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Abstract. Inspired by the model-theoretic approach to phonology de-
ployed by Kracht [25] and Potts and Pullum [32], I develop an extendable
modal logic for the investigation of phonological theories operating on
(richly annotated) string structures. In contrast to previous research in
this vein [17, 31, 37], I ultimately strive to study the entire class of
such theories rather than merely one particular incarnation thereof. To
this end, I first provide a formalization of classic Government Phonol-
ogy in a restricted variant of temporal logic, whose generative capac-
ity is then subsequently increased by the addition of further operators,
thereby pushing it up the subregular hierarchy until one reaches the level
of the regular stringsets. I identify several other axes along which Govern-
ment Phonology might be generalized, moving us towards a parametric
metatheory of phonology.

Like any other subfield of linguistics, phonology is home to a multitude of com-
peting theories that differ vastly in their conceptual and technical assumptions.
Contentious issues are, among others, the relation between phonology and pho-
netics (and if it is an interesting research question to begin with), if features
are privative, binary or attribute valued, if phonological structures are strings,
trees or complex matrices, if features can move from one position to another
(i.e. if they are autosegments), and what role optimality requirements play in
determining well-formedness. Meticulous empirical comparisons carried out by
linguists have so far failed to yield conclusive results; it seems that for every
phenomenon that lends support to a certain set of assumptions, there is another
one that refutes it.

The lack of a theoretical consensus should not be taken to indicate that the
way phonologists go about their research is flawed. Unless one subscribes to
the view that scientific theories can faithfully reflect reality rather than merely
approximate it, it is to be expected that one theory may fail where another one
succeeds, and vice versa. A similar situation arises in physics, where depending
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on the circumstances light exhibits particle-like or wave-like properties. But faced
with this apparent indeterminacy of theory choice, it is only natural for us to
ask if there is a principled way to identify interchangeable theories, i.e. proposals
which may seem to have little in common yet are underlyingly the same. This
requires developing a metatheory of phonology that uses a finite set of parameters
to conclusively determine the equivalence class which a given phonological theory
belongs to. This paper is intended to lay the basis for such a metatheory, building
on techniques and insights from model-theoretic syntax [24, 35, 36]: I develop a
modal logic for the formalization of a particular theory, Government phonology
(GP), and then use this modal logic and its connections to neighboring areas,
foremost formal language theory, to explore natural extensions and their relation
to other approaches in phonology.

I feel obliged to point out in advance that I have my doubts concerning the
feasibility of a formal theory of phonology that is adequate and insightful on
both a linguistic and a mathematical level. But this is a problem all too familiar
to mathematical linguists: any mathematically natural class of formal languages
allows for constructions that never arise in natural language. For example, as-
signment of primary word stress is sometimes sensitive to whether a syllable is
an odd or an even number of syllables away from the edge of a word (see [10]
and my remarks in Sec. 2). Now in order to distinguish between odd and even,
phonology has to be capable of counting modulo 2. On the other hand, phe-
nomena that involve counting modulo 3, 4 or 21 — which from a mathematical
perspective are just as simple as counting modulo 2 — are unheard of. Thus,
the problem of mathematical methods in the realm of language is that their grip
tends to be too loose, and the more we try to tighten it, the more difficult it
becomes to prove interesting results.

Undeniably, though, a loose grip is better than no grip at all. I am confident
that in attempting to construct the kind of metatheory of phonology I envision,
irrespective of any shortcomings it might have, we will gain crucial insights into
the core claims about language that are embodied by different phonological as-
sumptions (e.g. computational complexity and memory usage) and how one may
translate those claims from one theory into another. Moreover, the explicit log-
ical formalization of linguistic theories makes it possible to investigate various
problems in an algorithmic way using techniques from proof theory and model
checking. These results are relevant to linguists and computer scientists alike.
Linguists get a better understanding of how their claims relate to the psycho-
logical reality of language, how the different modules of a given theory interact
to yield generalizations, and how they increase the expressivity of a theory (see
[32] for such results on optimality theory). To a limited degree, linguists also get
the freedom to switch to different theories for specific phenomena without jeop-
ardizing the validity of their framework of choice. Computer scientists, on the
other hand, will find that the model-theoretic perspective on phonology eases
the computational implementation of linguistic proposals and allows them to
gauge their runtime-behavior in advance. Furthermore, they may use the con-
nection between finite model theory and formal language theory to increase the
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efficiency of their programs by picking the weakest phonological theory that is
expressive enough for the task at hand.

