland had in mind). This situation did

not arise from ambiguous definitions exclusively; contradictions and holes in the theory

contributed their notable share, too. This indicates that vagueness is an obstacle to both

the reader and the author. While the former has to do considerable additional work to

get more out of an article than a purely intuitive grasp of the main ideas, the latter is

prone to be tricked into overlooking weak points in his arguments. When this becomes

a chronic problem of a scientific community, the integrity of its framework is in danger.

That is not to say that a community has to agree on a canonic theory which must not
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be altered, but when scientists can’t be sure whether they are actually working with the

same parameters, doing research becomes a solipsistic activity where one can’t build on

the work of others without risking contamination with hidden yet serious errors.

Hence the central question we have to ask ourselves is: does this danger exist for Min-

imalism? In other words, do other Minimalist articles share Reuland’s shortcomings? A

statistically informed reply to this question is outside the scope of this thesis, nevertheless

I think that the answer is positive, unfortunately. I do not contend that the greatest part

of Minimalist research was dubious from a formal perspective, or that nobody was inter-

ested in a coherent and elegant theory. Evidently there are linguists whose inquiries were

invaluable for the maturation and enhancement of recent generative grammar, just think of

Brody (1995), Collins (1996), Chametzky (2000), and particularly Gärtner (2002), to name

but a few. Still, many articles show a tendency for sporadic handwaving and omission of

non-trivial parts, and consequently a considerable number of holes and inconsistencies is

introduced into the system. I shall refer to such deficits as gaps.

A distinction can be drawn between isolated and propagating gaps, depending on

whether the assumptions in the article are adopted by other scientists or not. Obviously

propagating gaps are the real danger, while the negative impact on isolated gaps is re-

stricted to a single paper and hence only affect the author. Yet isolated gaps are the

initial state of propagating gaps and should therefore be avoided at any price for more

altruistic reasons, too. Chomsky evidently is the main source of propagating gaps, due

to his reputation as a leading figure in the community. He himself is the least likely per-

son to appreciate this “follow the leader”-attitude, judging from how often he has called

Minimalism a framework, which implies that he expects other people to join the debate

with their own projects instead of simply adopting or slightly modifying his most recent

proposal. I do not want to speculate on the reasons why Chomsky’s main ideas1 usually

find rapid adoption, whereas alternative proposals by other linguists struggle to build up

a considerable following, but it is a fact of the history of the P&P framework.

Let us look at some examples for both kinds of gaps, starting with isolated gaps.

They are of course less interesting than propagating gaps due to their non-pervasiveness,

but keep in mind that many problems of Reuland (2001) arose because of the interaction

of propagating and isolated gaps. Epstein et al. (1998) provide us with a good example for

an isolated gap when they conjecture that a node might be the daughter of two distinct

branching nodes (a comparable proposal is put forward in Hornstein and Nunes 2006).

Without further qualifications, this is simply impossible provided that phrase structure

corresponds to sets, because it would require that one element could belong to two dis-

tinct sets at the same time. I see only one tenable way to get the intended result, namely

stipulating that a sentence may consist of multiple non-disjoint sets, with the occurrences

of identical elements as their joints. So the sets {a, {a, b}} and {c, {b, c}} would describe

a tree with two roots and three leaves, a, b, and c, with b acting as joint. But apparently

that’s not what Epstein et al. (1998) had in mind, for they do not discuss this implemen-

1By ’main ideas’ I am referring to anything save very specific assumptions he makes for the
analysis of some empirical phenomenon, e.g. that Icelandic Case features need to be deleted twice.
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tation anywhere. This isolated gap, though, affects only peripheral details of the theory,

fortunately. Such problems hence might decrease the value of a proposal, but they do not

endanger it in the way we encountered in the previous chapter. Only if isolated gaps affect

core parts in a negative way and cannot be wiped out easily because of certain restrictions

imposed by other theories does a Reulandian scenario arise. However, the likelyhood of

such a situation increases with the number of premises one adopts from other articles,

trivially because their inherent gaps are imported, too, and the interaction of different

premises might create new gaps. I am pretty sure every reader has encountered a consid-

erable number of papers where, just like above, either certain points are missing or specific

premises collide with each other. In any case, the details just do not fall neatly in place.

As for propagating gaps, their impact on the overall quality of an article varies,

too, but more often than not the consequences are more severe by virtue of the fact

that propagating gaps usually concern central assumptions, which is the reason why they

did not remain isolated gaps in the first place. Let us look at a gap of intermediate

relevance, closeness as it is defined in Chomsky (1995b). We already encountered the

relevant definition in section 2.5, but I repeat it here for the reader’s convenience.

(116) Closeness (cf. Chomsky 1995c:356)

If β c-commands α and τ is the target of raising, then β is closer to τ than α unless

β is in the same minimal domain as τ or α.

Cases where α and β do not share the same minimal domain and where no relation of

c-command holds between them are not covered by this definition. Such a structural

configuration is depicted in (117).

(117) XP

CP

uF

X′

X YP

UP

AP

F

U

Y′

Y ZP

Z BP

F

Please note that it does not matter whether we ban proper extraction out of spec-

ifiers such that AP is frozen in place. Suppose that the closeness condition applies even

if movement of the closer constituent is blocked, which seems to be the case in many

languages. Then we still fail to predict whether the frozen AP could induce intervention

effects preventing BP from moving to CP, because we do not know whether AP is closer

to CP than BP.

Further propagating gaps in Chomsky’s work include the constructions of numera-

tions, the definition of Select, adjunction in BPS (cf. Chametzky 2003), the structure of
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LIs, feature percolation, or the properties of transderivational constraints. Epstein and

Seely (2006) show that chain formation is suspicious too, because chains apparently are

not induced by movement but by a special algorithm connecting the landing position with

the position where the moved element was introduced into the derivation. Moreover, the

addressing system is flawed and does not allow unequivocal identification of chain posi-

tions with the respective landing sites. A minor, yet amusing quirk is introduced by the

weakened version of the phase impenetrability condition, which states that Spell-Out of a

phase XP takes place as soon as the next higher phase YP has been assembled. Without

further modifications, this won’t allow the highest phase in a sentence to be spelled out.

I conclude this list with an almost anecdotal example drawn from Chomsky (2005a).

First, consider Chomsky’s comment on remerge and the copy theory of movement (Chom-

sky 2005a:fn.16).

There has been much misunderstandings since the copy theory was proposed
in Chomsky (1993), modifying earlier conceptions of movement by eliminating
trace and indexing in favor of the N[on] T[ampering] C[ondition]: that is, leav-
ing the moved element unaffected instead of replacing it by an indexed trace
(indexing is now superfluous, under identity). It has sometimes been sup-
posed that a new “copy” is created, then inserted in the position of the moved
element — all unnecessary — and an alternative has been proposed in terms
of “remerge,” [sic] which is simply the copy theory as originally formulated.

Now read what Chomsky has to say a few pages later (Chomsky 2005a:11).

There must be some way to identify internally-merged α with its copy, but not
with other items that have the same feature composition: to distinguish, say,
“John killed John” or “John sold John to John” (with syntactically unrelated
occurrences of John), from“John was killed John”(with two copies of the same
LI John). That is straightforward, satisfying the inclusiveness condition, if
within a phase each selection of an LI from the lexicon is a distinct item, so
that all relevant identical items are copies [my own emphasis; TG].

Although the second quote is in principle compatible with a remerge approach, this is

clearly not the favored reading. Besides, all the confusion could haven been avoided if

the copy theory would have been stated explicitly in Chomsky (1993). Instead, it is

introduced in the context of generalized transformations and the technical details remain

vague. Interestingly, Chomsky (1995b) leaves their details completely implicit, despite the

change from X-structure and generalized transformations to BPS.

From the examples given above we see that the formal sloppiness that led to Reuland’s

failure is also common in other Minimalist articles, although the consequences seem to be

usually less severe (considering the effort that was needed to give a useful analysis of

Reuland (2001), it could just as well be the case that I am simply underestimating their

severity). A crucial point to observe is that all the tools in the examples I discussed are

lacking in departments which cannot be decided on purely empirical grounds, so leaving

them undefined does not do any good. In the worst case, it will even hide that there is a

problem waiting to be solved.
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Now that we assured ourselves that we aren’t engaging in a phantom discussion

based on a single non-representative example, the natural question is how this problem is

currently being dealt with. The inconsistencies of “Chomskyan theories” have frequently

been pointed out before by advocates of different frameworks, with the infamous LLJ-

controversy (see Lappin et al. 2000b,a, 2001 and the respective Minimalist replies) as

the latest exponent. Even in the few cases where such critique actually provoked any

responses, the results were meager at best. Most of the time the underlying reasons

for the dissent stem from different views on what a linguistic theory has to account for,

which is especially apparent in the 2005 Linguist-List discussion evolving around a dare by

Shalom Lappin and Richard Sproat. They claimed that nobody could develop a tractable

P&P-based parser until May 2008 which would be able to achieve results in the league of

parsers in use in natural language processing at the time of their writing.2 The underlying

assumption, of course, is that a linguistic theory not only has to concern itself with issues

of computability, but also has to be efficiently computable. Few linguists in the P&P-

tradition would accept the second assertion without qualifications. A quote by Sean Fulop

captures their view most eloquently.3

Worrying about tractability in P&P is like denigrating relativity theory be-
cause it makes it needlessly harder to calculate artillery ballistics.

However, both confrontations also reveal a certain reluctance of the P&P-community

to accept or even perceive criticism from the outside. That might be partially due to the

ranting subcontext that frequently accompanies the technical and methodological criti-

cism, as Martha McGinnis laments in one of her replies:

Remember, Sproat and Lappin began the discussion, not by offering to play
together, but by declaring that Minimalism/P&P can’t be taken seriously
until it produces a large-scale trainable parser. It’s not surprising that many
people’s first reaction was to refute this assertion. If the suggestion had been
to play together, the response would have been very different.4

Comments related to the LLJ-controversy, however, indicate that at least some advo-

cates of P&P do not appreciate criticism from outsiders in general. On the HPSG-l mailing

list, Lappin, Levine and Johnson cite an infuriated passage from a mail by Andrew Carnie,

consulting editor at Linguist-List.5

Any good scientist attempts to be aware of the real problems in their own

2The entire mail correspondence is available in Linguist-List’s archive under
http://linguistlist.org/issues/indices/Disc2005.html [verified on 02-June-2007].

3See LinguistList for what else he has to say on this issue:
http://listserv.linguistlist.org/cgi-bin/wa?A2=ind0505a&L=linguist&P=8624 [verified on 02-
June-2007].

4The full reply is available at the following URL:
http://linguistlist.org/issues/16/16-1580.html#2 [verified on 02-June-2007].

5Their message is available at:
http://listserv.linguistlist.org/cgi-bin/wa?A2=ind0406&L=hpsg-l&D=0&P=3573 [verified on 02-
June-2007].
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work, even if they choose to temporarily ignore them for practical reasons.
The MP world does not need HPSG critics, it has its own.

Irrespective of the ultimate reasons for this polemical uproar (considering the rhetoric

of the addressees it didn’t come entirely unasked for), the reaction indicates a certain dislike

for unasked contributions from other frameworks. Although it is merely a speculation, I

think that this attitude towards competing theories could have had a negative impact on

the status of mathematics and computational sciences in mainstream linguistics. After

all, the people voicing the critique are often working with more formally or descriptively

oriented theories, so calls for a step in this direction might be met with a feeling of

repulsion. Even if there was a glimpse of truth in my surmise, one must not overrate

its importance. Its explanatory value is restricted, because it covers only the status of

mathematical tools, yet preciseness does not depend on mathematics, although it can profit

enormously from it. The general lack of formal rigor thus has to have other underlying

causes, the most likely one being simply the intuition that the system is already precise

enough with respect to what is to be accomplished.

No matter what ultimately led to the ubiquity of vagueness, the fact remains that it

is currently an undesirable trait of the P&P framework. I already showed that we are a far

cry away from a well-defined theory, but as I do come from a Minimalist background and

tried to avoid any inflammatory formulations, I am confident that nobody will be overly

offended by this conclusion, nor by my proposals how the situation could be improved.

Some readers will certainly disagree with me on whether there’s any actual benefit to

following my recommendations, but hopefully no one will perceive my critique as simplistic

Minimalism bashing.

Those who do share my point of view, though, will probably raise another issue:

while it is evident that precision is a core tenet of contemporary science, it is a delicate

question at which level the style of exposition can be considered sufficiently precise. This

has direct implications for what qualifies as a means to reach this level. I can’t deny

that formal accuracy does not rely on any special notation or mathematical devices, plain

English is in principle sufficient — under the proviso that it is used carefully. However,

mathematical tools are less likely to be used in a sloppy way and thus grant a higher chance

to produce unambiguous statements (although they might still be nonsensical, of course).

In addition, a formal description language might have extra advantages like allowing us to

test the consistency of a theory in a purely automatic fashion or suggesting natural ways

to extend our proposals. In the remaining sections, I will present some expedient formal

tools, starting with logic and moving into the realm of formal language theory later on.

Owing to the general aim of this chapter, namely demonstrating the usefulness of a more

mathematically informed approach to constructing theories, I will try to give an accurate

assessment of the effort it would take to integrate the respective tools into current research

methodology. I hope that after reading this introductory survey, at least some people will

indeed be eager to push the use of those powerful tools.
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4.2 Using Logic

4.2.1 Logic as Metalanguage

If some idea is presented in a sloppy fashion, it is usually plagued by one of two issues.

Either the wording is ambiguous or some crucial parts are left undefined. The precision of

logic provides a solution to both problems. Firstly, a well-formed logical formula cannot

be ambiguous,6 and secondly, one can easily figure out whether all occurring primitives

have already been defined. Consider the claim of Chomsky (1995b) that Delete(α) marks

a feature as invisible at LF. Because this marking procedure never plays a distinctive

role in any analysis, just as the distinction between Delete(α) and Erasure is very unlikely

to be relevant for most empirical research, many readers probably won’t waste too much

time on this issue. But we saw in chapter 2 that how a feature is marked as invisible is

anything but a trivial issue. Even worse, the implications for the whole framework might

be devastating. Now look at the definition in (118).

(118) a. ∀x∀y∃z∃z′[(F (x) ∧ F (y) ∧ z = LIx ∧ z′ = LIy ∧ x ε LIx ∧ y ε LIy ∧
(LIy ∈ C(FF[LIx]) ∨ FF[LIy] ∈ C(FF[LIx])) ∧match(x, y))→
((unint(x)→ Delete(x)) ∧ (unint(y)→ Delete(y)))]

b. ∀x[Delete(x)→ invisible(x)]

The formula in (118a) states the conditions under which Delete(α) takes place. Sup-

pose that all predicates except Delete have already been logically defined, such that F

designates a formal feature, C(LIx) the checking domain of LIx, FF[LIx] the set of formal

features of LIx, match(x, y) is true iff x and y are identical and in the same feature class,

unint(x) only holds true of uninterpretable x, and ∈ and ε have the familiar denotation.

The formula, albeit convoluted, tells us immediately that Delete still has to be defined.

So we proceed to (118b), which defines the operation itself. There we encounter another

new predicate, invisible, which if left undefined will deprive (118b) and hence (118a) of

any relevant meaning. Now three possible situations have to be considered: invisible

is not defined anywhere, or it is defined logically, or it is defined in plain English. The

negative implications of the first option are evident, and so is the positive upshot of the

second option. A possible formalization of invisible is given in (119) below, based on the

DE-system in (84).

(119) ∀x[invisible(x)↔ ∃y∃z[F INV (y) ∧Bundle(z) ∧ y ∈ z ∧ x ∈ z]]

Closer scrutiny of (119) raises some issues that are intimately related to the third

option above, defining predicates in natural language, for, at some point, this is the only

option left. As we are lacking an articulated theory of LF, there is no way we could mean-

ingfully define F INV in our logical language without recourse to the predicate invisible,

which would be circular. That is to say, if we want to say more about F INV than that

6Ambiguities can of course arise if the logical definition of module X does not match the actual
use of X in the article. But if this happens to be the case, it is already indicative of overall low
quality.
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it is a distinguished element required for well-formedness of syntactic representations, we

either have to define its effects on LF, or we have to fall back to intuitive terms to explain

why F INV should be relevant for well-formedness. The more ground of our linguistic the-

ory is covered by the logical description, the more predicates and elements can be defined

insightfully in logic. Adapting some logical description language hence does not eradicate

the need for non-formal motivation of the definitions. In some cases, a basic predicate

might even be defined in purely intuitive terms if its effects apply outside the domain

that is covered by our logical formalization. Consider again the predicate invisible. If

we opted to define it in plain English, rather than in logic, because we do not want to

use any F INV or a comparable method that could be described in our logic, it is a sound

move to define the predicate and its motivation in plain English. However, the attention

of the reader would be immediately focused on this non-formal definition, and he or she

would critically assess its soundness, simply because non-formal definitions are suspect in

a setting where everything is defined formally (in the very case of invisible, the readers

would probably conclude that a logical definition of the marking mechanism but not its

impact at LF should be found).

Obviously this can also be achieved with natural language definitions if one is careful

to keep them very precise and to set them apart from the rest of the article. For instance,

the definitions of checking domain in Chomsky (1995b) are sufficient from a formal per-

spective. Nevertheless logic does a better job at directing the attention of the reader,

and it is not prone to ambiguity, in contrast to natural language. Considering how little

effort it takes to write definitions in logic, I see no profound reason to refrain from using

it as a metalanguage for our linguistic theories, provided that it is adopted by the entire

community. In this case it even carries the prospect of easing the integration of foreign

proposals, strengthening collaborative research.

The most important point to observe here is that we are talking about using logic as

a metalanguage, just like we’re using natural language as a metalanguage to talk about

language. In no way is this proposal related to integrating logic into syntactic theory,

which inevitably requires a major rethinking of our conception of syntactic processes and

constraints. That is not to say that logical syntax wasn’t a plausible theory, nor that

Minimalism can’t be recast in such a framework (cf. Vermaat 1999; Lecomte 2003). In

fact, categorial grammar (Buszkowski et al. 1988; Steedman 1996) offers such a logical

approach to syntax, and it has proven itself over decades as an insightful theory intimately

relating syntax, semantics, parsing and computability. Categorial grammar assumes that

category labels are complex and regulate the way they can combine with each other. The

combinatorial rules are based on the rules of logical calculi, such that the assembly of

syntactic structure is likened to logical reasoning. This idea has been coined ’parsing as

deduction’.