This paper is divided into two parts as follows. First, I introduce GP as an
example of a weak theory of phonology and show how it can be axiomatized as a
theory of richly annotated string structures using modal logic. In the second part,
I analyze several parameters that distinguish GP from other proposals and might
have an effect on generative capacity. In particular, I discuss how increasing the
power of GP’s spreading operation moves us along the subregular hierarchy and
why the specifics of the feature system have no effect on expressivity in general.
I close with a short discussion of two important areas of future research, the
impact of the syllable template on generative capacity and the relation between
derivational and representational theories.

The reader is expected to have some basic familiarity with phonology, formal
language theory, non-classical logics and model-theoretic syntax. There is an
abundance of introductory material for the former three, while the latter is
cogently summarized in [34] and [35].

1 A Weak Theory of Phonology — Government
Phonology

1.1 Informal Overview

Due to space restrictions, I offer but a sketch of the main ideas of Government
Phonology (GP). More readily accessible expositions may be found in the User’s
Guide to Government Phonology [20] and related work of mine [10, 11]. To
compensate for the terseness, the reader may want to check the explanation
against the examples in Fig. 1 on the following page. Before we go in medias
res, though, a note on my sources is in order. Just like Government-and-Binding
theory [4], GP has changed a lot since its inception and practitioners hardly
ever fully specify the details of the version of GP they use. However, there seems
to be a consensus that a GP-variant is considered canonical if it incorporates
the following modules: government, the syllable template, coda licensing and
the ECP from [21], magic licensing from [19], and licensing constraints and the
revised theory of elements from [20]. My strategy will be to follow the definitions
in [20] as closely as possible and fill in any gaps using the literature just cited.

In GP, the carrier of all phonological structure is the skeleton, a finite, lin-
early ordered sequence of nodes (depicted by little crosses in Fig. 1) to which
phonological expressions (PEs) can be attached in order to form the melody of
the structure. A PE is built from a set E of privative features called elements,
yielding a pair 〈O,H〉, where O ⊆ E is a set of operators, H ∈ E ∪{∅} the head,
and H /∈ O. It is an open empirical question how many features are needed for an
adequate account of phonological behavior [13, 14] — recent incarnations usually
set E := {A, I,U,H,L,P}, but for our axiomatization the only requirement is for
E to be finite. Some examples of PEs are [s] = 〈{A,H} , ∅〉, [n] = 〈{L, P} ,A〉,
[1] = 〈∅, ∅〉, [I] = 〈{I} , ∅〉, [i] = 〈∅, I〉, and [j] = 〈∅, I〉. The set of licit PEs is
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Fig. 1. Some phonological structures in GP (with IPA notation)

further restricted by language-specific licensing constraints, i.e. restrictions on
the co-occurrence of features and their position in the PE. Common licensing
constraints are for A to occupy only head positions, ruling out [s] in the list
above, and for I and U not to occur in the same PE, ruling out the typologically
uncommon [y] = 〈{U} , I〉 and [Y] = 〈{I} ,U〉, among others.

As witnessed by [i] = 〈∅, I〉 and [j] = 〈∅, I〉, every PE is inherently underspec-
ified; whether it is realized as a consonant or a vowel depends on its position in
the structure, which is annotated with constituency information. An expression
is realized as a vowel if it is associated to a skeleton node contained by a nucleus
(N), but as a consonant if the node is contained by an onset (O) or a coda (C).
Every N constitutes a rhyme (R), with C an optional subconstituent of R. All
O, N and R may branch, that is be associated to up to two skeleton nodes, but
a branching R must not contain a branching N. Furthermore, word initial O can
be floated, i.e. be associated to no node at all. The number of PEs per node is
limited to one, with the exception of unary branching N, where the limit is two
(to model light diphthongs).