Consider the following simplified example. Suppose that labels can be recursively

built from the types np and s, our atoms, and three binary type-forming operations •, /

and \, such that if A and B are well-formed formulas, then A•B, A/B and A\B are well-

formed formulas. Suppose further that our grammar contains the theorems given below.
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Γ ` A/B ∆ ` B
Γ∆ ` A [/E]

Γ ` B ∆ ` B\A
Γ∆ ` A [\E]

Then the sentence He kisses her is to be derived as follows.
he
n Lexicon kisses

n\(s/n)
Lexicon

s/n
[\E] her

n Lexicon

s [/E]

Obviously this trivial example does not do full justice to the power and elegance of cate-

gorial grammar (see Moortgat 1996 and Steedman and Baldridge 2003 for in-depth intro-

ductions), but it is more than sufficient for illustrating the difference between using logic

in syntactic theory and using logic in the description of syntactic theory.

4.2.2 Automatic Theorem Proving

Besides the psychological reasons for adopting logic as a tool of theory construction, there

are also more technical ones, but it takes additional efforts to harvest them. One advan-

tage revolves around automatic theorem provers. As indicated by their name, those are

programs that decide the validity of theorems, and they have become an essential tool

in both mathematics and computational sciences. Their potential benefits for linguistics

are enormous, since automated theorem proving allows us to check our theories for logical

gaps, provided they are fully formalized. But please note that this verification proceeds

in purely algorithmic terms, the semantics of the formulas cannot be tested, for obvious

reasons. Consequently automated theorem proving does not help us when it comes to

picking useful axioms. In the case of the predicate invisible, for instance, we still have

to decide on our own what its denotation is, and whether it can and should be stated in

more primitive notions, based on our understanding of the relevant syntactic theory.

Stabler (1992) uses an automatic theorem prover to verify his formalization of Chom-

sky (1986), giving stellar results concerning the interaction of various submodules. Recall

that GB is a generate-and-filter approach, where the initial structure is determined by

Deep Structure from which Move α generates all logically plausible permutations. Those

are in turn filtered out by various syntactic submodules enforcing specific constraints at

SS or LF. How those submodules interact and depend on each other wasn’t understood

in full detail prior to Stabler’s work. Chomsky (1986), for example, asserts that barriers

depend on subjacency, so any theory deprived of subjacency should not be a valid base

for the barriers approach. Stabler, on the other hand, shows that subjacency is no critical

prerequisite, whereas the Empty Category Principle (ECP) is. The appeal of this result

is twofold: we gain a new understanding of our theory and how it really works, and we

obtain new means to assess the prospects of certain research programs. In the specific case

of Chomsky (1986), we can rule out the possibility of removing the ECP and still retaining

barriers. Without Stabler’s work, we would need to resort to mainly empirical arguments

to determine whether the ECP could be dispensed with, which is a lengthy process.

In the ideal case, automatic theorem provers could be used by any linguist to see
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whether their proposals make unexpected predictions, whether they are compatible with

the original theory, and if not, which parts ought to be altered. This scenario, though, is

utopian. First the standard theory (or variants of it) needs to be fully described in logical

terms which are explicit enough for formal proving. Then those formulas have to be rewrit-

ten in a language that the theorem prover understands. The only straight-forward way to

do this is a logical programming language (Stabler uses Prolog), but programming skills

are rare among linguists. If a linguist has some knowledge in a programming language, it

is usually a scripting language like Perl, Python or Ruby, which are ideal for working with

large text corpora but have virtually nothing in common with logical programming.

So there are only two possibilities to bring automatic theorem provers to the masses:

teaching students logical programming, or developing user-friendly software that auto-

matically translates logical definitions into programming code and then does the theorem

proving. The first option requires additional courses and resources which hardly any lin-

guistic department can afford. The second option is too expensive and time-consuming to

realize. We also can’t expect a commercial software vendor to produce a kind of Maple for

linguistics any time soon. Maple is a commercially distributed computer algebra system

widely used in mathematics. It comes with both its own programming language and a

graphical user interface for entering formulas directly in mathematical notation. Obviously

the creation of such a piece of software does not pay off if the market is too small, which is

the case for linguistics. Because of all these additional hurdles, automatic theorem prov-

ing is most likely to remain restricted to a few linguists only. However, as long as those

are enough to produce a continuous stream of research papers, the analytic insight that

comes with automatic theorem proving could have a positive effect on the development of

linguistics as a whole.

4.2.3 Tree Logics

At the beginning of the nineties, Barker and Pullum (1990) sprouted new interest in

the mathematical properties of command relations on trees. Their general definition of

command relations can be rephrased as in (120), where /∗ is the reflexive transitive closure

of the mother-of relation /, such that k /∗ w if and only if k (reflexively) dominates w.

(120) Command relations on trees (cf. Blackburn and Meyer-Viol 1994:8)

Let T be a tree and P be a unary relation on the nodes of T. The P -command

relation CP on T is defined as {〈w, v〉 : ∀k[k 6= w ∧ k /∗ w ∧ k ∈ P → k /∗ v]}.

The definition is pretty abstract, so let us look at a practical example, c-command,

which holds of two nodes w and v if and only if w does not (reflexively) dominate v and

the first branching node k irreflexively dominating w also dominates v. These conditions

are a superset of those expressed in (120), if we define P as the unary relation holding only

of branching nodes. If, however, we decide to define P as the unary relation holding only

of maximal projections of w, we get m-command (Aoun and Sportiche 1983) by altering

the first condition of c-command such that v does not (reflexively) dominate w. Finally,
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if we define P as the relation holding of any VP and add no further conditions, we arrive

at VP-command which holds between any two nodes dominated by the same VPs.

Inspired by the approach of Barker and Pullum (1990), Kracht (1993), Blackburn

et al. (1993), and Blackburn and Meyer-Viol (1994) started their own investigations of

command-relations using modal logic. Although the relevance of the outcome was neg-

atively affected by the mathematically uninteresting properties of command-relations,7

they demonstrated the applicability of modal logic concerning the description of trees and

relations defined on them. Rogers (1998) improved on this with his inception of L2
K,P , a

monadic second-order logic. Monadic logics allow only one argument per predicate, and

second-order logics allow quantification over both individuals and sets of individuals. The

power of L2
K,P makes it particularly easy for linguists to state well-formedness constraints

on trees because those tree structures can be included directly in the logical statements.

In order to achieve this, we use the basic connectives in (121) to define the predicate

CHILDREN in (122).8

(121) a. Classical logical connectives: ∧,∨,→,↔,¬

b. / = immediately dominates

c. ≺ = immediately precedes

d. ≈ = is equal to

(122) CHILDREN(x, y1, · · · , yn) ≡∧
yi:1≤i≤n

[x / yi] ∧
∧
i 6=j

[¬[yi ≈ yj ]] ∧ ∀z[x / z →
∨

yi:1≤i≤n
[z ≈ yi]]

The big connectives in (122) have to be read as operators like
∑

or
∏

. So if our syntactic

theory allows only ternary branching, n is restricted to 2 and (122) can be written as in

(123).

(123) CHILDREN(x, y1, y2) ≡

[x / y1] ∧ [x / y2] ∧ [¬[y1 ≈ y2]] ∧ ∀z[x / z → [[z ≈ y1] ∨ [z ≈ y2]]]

The definition itself should be easy to understand, it simply states that the set of

children of x comprises all distinct nodes immediately dominated by x and nothing else.

With the new predicate in place, we can use trees as graphical representations of formulas

as indicated below.

7Take c-command, which is a transitive and irreflexive, but non-symmetric relation. The last
property renders it uninteresting from a mathematical perspective, as there isn’t a lot one can say
about non-symmetric relations. As its name implies, asymmetric c-command isn’t non-symmetric
but asymmetric, and hence it defines a strict partial order, making it more appealing to a mathe-
matician. M-command has the same properties as normal c-command.

8The definitions to follow are taken from Potts (2001).



86 4.2. Using Logic

(124) X(x)

Y1(y1) .. Yn(yn)

≡ CHILDREN(x, y1, ..., yn) ∧X(x) ∧
∧

yi:1≤i≤n
[Yi(yi)]

The number of daughters in the tree is captured by the CHILDREN predicate, X(x)

specifies that node x has the label X and the last subformula assigns every daughter yn
the label Yn. We thus have a direct way to use trees in our logical statements, which

makes them easier to read. For illustratory purposes, consider the equivalent definitions

of the EPP in (125). For the sake of easy exposition, the EPP has been simplified so that

only DPs are valid subjects.

(125) a. ∀x[T(x)→ ∃y, z[TP(z) ∧DP(y) ∧ z / x ∧ z / y ∧ y ≺ x ∧
∀v[z / v → [y ≈ v ∨ x ≈ v]]]]

b. ∀x[T(x)→ ∃y, z[ TP(z)

DP(y) x

]]

The isomorphism between trees and logic evidently simplifies the formulation of con-

straints and thus makes L2
K,P a very attractive logic for linguists. But besides being easy to

handle, L2
K,P has a further advantage over classical first order logic, namely its restricted

expressiveness. L2
K,P is equivalent to SnSn≤ω, the the monadic second-order theory of

multiple successor functions. This logic basically talks about successors relations between

integers, which can be interpreted as structural conditions on tree domains Gorn (1967).

A tree domain is a subset of the set of all sequences of non-negative integers that is prefix-

closed and left-sibling-closed. The first condition says that if there is a sequence s of

integers that belongs to some tree domain τ , then for all subsequences v such that s is

composed from v and some subsequence w of length at least 1, v is also in τ . So if the

sequence 0110 belongs to τ , then so do 0, 01, and 011. Left-sibling closed requires that

for all sequences s which end in j > 0, there are sequences s′ identical to s except that

their last integer is less than j. So 01 ∈ τ implies 00 ∈ τ . Those two conditions allow us

to represent tree domains as trees.

(126) ε

0

00
...

01

010
...

011
...

1

10
...

Without going into further formal details, it should now be intuitively plausible why

SnSn≤ω is equivalent to L2
K,P . This equivalence is so important to us because the prop-

erties of SnSn≤ω have been investigated for a long time. In particular, there are many
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predicates which are known not to be definable in SnSn≤ω, e.g. subtree-isomorphism or

the equal-level predicate, that connects nodes with the same depth of embedding in a tree.

From this it follows that we can’t use those in L2
K,P either. The restrictiveness of L2

K,P

thus gives us a very basic classification for which parts of our theory are more powerful

than others. Those that cannot be defined are strictly more powerful than those that can

be captured. Free indexation, for instance, has been shown by Rogers (1998) to be such an

unstateable device, which is rather surprising considering how trivial it seems to be from

an intuitive point of view. This is a good example for how apparently simple premises can

turn out to be very complex and demanding.

Unfortunately, though, L2
K,P does not establish the bifurcation where we would like

to see it, because some constructions we encounter in natural language are undefinable in

it, in particular long-distance extraction in Swedish and cross-serial dependencies in Swiss

German (cf. 4.3.1). Those constructions are said to be mildly context-sensitive. L2
K,P ,

however, is equivalent to SnSn≤ω which is in turn equivalent to SnSn=2. Definability in

SnSn=2 characterizes so-called context-free constructions, which are less complex than the

mildly context-sensitive ones (we will talk about these issues in more detail later on, for

now those basics suffice). Consequently, L2
K,P can only describe context-free constructions.

But if it is only capable of defining theories that describe context-free languages, it follows

that certain aspects of natural language like crossing dependencies can’t be captured by

a theory fully formalized in this logic. In the worst case, this means that indefinability

in L2
K,P could lead us to dispense with theories that are perfectly acceptable accounts for

natural language.

On the other side, this overrestrictiveness can at least function as an additional mea-

suring rod for our empirical data, dividing it into context-free and mildly context-sensitive

constructions. For example, English (or at least the fragment of English studied in GB)

can be fully defined in L2
K,P , which conforms with the fact that there are no known mildly

context-sensitive constructions in English. Combined with the indefinability result for

free indexation, this gives the very surprising result that free indexation is not needed for

English. In fact, it is not needed for any context-free construction. Free indexation is

only required if some language has constructions which allow an in principle unbounded

number of chains to overlap, as in the Swiss German cross-serial dependencies. From this,

Rogers deduces the theorem that all languages where the number of overlapping chains is

bounded are context-free. In some sense, this can be seen as a typological distinction like

the one between inflecting and isolating languages, but its implications bear considerably

more weight for syntactic analysis. Therefore, it is anything but a trivial result.

Still, if certain, albeit few, parts of natural language are beyond our reach if we use

L2
K,P , why don’t we define a new logic based on it that is restricted to mildly context-

sensitive instead of context-free languages? The main reason is that pushing L2
K,P beyond

the border of context-freeness means losing its decidability. A logic is decidable if it can be

determined by an algorithm in a finite number of steps whether a given formula is valid.

Propositional logic, for example, is decidable because every formula can be evaluated by

constructing a truth table. L2
K,P is a monadic second-order logic, and those logics are the
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most powerful decidable logics we know, so increasing the power of L2
K,P will inevitably

make it undecidable. While it isn’t a priori clear that a logic for natural language needs to

be decidable, it is a useful property that should not be given up too readily. After all, we

have a strong interest in knowing the properties of our theory, especially its predictions.

If we use an undecidable logic, we can no longer be sure that all the theories definable in

it can be reasoned about adequately. Their behavior becomes unpredictable to a certain

degree.

Actually, we need not push L2
K,P beyond context-freeness. Kolb (1999), extending

results by Mönnich (1999), has shown that L2
K,P based theories can indeed assign correct

structures to the relevant phenomena by the use of a homomorphic lifting operation.

These structures, however, look fairly exotic and do not resemble the structures linguists

are used to. Rogers (2003) tries another method by extending his logic to n-dimensional

trees. Being mildly context-sensitive then corresponds to being definable in 3-dimensional

binary branching trees that are definable in L2
K,P . This approach furthermore can be

connected to the control language hierarchy of Weir (1992), and thus we obtain another

way to measure the complexity of our theories. However, it is evident that most current

linguistic theories do not lend themselves easily to higher-dimensional formalization. From

this perspective it looks as if L2
K,P can be rather cumbersome at times, but in fact these

issues hardly matter for everyday research, where L2
K,P ’s inherent elegance shows its full

merits.

Another disadvantage is of greater significance and is a result of the very idea of

defining trees via logical constraints. This approach originates from mathematical model-

theory, which concerns itself with the semantic side of logic. Non-technically speaking,

a model is an instantiation of a theory, where theory is understood as a logical system

with a set of axioms and all the theorems that can be derived from them. (Partee et al.

1990:200) sum it up nicely:

Finding a model for a theory requires finding some abstract or concrete struc-
tured domain and an interpretation for all of the primitive expressions of the
theory in that domain such that on that interpretation, all of the statements
in the theory come out true for that model on that interpretation. If a theory
has an axiomatic characterization, something is a model for that theory iff it
is a model for the axioms.

A tree is well-formed if and only if it is a model of our theory. This perspective eschews

any kind of derivations, it is strictly non-procedural. While that is no big problem for

theories like GB or HPSG, derivational theories like classical transformational grammar

or Minimalism do not fit easily into this scheme, although there have been attempts to

recast derivational theories in representational terms. The earliest attempts date back

to McCawley (1968) who proposed to view rewrite rules as admissibility conditions. So

instead of interpreting S → NP VP as a process replacing the start symbol S with two

symbols NP VP, we can also look at it as a constraint on trees such that a tree is well-formed

if and only if every node S dominates an NP and a VP. While it makes no difference for

grammars generating context-free languages which point of view we adopt, that does not
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carry over to context-sensitive grammars, which are higher in the hierarchy of generative

capacity than mildly context-sensitive grammars. For context-sensitive grammars it has

been shown that their expressive power varies with the interpretation one assigns to their

rules (Peters and Ritchie 1969). While a derivational perspective retains their generative

capacity, they are restricted to the power of context-free grammars under a representational

interpretation as node admissibility conditions. We should take this as a warning that one

must not implement a derivational theory by purely representational means and expect

it to behave exactly the same. The equivalence has to be proven first. History also tells

us that rethinking of derivational theories in model-theoretic terms is anything but a

trivial task. Lakoff (1971) already proposed to think of a derivation representationally as

a tuple of trees connected by transformations, but his formalization had some problems

that caused it not to behave in line with what he wanted it to do (Soames 1974).

The current attempts to look at Minimalism from a representational perspective look

promising (see Cornell 1997; Potts 2001, 2002), but it has yet to be seen whether they will

be able to evade all pitfalls. Potts proposes defining a derivation as a partially ordered set

of representations with operations like Move and Merge acting as relations between the

elements of this set, picking up Lakoff’s ideas. He also provides a logical implementation of

transderivational constraints that could turn out to be very useful for further examinations

of this ill-understood yet incredibly powerful tool.

4.2.4 Summary

We have seen that logic can be easily put to good use as a metalanguage in linguistics.

The requirements are rather low, and there are huge rewards to reap. Stabler (1992:322)

wraps this up concisely.

Of course, the formalization does not add anything to the theories. Anyone
who understood them well enough might be able to draw the same conclusions
without the aid of the formalism, but the theories are rather complex. The
formalism is a valuable aid to specify unambiguously the theory about which
claims are being made, and the exercise of discovering a proof is a valuable
check on whether we have forgotten any cases that would be exceptions of
our claims. Two kinds of claims about a formalized theory are of interest.
First, we want to claim that the formalism is faithful to linguists’ intentions.
The formal definitions are not always trivial, as we saw [. . . ] The second
kind of claim that we make about our formalization is much clearer: claims
about consequences of the formal theory. When we claim that some formal
proposition follows from FB ∪ SEQFB, this is a claim with a definite truth
value, a claim that can be checked with standard proof methods.

If we choose our logic carefully, the benefits will be even bigger, as illustrated by L2
K,P ,

which is a very flexible logic for describing trees and at the same time it is constrained

enough to tell us something about the power of our formalism. Therefore it both directs

our attention towards logical gaps in our theories and has the capability to highlight

aspects of our framework that have not surfaced prominently in research yet.
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We also saw that logic isn’t completely ready yet for the treatment of derivational

theories, although efforts are currently undertaken to restate such theories from a model-

theoretic perspective. It was also explained that certain advantages of logic are difficult

to harvest considering the current state of linguistics, the lack of familiarity with com-

putational science being the main cause for that. This unfortunate verdict will be even

more accurate of the methods presented in the next section, which deals with formal lan-

guage theory, which is better suited for evaluating derivational theories. I don’t expect

those methods to ever become mainstream in linguistics — whereas I definitely see this

potential for logic — so the purpose of the next section mainly is to make linguists get

to know the basics of this field and provide them with good reasons to keep an eye on

its ongoing research. Let me reiterate the distinction between the current and the next

section: the former presents tools that are very powerful yet easy to use, the latter is

focused on research that is of immediate relevance to linguistics but too difficult for the

average linguist to do it himself.9

4.3 Minimalist Grammars

4.3.1 Formal Languages

In order to be able to appreciate what is to follow, we first need to establish certain terms

and concepts frequently encountered in formal language theory. Most of them should be

at least remotely familiar, as they date back to the heydays of classic transformational

grammar, when a lot of research was done on the inherent complexity of specific natural

language phenomena and how powerful a grammar formalism ought to be in order to

describe them. Research of this kind, i.e. on weak generative capacity, does not enjoy

the best of reputations in today’s linguistics, but before rashly dismissing the issue, give

me the benefit of the doubt until 4.3.3, where I will discuss the relevance of those topics

for linguistic research. Until then, let us put the methodological issues aside and restrict

ourselves to the formal aspects.