All phonological structures are obtained from concatenating 〈O,R〉 pairs ac-
cording to constraints imposed by two government relations. Constituent govern-
ment restricts the distribution of elements within a constituent, requiring that
the leftmost PE licenses all other constituent-internal PEs. Transconstituent gov-
ernment enforces dependencies between the constituents themselves. In particu-
lar, every branching O has to be licensed by the N immediately following it, and
every C has to be licensed by the PE contained in the immediately following O.
Even though the precise licensing conditions are not fully worked out for either
government relation, the general hypothesis is that PE i licenses PE j iff PE i is
leftmost in its constituent and contained by N, or leftmost in its constituent and
composed from at most as many elements as PE j and licenses no PEk 6= PE j
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(hence any C has to be followed by a non-branching O, but a branching O might
be followed by a branching N or R).

GP also features empty categories: a segment does not have to be associ-
ated to a PE. Inside a unary branching O, an unassociated node will always be
mapped to the empty string. Inside N, on the other hand, it is either mapped
to the empty string or the language-specific realization of the PE 〈{∅} , ∅〉. This
is determined by the phonological ECP, which allows only p-licensed N to be
mapped to the empty string. N is p-licensed if it is followed by a coda containing
a sibilant (magic licensing), or in certain languages if it is the rightmost segment
of the string (final empty nucleus, abbreviated FEN), or if it is properly governed
[18]. N is properly governed if the first N following it is not p-licensed and no
government relations hold between or within any Cs or Os in-between the two
Ns. Note that segments inside C or a branching O always have to be associated
to a PE.

Finally, GP allows elements to spread, just as in fully autosegmental theories
[9]. All elements, though, are assumed to share a single tier, and association
lines are allowed to cross. The properties of spreading have not been explicitly
spelled out in the literature, but it is safe to assume that it can proceed in
either direction and might be optional or obligatory, depending on the element,
its position in the string and the language in question. While there seem to be
restrictions on the set of viable targets given a specific source, the only canonical
one is a ban against spreading within a branching O.

1.2 Formalization in Modal Logic

For my formalization, I use a very weak modal logic that can be thought of
as the result of removing the “sometime in the future” and “sometime in the
past” modalities from restricted temporal logic [6, 7]. Naturally, the tree model
property of modal logic implies that the logic is too weak to define the intended
class of models, so we are indeed dealing with a formal description rather than
a proper axiomatization.

Let E be some non-empty finite set of basic elements different from the
neutral element v, which represents the empty set of GP’s feature calculus. We
define the set of elements E := (E×{1, 2}×{head , operator}×{local , spread})∪
({v}×{1, 2}×{head , operator}×{local}). The intended role of the head/operator
and local/spread parameter is to distinguish elements according to their position
in the PE and whether they arose from a spreading operation, respectively. The
second projection is of very limited use and required only by GP’s rendition of
light diphthongs as two PEs associated to one node in the structure. The set of
melodic featuresM := E∪{µ, fake,X} will be our set of propositional variables.
The intention is for µ (mnemonic for mute) and X to mark unpronounced and
licensed segments, respectively, while fake denotes an unassociated onset. For
the sake of increased readability, the set of propositional variables is “sorted”
such that x ∈M is represented by m, m ∈ E by e, heads by h, and operators by
o. The variable en is taken to stand for any element such that π2(e) = n, where
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πi(x) returns the ith projection of x. In rare occasions, I will write e and e for a
specific element e in head and operator position, respectively.

Furthermore, there are three nullary modalities1, N , O, C, the set of which
is designated by S, read skeleton. In addition, we introduce two unary diamond
operators C and B, whose duals are denoted by J and I. The set of well-formed
formulas is built up in the usual way from M, S, C, B, → and ⊥.