In the early days of modern linguistics, i.e. shortly after Chomsky (1957), a lot of

research was done on the properties of string rewriting systems, which were inspired by

deductive systems of reasoning. There are two equivalent definitions for strings. The more

intuitive one defines them as a finite sequence of occurrences of elements of a set A, usually

called the alphabet. The more formal oriented one defines a string of length n over the

alphabet A as a mapping from the first elements in N+ into A, where the integers indicate

the position of the respective element in A. The string ababc is then equivalent to the

relation R := {〈1, a〉 , 〈2, b〉 , 〈3, a〉 , 〈4, b〉 , 〈5, c〉}. Starting from a single axiom, the initial

symbol S, strings are deduced by applying a finite number of rules of inference, which are

more aptly called rewriting rules in this context. The rule a → ab is then to be read as

‘replace a by ab. Usually a distinction is drawn between terminal symbols on the one hand

9Of course this is true just in case we’re talking about simply using logic, not proving its
decidability or related issues that should be left to logicians.
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(denoted a, b, . . .) and non-terminal symbols (denoted A, B, . . .) on the other. Only the

former are allowed to show up in the final string. It is also commonly assumed that every

rewrite rules contains at least one non-terminal symbol on its left side.10

There is of course a more formal way to describe the general properties of a rewriting

system. We define a rewriting system as a quadruple 〈VT , VN , S,R〉, where VT is the

terminal and VN the non-terminal alphabet such that VT ∩ VN = ∅. S ∈ VN is the initial

symbol and R is a set of ordered pairs in Σ∗VNΣ∗×Σ∗, where Σ = VN ∪VT and Σ∗ denotes

the set of all strings of symbols in Σ of non-negative length. A derivation is a sequence of

strings s1, s2, . . . , sn, n ∈ N+, such that s1 = S and every si, 2 ≤ i ≤ n, is derived from

si−1 by a single application of some rule in R. Finally, a grammar G is said to generate

a string s ∈ V ∗T if G derives s in a finite amount of steps and no further rule applications

take place. We call the set of all strings generated by G the language generated by G,

denoted L(G).

Depending on which additional constraints we impose on G’s rewriting rules, G be-

longs to a special class of grammars on the so-called Chomsky Hierarchy (Chomsky 1963).

(127) The Chomsky Hierarchy

Let A,B ∈ VN , x ∈ VT , r ∈ R, and α, β, ω arbitrary strings over VT ∪ VN .

a. Type 0: every r is of the form αAβ → ω.

b. Type 1: every r is of the form αAβ → αωβ, where ω 6= ε, the empty string.11

c. Type 2: every r is of the form A→ ω.

d. Type 3: every r is of the form A→ xB or A→ x.

Those classes are often referred to as unrestricted, context-sensitive, context-free and reg-

ular, respectively. Type 1 grammars are properly included by Type 0 grammars, and

Type 3 grammars are properly included by Type 2 grammars. Consequently, every regu-

lar grammar is also a context-free grammar, and every context-sensitive grammar belongs

to the class of unrestricted grammars. Note though that the inclusion of Type 2 in Type 1

grammars is not proper, for Type 2 grammars allow ω to contain ε, while Type 1 grammars

explicitly ban this option.

The most interesting question for a linguist obviously is where natural language is

situated on this hierarchy. For a long time it was believed that natural language was

context-free, but this was refuted by Shieber (1985) based on cross-serial dependency

structures in Swiss German like the one in (128).

(128) Jan
John

säit
said

das
that

mer
we

d’chind
the children.ACC

em Hans
Hans.DAT

es
the

huus
house.ACC

haend
have

wele
wanted

laa
let

hälfe
help

aastriiche
paint

10This requirement is sometimes suspended for Type-0 grammars. In (127), I will nevertheless
stick with it.

11The so-called empty string is a terminal symbol that can be added to a string without altering
it. Adding it to abc, for instance, still gives abc. Thus a string may in principle contain an arbitrary,
though finite number of occurrences of ε. From an algebraic perspective, ε is the identity element
under string concatenation such that a_ε = ε_a = a.
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’. . . we have wanted to let the children help Hans paint the house.’

The total number of NPs and VPs is unrestricted, due to the recursiveness of natural

language. But as the reader can see for himself, the first NP depends on the first VP, the

second NP on the second VP, and so forth. That is to say, the number of NPs and VPs

has to be identical, and they have to match in case.

Shieber then defines a regular language LR1 = wa∗b∗xc∗d∗y, where z∗ denotes that the

number of occurrences of z can be any non-negative integer. An isomorphic variant of LR1 is

LR2 where w = ’Jan säit das mer’, a = ’d’chind’, b = ’em Hans’, x = ’es huus haend wele’,

c = ’laa’, d = ’hälfe’, and y = ’aastriiche’. Crucially, there are no dependencies between

NPs and VPs in LR2 , the number of occurrences of a does not need to be equal to the

numbers of c. In Swiss German, however, this is the case, so intersecting LR2 with Swiss

German gives us sentences of the form in (129).

(129) LR∩S := wambnxcmdny ≡ Jan säit das mer (d’chind)m (em Hans)n es huus haend

wele (laa)m (hälfe)n aastriiche

It can be shown that Lr∩S is neither a regular nor a context-free language. It is

a well-known fact that if two language Li and Lj are regular, then their intersection is

regular too. If one of those languages is context-free, their intersection is also context-free.

Based on this we conclude that if Lr∩S cannot be generated by a context-free grammar,

then either LR2 or Swiss German cannot be generated by a context-free grammar. We can

be sure that LR2 is a regular language. It follows that Swiss German is not context-free.

Shieber was the first to give an irrefutable proof that, contra the conjecture of Gazdar

et al. (1985), we need to go beyond context-freeness if we want to describe all constructions

of natural language syntax. Previous proofs committed two fallacies (see Pullum and

Gazdar 1982 for an overview of such flawed proofs). Often they based their arguments

on empirically dubious data that involved semantic and pragmatic aspects and thus could

be skewed. More frequently it was mistakenly assumed that it suffices to show that some

subset of a language is not context-free to prove that the entire language is not context-

free. This is trivially false. Consider the language anb∗cn, n ≥ 1, which is generated by

the following grammar.

(130) a. S → aSc

b. S → aTc

c. T → bT

d. T → ε

Evidently this grammar can by sheer coincidence generate the subset anbncn, but

this does not imply that it is not context-free. Shieber, however, didn’t just pick some

arbitrary subset of Swiss German, he generated the relevant subset by intersecting Swiss

German with a regular language. And as context-freeness is preserved under intersection,

the subset should be context-free if Swiss German were context-free. The rest of the

argument is already familiar from above.
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Shieber (1985) thus instantiated that the generative capacity of natural language

syntax goes beyond context-freeness, but we do not know its upper bound yet. Context-

sensitive grammars are too powerful, for they can generate languages like an, n a prime

number. Arguably we do not encounter such structures in natural language. Joshi (1985)

proposes that all natural language phenomena can be accounted for by so-called mildly

context-sensitive grammars (MCSGs), i.e. that natural language belongs to the class of

mildly context-sensitive languages (MCSLs). MCSGs have the following properties. First,

context-free languages are properly contained in the MCSLs (while they are not properly

contained in the context-sensitive languages). Second, mildly context-sensitive languages

can be parsed in polynomial time. Third, MCSGs capture only a very restricted range of

dependencies, primarily nested dependencies and certain kinds of crossing dependencies.

Fourth, strings of mildly context-sensitive languages only grow linearly in size, i.e. there

is no mildly context-sensitive language like L :=
{
a2n

: n ∈ N
}

. We immediately see that

the strings of L grow exponentially in size, rather than linearly. For n = 0 the string

length is 1, for n = 1 it is 2, for n = 2 it is 4, for n = 3 it is 8, and so forth. In contrast

to L, L′ := {an : n ∈ N} and L′′ := {an(bb)nccc : n ∈ N} have the linear growth property.

Many grammar formalisms have been shown to belong to the class of MCSGs (see

Weir 1988; Joshi et al. 1991; Vijay-Shanker and Weir 1994), among them indexed grammar

(Aho 1968; Gazdar 1985), tree adjoining grammars (Joshi et al. 1975; Joshi 1985; Joshi and

Schabes 1997), head grammars (Pollard 1985; Roach 1987), and combinatory categorial

grammar (Steedman 1996). In recent years, another grammar formalism could be proven

to be a member of this class by Michaelis (1998, 2001) and Harkema (2001a), Minimalist

grammars (Stabler 1997; Stabler and Keenan 2003). Those will be our next topic.

4.3.2 Minimalist Grammars

Minimalist grammars (MG) have first been defined in Stabler (1997), and since then they

have sprouted considerable research in the properties of formal tools frequently used by

Minimalist syntacticians. Owing to the mathematical prerequisites of most articles, I will

restrict myself to a short demonstration of one variant of MGs, what kind of results have

already been obtained with them and why they grant us an improved understanding of our

technical machinery. The interested reader is referred to Gärtner and Michaelis (2007) for

an in depth presentation of those topics.12 I won’t touch on the relation between MGs and

categorial grammars (Lecomte 1998, 2003), nor on recent work on parsing MGs (Harkema

2001b) or attempts to enrich them with a semantic interface (Amblard et al. 2003; Kobele

2006).

I start with the classic definition of MGs given in Stabler (1997), but be aware that I

will choose to replace some of the symbols so that they are in line with my own notation.

Let V := FPF ∪ FLF be the set of non-syntactic features and Cat := base ∪ select ∪
licensors∪ licensees be the set of syntactic features, where the respective sets are defined

as follows:
12Frankly, I can’t recommend this article highly enough, for it combines lucid, non-technical

writing with a comprehensive list of definitions of several variants of MGs.
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(131) a. base := {c, t, d, v, n, p, . . .} is the set of categorial features.

b. select := {=x,=X,X= : x ∈ base}, where =x indicates the selection of an x-

phrase, and =X and X= indicate selection of an x-phrase plus suffixation (=X)

or prefixation (X=) of the phonetic features of the x-phrase to the selector.

c. licensees := {−f : f ∈ FFF − base} is the set of attractable features.

d. licensors := {+f,+F : f ∈ FFF − base} is the set of attracting features, where

+F denotes a feature inducing overt movement.

Further, we define an expression as a finite, binary, labeled, ordered tree τ :=

〈Nτ , /
∗
τ ,≺∗τ , <∗τ , Labelτ 〉, where Nτ is the set of nodes of τ , and /∗τ , ≺∗τ , <∗τ are the respec-

tive reflexive transitive closures of the immediate-dominance relation /τ , the immediate-

precedence relation ≺τ and the immediately-project-over relation <τ (henceforth, I will

omit τ in my notation).

We define the following notions on τ :

(132) a. Root

The set of roots of a (sub)tree τ is a singleton set Rτ := {x : ¬∃y[y / x]}.

b. Leaves

Let Lτ := {x : ¬∃y[x / y]} be the set of leaves of a tree τ .

c. Head

For any x, y ∈ Nτ , x is a head of y if either x = y ∈ Lτ or

∃z[y / z ∧ ∀w[y / w → z <∗ w] ∧ x is a head of z].

d. Maximal projection

Some node y is a maximal projection of a node x iff y ∈ A := {z ∈ N :

x is the head of z} such that there is no w ∈ A that properly dominates y.

e. Specifier

Some node x is a specifier of a head y iff

i. x is a maximal projection, and

ii. z / x→ y is the head of z, and

iii. x properly precedes y.

f. Complement

Some node x is a complement of a head y iff

i. x is a maximal projection, and

ii. z / x→ y is the head of z, and

iii. y properly precedes x.

We further maintain that for every mother node m, there is exactly one daughter

node d that immediately projects over all other daughters of m. Finally, let Label be

a map from leaves into a regular set select∗(licensors)select∗(base)licensees∗F∗PFF∗LF .

Then a minimalist grammar is a 4-tuple 〈V,Cat, Lex,S〉, where V and Cat are defined

as above, Lex is a finite set of expressions built from V and Cat as indicated above, and

S := {merge,move} is the set of our syntactic operations.
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I think enough formal grounds have already been covered, so I will turn to some

examples and leave aside the definitions of merge and move — curious readers can look it

up in the appendix of Stabler (1997). Consider a very simple sentence like Every linguist

loves mathematical notation. To generate this sentence, we need the LIs listed in (133).

Each of those entries is actually a tree with a single node adhering to the definition of τ

above. This affects in particular the ordering of features, which is due to the definition of

Label.

(133) a. =n d -case ε

b. =v +CASE t ε

c. =t c ε

d. =n d -case every

e. n linguist

f. =d +case =d v loves

g. a mathematical

h. =a n notation

The assembly of the utterance then proceeds in a very familiar way, with the minor

deviation that the peculiar order of features determines the course of the derivation. First,

mathematical and notation are drawn from the lexicon and merged. The categorial feature

of the adjective is deleted, and so is the selection-feature =a of notation. Now the first

feature of the noun is n, wherefore it can be merged with the covert determiner listed

under (133a). We now have assembled our first DP, depicted below. Note that we do not

use phrase structure labels but rather indicate the projecting node by < and >, depending

on whether it precedes or follows its complement, respectively.

(134) <

d -case ε >

mathematical notation

The first feature of the determiner now is its categorial feature, so it can merge with

the verb, again resulting in deletion of the relevant features.13 As a consequence, the

determiner has only one feature left, -case, which allows it to move to a position where

the feature can be checked. The verb’s first feature is +case, so the DP can move to get

the feature deleted. However, as the verb only has a weak feature, not a strong +CASE

feature licensing overt movement, the operation has to apply covertly, yielding (135).

13If the verb had =D or D= instead of =d, the determiner would have also undergone head-
movement and been adjoined as a suffix or prefix.
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(135) >

<

ε >

(mathematical) (notation)

<

=d v loves <

ε >

<mathematical> <notation>

Now the subject DP every linguist can be assembled and merged with the verb in an

analogous fashion. The head of the DP, every, still has a -case feature to discharge, while

the verb needs to get its category feature deleted, which is accomplished by merging it

with the T-node. This introduces a strong +CASE feature into the derivation and causes

overt dislocation of the subject DP. After this step, the C-node is selected and merged to

check the remaining categorial feature of T. As c is a licit root node and no more lexical

items are available for further computation, the derivation converges.

(136) <

c ε >

<

every linguist

<

ε >

<

<every> <linguist>

>

<

ε >

(mathematical) (notation)

<

loves <

ε >

<mathematical> <notation>

Some readers are presumably scratching their heads right now, wondering how such

a coarse implementation of Chomsky (1995c) could be useful for linguists. All intricacies

of checking are omitted by the exclusive use of Erasure as a part of Merge, features have

to be linearly ordered, there is no reference-set computation, no θ-roles, no binding, no

control, no labels in the traditional sense, no adjunction, no scrambling. Even φ-features

are completely left out of the picture.
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The simple fact is that MGs are not meant to emulate a full-blown syntactic theory.

Rather they provide us with an ideal testing ground for the inspection of the properties of

any kind of syntactic module. A simple MG is a barebone implementation of Minimalism,

and because of its simple nature its behavior is well understood. If we add some module M

to our basic MG, denoted MG, and carefully examine the properties of the new MGM , we

can effectively determine the impact of M .Obviously we can also test how M behaves in

interaction with other modules, and from all those experiments we gain an understanding

of the internal workings of our theory we would not reach otherwise. The elicitation of

telling results, however, is a very demanding task that requires a lot of knowledge in

automata theory and familiarity with formal proof methods. Consequently the average

linguist won’t be able to accomplish this, and he or she probably also won’t care how any

of those results came about in detail. But the results themselves definitely are worth the

attention.

Concerning operations, the main focus has been on head movement (Stabler 2001,

2003) and remnant movement (Stabler 1999), the copy theory of movement (Kobele 2006),

affix hopping (Stabler 2001), and adjunction and scrambling (Frey and Gärtner 2002;

Gärtner and Michealis 2003; Gärtner and Michaelis 2005, 2007). The work by Gärtner and

Michaelis is a perfect example for the kind of results linguists can expect from MGs. They

set out to determine whether adding late adjunction and scrambling to an MG increases

the expressiveness of said grammar beyond mild context-sensitivity. The question arises

because late adjunction can evade violations of the shortest move constraint (SMC).14 They

establish that generative capacity is preserved iff and only if extraction out of adjuncts is

blocked. This condition is known as the Adjunct Island Constraint (AIC). These results,

however, obtain just in case the SMC holds too, otherwise the AIC shows no restricting

effects and the power of the grammar increases. The results for an MG with late adjunction

and scrambling are summarized in (137), where we apply the parameter notation already

familiar from the previous chapter, and a < b indicates that a is less powerful than b:

(137) Behavior of MGs with late adjunction and scrambling

MG+SMC
+AIC < MG+SMC

−AIC < MG−SMC

Comparable results have also been presented in Kobele and Michaelis (2005) for MGs

without adjunction but with the Specifier Island Constraint (SPIC), which blocks proper

extraction from inside a specifier. While MG+SMC
+SPIC is slightly weaker than MG+SMC

−SPIC ,

as is to be expected, MG−SMC
+SPIC can emulate so-called 2-counter automata whose power

is equivalent to that of a type 0 grammar. As we already saw in the previous section

on formal languages, type 0 grammars are higher up the Chomsky hierarchy than mildly

context-sensitive grammars, which are a superset of the class of grammars MG+SMC
+SPIC

belongs to. Suspension of the SMC thus causes a sudden increase in generative capacity,

contrary to the linguist’s intuition that the constricting effect of the SPIC should remain

the same independent of other constraints. This is a very profound result of immediate

relevance to any syntactician.
14The shortest move constraint in MGs has a very special implementation, as it enforces that

for every x, τ contains at most one feature -x at stage n of a derivation.
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Another variant of MGs equivalent to a type 0 grammar is MG+perc, an MG with

feature percolation. Feature percolation is the process whereby the features of a specifier

percolate into the node dominating it, and it is often used to account for pied-piping

phenomena. In the question Whose books did you read, for instace, the wh-word is the

specifier of the noun, yet the whole DP undergoes wh-movement. Forcing the wh-feature

of whose to percolate into the DP accounts for this behavior straightforwardly. Kobele

(2005) shows that a grammar comprising feature percolation can compute any task done

by an infinite abacus, another type of automata, if LIs may contain one and the same

feature more than once. Again we see how a small change in the overall design has far-

reaching consequences for the power of a grammar. But does this have any consequences

besides showing us how submodules interact? In other words, does generative capacity

matter to linguistics?