Our intended models M := 〈F, V 〉 are built over bidirectional frames F :=
〈D,Ri, RC〉i∈S , where D is an initial subset of N, Ri ⊆ D for each i ∈ S, and
RC is the successor function over N. The valuation function V : M → ℘(D)
maps propositional variables to subsets of D. The definition of satisfaction is
standard, though it should be noted that our models are “numbered from right
to left”. That is to say, 0 ∈ D marks the right edge of a structure and n+ 1 is to
the left of n. This is due to GP’s transconstituent government being computed
from right to left.

M, w |= ⊥ never
M, w |= p iff w ∈ V (p)
M, w |= ¬φ iff M, w 2 φ
M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ
M, w |= N iff w ∈ RN
M, w |= O iff w ∈ RO
M, w |= C iff w ∈ RC
M, w |=C φ iff M, w + 1 |= φ
M, w |=B φ iff M, w − 1 |= φ

With the logic fully defined, we can turn to the axioms for GP. The for-
malization of the skeleton is straightforward if one models binary branching
constituents as two adjacent unary branching ones and views rhymes as mere
notational devices. Recall that Ns containing light diphthongs are implemented
as a single N with both e1 and e2 elements associated to it.

S1
∧
i∈S(i↔

∧
i 6=j∈S ¬j) Unique constituency

S2 (J ⊥ → O) ∧ (I ⊥ → N) Word edges
S3 R↔ (N ∨ C) Definition of rhyme
S4 N →C O∨ C N Nucleus placement
S5 O → ¬ C O ∨ ¬ B O Binary branching onsets
S6 R→ ¬ C R ∨ ¬ B R Binary branching rhymes
S7 C →C N∧ B O Coda placement

1 I follow the terminology of [1] here. Nullary modalities correspond to unary rela-
tions and can hence be thought of as propositional constants. As far as I can see,
nothing hinges on whether we treat constituent labels as nullary modalities, proposi-
tional constants, or propositional variables; my motivation in separating them from
phonological features stems solely from the parallel distinction between melody and
constituency in GP.
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GP’s feature calculus is also easy to capture. A propositional formula φ over
a set of variables x1, . . . , xk is called exhaustive iff φ :=

∧
1≤i≤k ψi, where for

every i, ψi is either xi or ¬xi. A PE φ is an exhaustive propositional formula
over E such that φ ∪ {F1,F2,F3,F4,

∨
h,
∨
o} is consistent.

F1
∧

(hn →
∧
hn 6=h′

n
¬h′n) Exactly one head

F2 ¬v →
∧

(hn →
∧
π1(h)=π1(o)

¬on) No basic element (except v) twice

F3 v →
∧
o6=v ¬o v excludes other operators

F4
∧

(e2 →
∨
h1 ∧

∨
o1) Pseudo branching implies first branch

Let PH be the least set containing all PEs (noting that a PE is now a particular
kind of propositional formula), and let lic : PH → ℘(PH ) map every PE to its set
of melodic licensors. Furthermore, S ⊆ PH designates the set of PEs occurring
in the codas of magic licensing configurations (the letter S is mnemonic for
“sibilants”). The following five axioms, then, sufficiently restrict the melody.

M1
∧
i∈S

(
i→

∨
φ∈PH φ ∨ µ ∨ fake

)
Universal annotation

M2 ((O∨ C N∨ B N)→
∧
¬e2) No pseudo branching for O, C &

branching N
M3 O∧ C O →

∧
φ∈PH (φ→

∨
ψ∈lic(φ) C ψ) Licensing within

branching onsets
M4 C ∧

∧
i∈S ¬i→C ¬µ ∧

∧
φ∈PH (φ→

∨
ψ∈lic(φ) B ψ) Melodic coda

licensing
M5 fake→ O ∧

∧
m 6=fake ¬m Fake onsets

Remember that GP allows languages to impose further restrictions on the
melody by recourse to licensing constraints. It is easy to see that licensing con-
straints operating on single PEs can be captured by propositional formulas. The
licensing constraint “A must be head”, for instance, corresponds to the propo-
sitional formula ¬A. Licensing constraints that extend beyond a single segment
can be modeled using C and B, provided their domain of application is finitely
bounded (see the discussion on spreading below for further details). Thus licens-
ing constraints pose no obstacle to formalization in our logic, either.