4.3.3 A Note on Generative Capacity

Before we can address the question of the relevance of generative capacity, the distinction

between weak generative capacity (WGC) and strong generative capacity (SGC) (Chomsky

1963) needs to be introduced. The WGC of some grammar Gi is the language it generates,

i.e. a set of strings. Consequently, the WGC of some class of grammars is the union of all

languages generated by those grammars. WGC thus is based on strings, i.e. the output of

grammars. SGC, on the other hand, includes the structure assigned to those strings. The

SGC of some grammar Gi is the set of structural descriptions assigned by the grammar

to the strings it produces.

Naturally, SGC is of greater importance to linguistics than WGC, but unfortunately

it has been neglected for a long time because its original definition rendered it inutile. Ac-

cording to the original formulation, two context-free grammars, for instance, are strongly

equivalent if and only if they are identical. Distinct theories can’t be compared either,

because their structural primitives usually differ significantly. Things have improved in

the last decade. Miller (1999) redefined SGC as a model-theoretic semantics for linguis-

tic theories. Metaphorically speaking, he set up a theory-neutral space into which any

grammar can be mapped. The final results of this mapping can then be compared de-

spite the conceptual differences between the original theories as those primitives have all

been mapped to the same entities in Miller’s theory-neutral space. Another approach is

based on the work of Rogers (1998), which we already discussed in 4.2.3 (so there is yet

another reason for linguists to embrace logic). Those efforts show great potential, but it

will definitely take some time until attention has completely shifted from WGC to SGC.

The relevance of WGC has often been issue to debate, and increasingly often linguists

have concluded that they cannot benefit from research on WGC. Chomsky (1986) even

maintains that practically no notion imported directly from the computational sciences

can be fruitfully applied to natural language. His conjecture must not be confused with

a refusal of mathematical methods per se, Chomsky merely states that these concepts

fail to capture the characteristics a linguist cares about. Consider the case of complexity

theory, which is a field of computational science that is concerned with the investigation
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of the computational load posed by a problem. Crucially though, it does not analyze the

complexity of some problem instance, but of the problem in general, and in particular

it is interested in asymptotic worst-case complexity, that is, the hardest case that might

arise given infinite space and time. The complexity results for chess, for example, apply

to playing chess on an infinite chess board, and it has been shown that there is no efficient

algorithm to compute this problem. Of course this does not imply that it is impossible to

build a good chess computer, as has already been proven.

Given its premises, complexity theory obviously does not line up perfectly with cog-

nitivist concerns. Human cognition operates in finite space and time, and worst-case

complexity isn’t very important either. After all, some rare linguistic constructions might

be computationally demanding or cause the parser to crash, but linguists are interested in

the processing cost of common sentences, not a few occasional exceptions. Nevertheless I

disagree with Chomsky. Linguistics can profit from such research, no matter whether it is

formal language theory or complexity theory or some other field of the computational sci-

ences we are talking about. But the results have to be interpreted very carefully, because

the relation between the mathematical concept and its concrete instantiation is subtle and

indirect.

With respect to WGC, I allege that it is useful in two respects. If a certain theory

can be shown to be as powerful as a type 0 grammar, we have good reason to believe

that it needs to be revised. First, it massively overgenerates. If some grammar is of

type 1, one could still argue that this was due to the slight inadequacy of the methods

applied. In the case of type 0, however, the leap in power is just too big to be an artifact

of our proof technique. This is also confirmed by the fact that none of today’s syntactic

theories, no matter how advanced, is a type 0 grammar.15 Second, such an expressive

grammar is suspect for epistemological reasons, too. Type 0 grammars are equivalent to

Turing machines, which are the current model for algorithmic computability. That is to

say, Turing machines compute anything that can be computed in an algorithmic way, so if

a grammar is equivalent to a Turing machine, it can more or less compute anything. But

if a theory can explain anything, what does it actually explain?

The other practical aspect of WGC is its use as a measuring rod, as we already saw

in the previous section, where it allowed us to trace the impact of certain modules and

how they interact with each other. As long as there is at least an indirect relation between

weak and strong generative capacity, this application alone justifies our interest in WGC.

4.4 So What are the Ramifications?

In this chapter, I set out to investigate the origins of vagueness in linguistics, and whether

anything could be done about it. I could highlight only a few points that might be involved

15Occasionally the opinion is voiced in the literature that a grammar has to be mildly context-
sensitive if it is to be explanatorily adequate. This normative stance, however, ignores the fact
that an overgenerating syntax could be constrained by other factors like filtering at the interfaces
or certain traits of the linguistic parser.
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in the first issue, due to its complexity. I guess it would take a group of sociologists to

determine the dynamics of the linguistic community that give rise to the unfortunate state

of affairs. I proposed that things could be improved in various respects by adopting logic as

a metalanguage. Logical notation guides our expression towards holes and contradictions

in arguments and definitions, while there is a greater chance that those things will be

missed if phrased in natural language, especially if they are directly woven into the text.

Logic also allows us to get a better understanding of the innards of our theory, as we saw

in 4.2.2 and 4.2.3. To this end, linguists should also keep an eye on the developments in

formal grammar theory, especially Stabler’s Minimalist Grammars.

Advantageous as logic and formal grammar might be, they can’t solve the underlying

problem in and of themselves. I emphasized this point several times throughout the

chapter, because it is so easy to confuse these issues: being precise does not necessitate

being formal, and being formal does not imply being precise. One can write a perfectly

sound and lucid article in plain English, and likewise one can produce a mathematically

flawless paper that still fails to define its basic terms and resists any concrete interpretation.

Nonetheless, as soon as one is really devoted to the creation of an unambiguous and well-

defined theory, those formal tools can be of great help, and if adopted by a considerable

number of linguists, their benefits will be even greater in the long run. Of course it will

take a collective effort to push current Minimalism in this direction, but I am confident

that this move will happen sooner or later. After all, the number of linguists who are

aware of this problem and consider it an obstacle to the progress of linguistics seems to

be growing. I consider my thesis an attempt to cause a further increase in this number.



Conclusion

Throughout the entire thesis, I constantly tried to connect two separate realms, a technical

and a methodological one. The former one enjoyed the greater share of my attention,

but it is the latter one that supplied the motivation for the whole enterprise, namely

demonstrating that vagueness is a more pressing problem of contemporary mainstream

linguistics than commonly perceived.

Nevertheless the purely formal part of my work is interesting in and of itself: I

pondered the status of features, feature bundles and lexical structure in Minimalism, and

the results thereby obtained could be fruitfully applied to feature strength and checking

theory. The checking operations Delete(α) and Erasure were implemented in five different

ways, each of them significantly more explicit than Chomsky’s own proposal. Finally,

careful scrutiny of Reuland (2001) revealed that in total there are 180 variants of his

theory, only 2 of which can be considered acceptable, although they still need a fair

number of stipulations to work reliably.

While I was not concerned about the validity of Reuland’s theory in particular — it

just served as an illustrative example of the general problem — its doubtful performance is

a worrying result, for two specific reasons. First, it shows that alterations of minor details

can quickly make any given tool break, without anybody noticing. Thus the tendency to

adopt premises from other lines of research has a very high potential to negatively affect

the soundness and consistency of a theory. The second motive for critique stems from the

fact that I had to employ rather unorthodox and cumbersome methods in order to arrive

at valid results and exclude any artifacts from skewing the analysis. While comparable

investigations of a theory’s properties are straightforward for other frameworks, I was

forced to carefully construct coherent incarnations of Chomsky (1995c) to which Reuland’s

proposal could be applied.

On the other hand, the investigation of Reuland (2001) also showed that most versions

of Chomsky’s feature checking mechanism behave in the same way, which begs the question

whether they are just notational variants of each other. If so, this would support the

objection that the level of accuracy I demand of syntactic theory is nothing more than a

pointless technical exercise. This critique, however, misses the crucial point that we can’t

determine a priori whether the equivalence of the checking systems will be preserved in

any case. A different modification might cause them to cluster in a completely unexpected

new way. Furthermore, if such low-level details of the machinery had indeed no impact on

the theory, how come that it is commonly argued that they can’t be defined because of
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the paucity of empirical evidence and thus should be left to future research? This seems

slightly contradictory to me.

In the same way, it is sometimes proposed that we should not care too much about

formal aspects since linguistics is still a very young and immature field, wherefore our tools

are too coarse to allow for anything but broad generalizations. This argument is flawed

in various respects. First of all, it ignores the fact that many linguists actually trust their

theory and are not afraid of making very specific technical assumptions which resist theory-

neutral generalization. Secondly, I have to wonder why research done in other frameworks

is mostly neglected by Minimalists although it is generalizations about language we are

allegedly interested in. In addition, it is highly dangerous to rely on generalizations which

arise from an ill-understood theory, for they might just be the result of a technical quirk.

Consider Principle B, which also fulfilled the duty of regulating the distribution of PRO

in GB. If it turns out that PRO does not exist, our knowledge about Principle B has

to be reevaluated. Now suppose that other aspects of Principle B dependend on various

factors, too, but we never realized that. If those hidden parameters did not carry over

to our new theory, sticking to our generalizations about Principle B would become an

obstacle to scientific progress. Finally, to link the level of due technical sophistication to

our empirical coverage is to artificially restrict their mutual fertilization, and it also poses

the unanswerable question how many empirical generalizations we have to discover before

it makes sense to do more formally inclined research.