As mentioned above, I use µ to mark “mute” segments that will be realized
as the empty string. The distribution of µ is simple for O and C — the latter
never allows it, and the former only if it is unary branching and followed by
a pronounced N. For N, on the other hand, we first need to distribute X in a
principled manner across the string to mark the licensed nuclei, i.e. those N that
may remain unpronounced. Note that unpronounced segments may not contain
any other elements (which would affect spreading).

L1 µ→
∧
m/∈{µ,X} ¬m ∧ ¬C ∧ (N → X) Empty categories

L2 N∧ C N → (µ↔C µ) No partially mute branching nuclei
L3 O ∧ µ→ ¬ C O∧ B (N ∧ ¬µ) Mute onsets
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L4 N ∧X↔ B (C ∧
∨
i∈S i)︸ ︷︷ ︸

Magic Licensing

∨ (¬ C N∧ I ⊥)︸ ︷︷ ︸
FEN

∨ P-licensing

((¬ C N →C (C N∨ J ⊥)) ∧ (¬ B N →BB (N ∧ ¬µ)))︸ ︷︷ ︸
Proper Government

Axiom L4 looks daunting at first, but it is easy to unravel. The magic licensing
conditions tells us that N is licensed if it is followed by a sibilant in coda posi-
tion.2 The FEN condition ensures that wordfinal N are licensed if they are non-
branching. The proper government condition is the most complex one, though it
is actually simpler than the original GP definition. Remember that N is properly
governed if the first N following it is pronounced and neither a branching onset
nor a coda intervenes. Also keep in mind that we treat a binary branching con-
stituent as two adjacent unary branching constituents. The proper government
condition then enforces a structural requirement such that N (or the first N if
we are talking about two adjacent N) may not be preceded by two constituents
that are not N and (the second N) may not be followed by two constituents that
are not N or not pronounced. Together with axioms S1–S7, this gives the same
results as the original constraint.3

The last module, spreading, is also the most difficult to accommodate. Most
properties of spreading are language specific — only the set of spreadable fea-
tures and the ban against onset internal spreading are universal. To capture this
variability, I define a general spreading scheme σ with six parameters i, j, ω, ω,
min and max .

σ :=
∧

π1(i)=π1(j)

(i ∧ ω →
max∨
n=min

♦n(j ∧ ω) ∧ (O ∧ ♦O →
max∨

n=min+1

♦n(j ∧ ω)))

The variables i, j ∈ E, coupled with judicious use of the formulas ω and ωregulate
the optionality of spreading. If spreading is optional, i is a spread element and ω,

ωare formulas describing, respectively, the structural configuration of the target
of spreading and the set of licit sources for spreading operations to said target. If

2 Note that we can easily restrict the context, if this appears to be necessary for em-
pirical reasons. Strengthening the condition to B (C ∧

W
i∈S i)∧ CJ ⊥, for example,

restricts magic licensing to the N occupying the second position in the string.
3 In this case, the modal logic is once again flexible enough to accommodate various

alternatives. For instance, if proper government should be limited to non-branching
Ns, one only has to replace both occurrences of → by ∧. Also, my formalization
establishes no requirement for a segment to remain silent, because N often are pro-
nounced in magic licensing configurations or at the end of a word in a FEN language.
For proper government, however, it is sometimes assumed that licensed nuclei have
to remain silent, giving rise to a strictly alternating pattern of realized and unreal-
ized Ns. If we seek to accommodate such a system, we have to distinguish Ns that
are magically licensed or FEN licensed from Ns that are licensed by virtue of being
properly governed. The easiest way to do so is to split X into two features Xo and
Xm (optional and mandatory), the latter of which is reserved for properly governed
Ns. The simple formula Xm → µ will force such Ns to remain unpronounced.
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spreading is mandatory, then i is a local element and ω, ωdescribe the source and
the set of targets. If we want spreading to be mandatory in only those cases where
a target is actually available, ω has to contain the subformula

∨max
n=min ♦

n ω.
Observe moreover that we need to make sure that every structural configuration
is covered by some ω, so that unwanted spreading can be blocked by making ω

not satisfiable. As further parameters, the finite values min,max > 0 encode the
minimum and maximum distance of spreading, respectively. Finally, the operator
♦ ∈ {C,B} fixes the direction of spreading for the entire formula (♦n is the n-fold
iteration of ♦). With optional spreading, the direction of the operator is opposite
to the direction of spreading, otherwise they are identical. The different ways of
interaction between the parameters is summarized in Table 1.

Mode Direction i ω ω ♦

optional left spread target source B
optional right spread target source C
mandatory left local source target C
mandatory right local source target B

Table 1. Parameterization of spreading patterns with respect to σ

As the astute reader (or rather, all readers that took a glimpse at footnotes
2 and 3) will have noticed by now, nothing in our logic prevents us from defining
alternative versions of GP. Whether this is a welcome state of affairs is a matter
of perspective. On the one hand, the flexibility of our logic ensures its applicabil-
ity to a wide range of different variants of GP, e.g. to versions where spreading is
allowed within onsets or where the details of proper government and the restric-
tions on branching vary. On the other hand, it raises the question whether there
isn’t an even weaker modal logic that is still expressive enough to formalize GP.
However, the basic feature calculus of GP already requires the logical symbols ¬
and ∧, which gives us the complete set of logical connectives, and we furthermore
need C and B to move us along the phonological string. Hence, imposing any
further syntactic restrictions on formulas requires advanced technical concepts
such as the number of quantifier alternations. But this brings us back to an issue
I discussed in the preface to this section: the loose grip of mathematical methods,
and why it isn’t as problematic as it might seem initially. Lest I unnecessarily
bore the reader with methodological remarks, I shall merely point out that it is
doubtful that a further weakening of the logic would would have interesting ram-
ifications given the questions I set out to answer; I am not interested in the logic
that provides the best fit for a specific theory but in the investigation of entire
classes of string-based phonological theories from a model-theoretic perspective.
In the next section, I try to get closer to this goal.
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2 The Parameters of Phonological Theories

2.1 Elaborate Spreading — Increasing the Generative Capacity

It is easy to see that the modal logic defined in the previous section is powerful
enough to account for all finitely bounded phonological phenomena (I hasten to
add that this does not imply that GP itself can account for all of them, since
certain phenomena might be ruled out by, say, the syllable template or the ECP).
In fact, it is even possible to accommodate many long-distance phenomena in
a straight-forward way, provided that they can be reinterpreted as arising from
iterated application of finitely bounded processes or conditions. Consider for
example a stress rule for language L that assigns primary stress to the last
syllable that is preceded by an even number of syllables. Assume furthermore
that secondary stress in L is trochaic, that is to say it falls on every odd syllable
but the last one. Let 1 and 2 stand for primary and secondary stress, respectively.
Unstressed syllables are assigned the feature 0. Then the following formula will
ensure the correct assignment of primary stress, even though the notion of being
separated from the left word edge by an even number of syllables is unbounded
(for the sake of simplicity, I assume that every node in the string represents a
syllable; it is an easy but unenlightening exercise to rewrite the formula for a
GP syllable template consisting of Os, Ns and Cs).∨

i∈{0,1,2}

i ∧
∧

i 6=j∈{0,1,2}

(i→ ¬j) ∧ (J ⊥ → 1 ∨ 2) ∧ (2→B 0)∧

(0→B (1 ∨ 2)∨ I ⊥) ∧ (1→ ¬ C 1 ∧ (I ⊥∨ BI ⊥))

Other seemingly unbounded phenomena arising from iteration of local processes,
most importantly vowel harmony (see [3] for a GP analysis), can be captured in
a similar way. However, there are several unbounded phonological phenomena
that require increased expressivity, as I discuss en detail in [10].