I think most of these objections stem from the misconception that I was leading a

crusade against vagueness in general. To the contrary, I tried to look at the issue in a dif-

ferentiated way, and I was only concerned with the narrowly restricted notion of vagueness

of theoretical primitives and definitions. At no point did I touch on vagueness in empiri-

cal analysis, which is a given. The very application of our technical notions to linguistic

material already includes a step of abstraction that invariably induces a certain degree of

imprecision. Trivially, natural language itself contains its fair share of fuzziness. And as

in the other empirical sciences, we frequently reach the limit of our understanding and

simply have to guess what might be responsible for the phenomenon observed. Regarding

formal obscurity, I also conceded that its negative impact varies from article to article, and

that it often affects only peripheral aspects or can be solved rather easily. Still, even when

those cases are disregarded during the dissection of vagueness, it is a worryingly prevalent

trait.



Deutsche Zusammenfassung

In der vorliegenden Arbeit beschäftige ich mich mit einem Vorwurf, mit dem sich der

Prinzipien-und-Parameter Ansatz (P&P) häufig konfrontiert sieht, nämlich dass ein Gut-

teil seiner Terminologie nicht oder bloß unzureichend definiert sei. Ich bestätige dieses Ver-

dikt anhand eines Fallbeispiels, der Modifikation des klassischen minimalistischen Feature-

Checking-Systems (Chomsky 1995b) in Reuland (2001).

Ich zeige, dass bereits Chomskys Definitionen fünf unterschiedliche Implementierun-

gen von Feature Checking erlauben. Durch Reulands Eingriffe steigt diese Anzahl auf

180, doch nur zwei der vorgeschlagenen Systeme sind akzeptabel, dabei gleichzeitig aber

höchst stipulativ. Die scheinbare minimalistische Eleganz von Reulands Ideen scheitert

somit angesichts unüberwindbarer technischer Hürden. Die Evaluierung meiner Resultate

zeigt auf, dass anderen minimalistischen Ideen ähnliches widerfahren kann, weswegen ich

eine vermehrte Hinwendung zu formaler Logik als Hilfsmittel zur Beschreibung linguisti-

scher Theorien vorschlage. Zwar lässt sich Vagheit dadurch nicht ausschließen, doch sind

unvollständige Definitionen in dieser formalen Form leichter als solche zu erkennen, für

Leser wie für Autor. Darüber hinaus eröffnen sich durch den konsequenten Gebrauch von

Logiken neue Arbeitsweisen, beispielsweise der Gebrauch von automatischen Beweisern.

Auch wird das Verständnis der Mächtigkeit der linguistischen Formalismen gefördert. Aus

dem selben Grund sollte generell der rezenten Forschung aus dem Bereich der mathemati-

schen Linguistik mehr Aufmerksamkeit zuteil werden, insbesondere den in Stabler (1997)

definierten Minimalist Grammars.

Aufgrund ihres breit angelegten Ziels, dem Aufzeigen bestehender methodologisch-

formaler Schwächen in P&P, ist diese Arbeit für Linguisten aus allen Bereichen interessant,

die sich für die Validität minimalistischer Theorien interessieren. Gleichzeitig finden sich

technisch exakte Besprechungen der Struktur lexikalischer Einträge, Stärke und Interpre-

tierbarkeit von Features, Delete(α), Erasure, Ketten und globaler Ökonomie, sodass die

Arbeit auch für jene von Wert ist, die sich nicht für das Vagheitsproblem interessieren

oder überhaupt keines erkennen können.
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Symbols and Abbreviations

This section is divided in two tables. The first one lists common mathematical
symbols, whereas the second one captures notation specific to the subjects treated in
this thesis. Regarding the ordering, symbols precede letters, and letters are ordered
alphabetically and furthermore typographically as follows: f ≺ f ≺ F ≺ F ≺ F ≺
F ≺ F.

Mathematical symbols

∅ The empty set

∈ Set membership relation

/∈ Complement relation of ∈

∩ Set intersection

∪ Set union

⊂ Proper subset relation

⊆ Subset relation

− As in B −A; denotes the relative complement of A in B

× As in A×B; Cartesian product

〈x1, . . . , xn〉 An n-Tuple of xi, i ∈ [1, n]

¬ Negation

∧ Logical conjunction

∨ Logical disjunction

→ Logical implication

↔ Logical equivalence

∃ Existential quantifier

∀ Universal quantifier

N The set of non-negative integers

N+ The set of positive integers

Linguistic symbols and abbreviations

≈ Equivalence
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/ Immediately dominates

/∗ The reflexive transitive closure of /

≺ Immediately precedes

≺∗ The reflexive transitive closure of ≺

< Immediately-projects-over

<∗ The reflexive transitive closure of <

〈XP〉 A copy of XP∫
(K) The sublabel of K, see (54)

ε The transitive closure of the set-membership relation, , page 25

ε The empty string

Φ[X] The set of all φ-features of XP (possibly a superset of the φ-feature bundle
of X), see (115)

Σ A derivational stage, cf. fn.5 on page 5 and (4)
or
the alphabet of some formal grammar (Σ := VT ∪ VN )

Σ∗ The set of all strings over Σ

〈R,F〉 A combination of some Reulandian syntactic framework and some feature
checking system

AIC Adjunct Island Constraint

BOC Bare Output Conditions

BPS Bare Phrase Structure

CFD Condition of Feature Distinctiveness, see (96)

CHL Language faculty (abbreviation for “computational system of human lan-
guage”)

CH A chain, induced by Move, page 53

CH A Chain, induced by feature checking, page 53

CH A CHAIN, established by connecting a chain with a Chain, page 53

C(α) The checking domain of α, see (50)

D(α) The domain of α, see (45)

DC(α) The complement domain of α, see (46)

DI(α) The internal domain of α, see (49)

DM (α) The minimal domain of α, see (48)

DR(α) The residue of α, see (47)
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D A feature checking system using only Delete(α), see (80)

DE A feature checking system using both Delete(α) and Erasure, see (84)

ECP Empty Category Principle

E A feature checking system using only Erasure (and maybe emulating Delete(α)
through it, see (81)–(83)

f Some feature

F→F One-to-one relation between features and functions, see (19)

F↔F One-to-one correspondence between features and functions, see (20)

FF[X] The set of formal features of X (FF ∈ X); if X isn’t a set, FF[X] denotes the
set of formal features containing X

F Some formal feature, i.e. some f ∈ FFF

F φ Some φ-feature

F φ,A Some φ-feature of the relevant anaphor

F φ,S Some φ-feature of the subject

FF A subset of FFF belonging to some lexical item

F INV A privative feature marking invisibility of features, page 42

FS A privative feature encoding feature strength, see (32)

F V IS A privative feature marking visibility of features, page 43

F The set of all features, see (22)

FFF The set of all formal features

FLF The set of all LF-features

FPF The set of all PF-features

F Some unspecified feature checking system, or a set of feature checking systems

GB Government and Binding Theory

HEOC Has an Effect on Output Condition, see (17c)

LCA Linear Correspondence Axiom of Kayne (1994)

LF Logical Form

LI Lexical item; a multiset licensed by the definition in (24)

LF A subset of FLF belonging to some lexical item

LI Some lexical item

Max(α) The lowest maximal projection dominating α, see (41)

MCSG Mildly-context sensitive grammar
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MCSL Mildly context-sensitive language

MG Minimalist Grammar, see section 4.3.2

MGi
j A Minimalist Grammar with two parameters, where i ∈ {+SMC,−SMC}

expresses the presence of the Shortest Move Constraint, and the subscript
j ∈ {+AIC,−AIC,+SPIC,−SPIC} expresses the presence of the Adjunct
Island Constraint or the Specifier Island Constraint

o Occurrence index of a lexical item in the numeration

P&P Principles-and-Parameters framework

PF Phonological Form (sometimes called Physical Form)

PRD Principle of Recoverability of Deletion, see (90) and (91)

PF A subset of FPF belonging to some lexical item

R
i,j
m,n A minimalist framework modified as proposed in Reuland (2001) with the

following parameters: i ∈ {S,L,O} specifies the version of the CFD (see
page 67), j ∈ {1C, 2C} specifies the number of syntactic cycles (see (111)),
m ∈ {∅, CH, CH} specifies the timing of Chain- and CHAIN-construction
(see (108) and (109)), and n ∈ {D,E} specifies the timing of feature copying
(see page 69)

SDP Smallest Derivation Principle, see (17b)

SGC Strong generative capacity

SMC Shortest Move Constraint

SPIC Specifier Island Constraint

SS Surface Structure

S Startsymbol

TEC Transitive expletive construction, page 44

VN Set of non-terminal symbols

VT Set of terminal symbols

WGC Weak generative capacity

X0max The minimal projection contained by no other minimal projection, see (40)
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Gärtner, Hans-Martin, and Jens Michaelis. 2005. A note on the complexity of contraint in-
teraction. In Logical aspects of computational linguistics (lacl’05), ed. P. Blache, E. Sta-
bler, and J. Busquets, number 3492 in Lecture Notes in Artificial Intelligence, 114–130.
Berlin: Springer.
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Gärtner, Hans-Martin, and Jens Michealis. 2003. A note on countercyclicity and minimalist
grammars. In Proceedings of the Conference on Formal Grammar (FGVienna), 103–114.
Vienna.

Halle, Morris, and Alec Marantz. 1993. Distributed morphology and the pieces of inflection.
In The view from building 20 , ed. Ken Hale and Samuel J. Keyser, 111–176. Cambridge,
Mass.: MIT Press.

Harkema, Henk. 2001a. A characterization of minimalist languages. In Logical aspects of
computational linguistics (lacl’01), ed. Philippe de Groote, Glyn Morrill, and Christian
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