Since we are only concerned with string structures, it is a natural move to
try to enhance our language with operators from more powerful string logics, in
particular, linear temporal logic. The first step is the addition of two operators
C+ and B+ with the corresponding relation R+

C, the transitive closure of RC.
This new logic is exactly as powerful as restricted temporal logic [6], which
in turn has been shown to exactly match the expressivity of the two-variable
fragment of first-order logic ([7]; see [44] for further equivalence results). Among
other things, unbounded OCP effects [9, 26] can now be captured in an elegant
way. The formula O∧A∧L∧P→B+ ¬(O∧A∧P), for example, disallows alveolar
nasals to be followed by another alveolar stop, no matter how far the two are
apart.

But C+ and B+ are too coarse for faithful renditions of unbounded spreading.
For example, it is not possible to define all intervals of arbitrary size within which
a certain condition has to hold (e.g. no b may appear between a and c). As a
remedy, we can add to the logic the until and since operators U and S familiar
from linear temporal logic, granting us the power of full first-order logic and
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pushing us to the level of the star-free languages [5, 6, 29, 41]. Star-free languages
feature a plethora of properties that make them very attractive for purposes
of natural language processing. Moreover, the only phenomenon known to the
author that exceeds their confines is stress assignment in Cairene Arabic and
Creek, which basically works like the stress assignment system outlined above
— with the one exception that secondary stress is not marked overtly [12, 30].
Under these conditions, assigning primary stress involves counting modulo 2,
which is undefinable in first-order logic, whence a more powerful logic is needed.
The next step up from the star-free stringsets are the regular stringsets, which
can count modulo n. The regular stringsets are identical to the sets of finite
strings definable in monadic second order logic (MSO) [2], linear temporal logic
with modal fixed point operators [43] or regular linear temporal logic [27]. In
linguistic terms, this corresponds to spreading being capable of picking its target
based on more elaborate patterns, counting modulo 2 being one of them. For
further discussion of the relation between expressivity and phenomena in natural
language phonology, the reader is once again referred to [10].

A caveat is in order, though. Thatcher [40] proved that every recognizable
set is a projection of some local set. Thus the hierarchy outlined above collapses
if we grant ourselves an arbitrary number of additional features to encode all
the structural properties our logic cannot express. In the case of primary stress
in Cairene Arabic and Creek, for instance, we could just use the feature for
secondary stress assignment even though secondary stress seems to be absent
in these languages. Generally speaking, we can reinterpret any unbounded de-
pendency as a result of iterated local processes by using “invisible” features.
Therefore, all claims about generative capacity hold only under the proviso that
all such coding-features are being eschewed.

We have just seen that the power of GP can be extended along the subreg-
ular hierarchy, up to the power of regular languages, and that there seems to
be empirical motivation to do so. Interestingly, it has been observed that SPE
yields regular languages, too [15, 17]. But even the most powerful rendition of
GP defines only a proper subset of the stringsets derivable in SPE, apparently
due to its restrictions on the feature system, the syllable template and its gov-
ernment requirements. The question we face, then, is whether we can generalize
GP in these regards, too, to push it to the full power of SPE and obtain a
multidimensional vector space of phonological theories.

2.2 Feature Systems

Is is easy to see that at the level of classes of theories, the restriction to privative
features is immaterial. A set of PEs is denoted by some propositional formula
over E, and the boolean closure of E is isomorphic to ℘(E). But as shown in [22],
a binary feature system using a set of features F can be modeled by the powerset
algebra ℘(F), too. So if |E| = |F|, then ℘(E) and ℘(F) isomorphic, and so are
the two feature systems. The same result holds for systems using more than
two feature values, provided their number is finitely bounded, since multivalued
features can be replaced by a collection of binary valued features given sufficient
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co-occurrence restrictions on feature values (which can easily be formalized in
propositional logic).

One might argue, though, that the core restriction of privative feature sys-
tems does not arise from the feature system itself but from the methodologi-
cal principle that absent features, i.e. negative feature values, behave like con-
stituency information and cannot spread. In general, though, this is not a sub-
stantial restriction either, as for every privative feature system E we can easily
design a privative feature system F := {e+, e− | e ∈ E} such that M, w |= e+ iff
M, w |= e and M, w |= e− iff M, w |= ¬e. Crucially, though, this does not entail
that the methodological principle described above has no impact on expressivity
when the set of features is fixed across all theories, which is an interesting issue
for future research.

2.3 Syllable Template

While GP’s syllable template could in principle be generalized to arbitrary num-
bers and sizes of constituents, a look at competing theories such as SPE and
CVCV [28, 38] shows that the number of different constituents is already more
than sufficient. This is hardly surprising, because GP’s syllable template is mod-
eled after the canonical syllable template, which isn’t commonly considered to be
in need of further refinement. Consequently, we only need to lift the restriction
on the branching factor and allow theories not to use all three constituent types.
SPE then operates with a single N constituent of unbounded size (as no segment
in SPE requires special licensing, just like Ns in GP), whereas CVCV uses N
and O constituents of size 1. Regarding the government relations, the idea is to
let every theory fix the branching factor b for each constituent and the maxi-
mum number l of licensees per head. Every node within some constituent has
to be constituent licensed by the head, i.e. the leftmost node of said constituent.
Similarly, all nodes in a coda or non-head position have to be transconstituent
licensed by the head of the following constituent. For every head the number
of constituent licensees and transconstituent licensees, taken together, may not
exceed l.

Even from this basic sketch it should already be clear that the syllable tem-
plate can have a negative impact on expressivity, but only under the right con-
ditions. For instance, if our feature system is set up in a way such that every
symbol of our alphabet is to be represented by a PE in N (as happens to be the
case for SPE), restrictions on b and l are without effect. Thus one of the next
stages in this project will revolve around determining under which conditions
the syllable template has a monotonic effect on generative capacity.

2.4 Representations versus Derivations

One of the most striking differences between phonological theories is the distinc-
tion between representational and derivational ones, which begs the question
how we can ensure comparability between these two classes. Representational
theories are naturally captured by the declarative, model-theoretic approach,



13

whereas derivational theories like SPE are usually formalized as regular relations
[17, 31], which resist being recast in logical terms due to their closure properties.
This problem is aggravated by the fact Optimality Theory [33], which provides
the predominant framework in contemporary phonology, is also best understood
in terms of regular relations [8, 16]. Of course, one can use a coding trick from
two-level phonology [23] and use an unpronounced feature like µ to ensure that
all derivationally related strings have the same length, so that the regular rela-
tions can be interpreted as languages over pairs and hence cast in MSO terms
[42]. Unfortunately, it is far from obvious how this method could be extended to
subregular grammars, because Thatcher’s theorem tells us that the projection
of a subregular language of pairs might be a regular language. But due to the
ubiquity of SPE and OT analyses in phonology, no other open issue is of greater
importance to the success of this project.

3 Conclusion

The purpose of this paper was to lay the foundation for a general framework in
which string-based phonological theories can be matched against each other. I
started out with a modal logic which despite its restrictions was still perfectly ca-
pable of defining a rather advanced and intricate phonological theory. I then tried
to generalize the theory along several axes, some of which readily lent themselves
to conclusive results while others didn’t. We saw that the power of spreading, by
virtue of being an indicator of the necessary power of the description language,
has an immediate and monotonic effect on generative capacity. Feature systems,
on the other hand, were shown to be a negligible factor in theory comparisons;
it remains an open question if the privativity assumption might affect generative
capacity when the set of features is fixed. A detailled study of the effects of the
syllable template also had to be deferred to later work. Clearly the most pressing
issue, though, is the translation from representational to derivational theories.
Not only will it enable us to reconcile two supposedly orthogonal perspectives
on phonology, but it also allows us to harvest results on finite-state OT [8] to
extend the framework to optimality theory. Even though a lot of work remains
to be done and not all of my goals may turn out be achievable, I am confi-
dent that a model-theoretic approach provides an interesting new perspective
on long-standing issues in phonology.
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