
Some Interdefinability Results for Syntactic
Constraint Classes

Thomas Graf

Department of Linguistics
University of California, Los Angeles

tgraf@ucla.edu

http://tgraf.bol.ucla.edu

Abstract. Choosing as my vantage point the linguistically motivated
Müller-Sternefeld hierarchy [23], which classifies constraints according
to their locality properties, I investigate the interplay of various syntac-
tic constraint classes on a formal level. For non-comparative constraints,
I use Rogers’s framework of multi-dimensional trees [31] to state Müller
and Sternefeld’s definitions in general yet rigorous terms that are com-
patible with a wide range of syntactic theories, and I formulate conditions
under which distinct non-comparative constraints are equivalent. Com-
parative constraints, on the other hand, are shown to be best understood
in terms of optimality systems [5]. From this I derive that some of them
are reducible to non-comparative constraints. The results jointly vindi-
cate a broadly construed version of the Müller-Sternefeld hierarchy, yet
they also support a refined picture of constraint interaction that has pro-
found repercussions for both the study of locality phenomena in natural
language and how the complexity of linguistic proposals is to be assessed.

Key words: Syntactic constraints, Transderivationality, Economy con-
ditions, Model theoretic syntax, Multi-dimensional trees, Optimality sys-
tems

Introduction

Constraints are arguably one of the most prominent tools in modern syntactic
analysis. Although the dominance of derivational approaches in the linguistic
mainstream since the inception of Chomsky’s Minimalist Program [2, 3] might
suggest otherwise, generative frameworks still feature a dazzling diversity of
principles and well-formedness conditions. The array of commonly assumed con-
straints ranges from the well-established Shortest Move Constraint to the fiercely
debated principles of binding theory, but we also find slightly more esoteric pro-
posals such as Rule I [26], MaxElide [35], GPSG’s Exhaustive Constant Partial
Ordering Axiom [6] or the almost forgotten Avoid Pronoun Principle of classic
GB. A closer examination of these constraints shows that they differ significantly
in the structures they operate on and how they succeed at restricting the set of
expressions. A natural question to ask, then, is if we can identify commonalities

2

between different constraints, and what the formal and linguistic content of these
commonalities might be.

The Müller-Sternefeld (MS) hierarchy [21, 23] is — to my knowledge — the
only articulate attempt at a classification of linguistic constraints so far. Basing
their analysis on linguistic reasoning grounded in locality considerations, Müller
and Sternefeld distinguish several kinds of constraints, which in turn can be
grouped into two bigger classes. The first one is the class of non-comparative
constraints (NCCs): representational constraints are well-formedness conditions
on standard trees (e.g. ECP, government), derivational constraints restrict the
shape of trees that are adjacent in a derivation (e.g. Shortest Move), and global
constraints apply to derivationally non-adjacent trees (e.g. Projection Principle).
The second class is instantiated by comparative constraints (CCs), which operate
on sets of structures. Given a set of structures, a CC returns the best member(s)
of this set, which is usually called the optimal candidate. Crucially, the optimal
candidate does not have to be well-formed — it just has to be better than the
competing candidates. Müller slightly revises this picture in [21] and further
distinguishes CC according to the type of structures they operate on. If the
structures in question are trees, the constraint is called translocal (e.g. Avoid
Pronoun Principle); if they are derivations, it is called transderivational (e.g.
Fewest Steps, MaxElide, Rule I). Finally, it is also maintained in [21] that these
five subclasses can be partially ordered by their expressivity: representational =
derivational < global < translocal < transderivational. A parametric depiction
of the constraint classification and the expressivity hierarchy, which jointly make
up the MS-hierarchy, is given in Fig. 1.

Constraints

Non-comparative

Representations

Representational

Derivations

Adjacent nodes

Derivational

Arbitrary nodes

Global

Comparative

Representations

Translocal

Derivations

Transderivational

Level 1 Level 2 Level 3 Level 4

Fig. 1. The Müller-Sternefeld hierarchy of constraints

The MS-hierarchy has a strong intuitive appeal, at least insofar as deriva-
tions, long-distance restrictions and operations on sets seem more complex than

3

representations, strictly local restrictions and operations on trees, respectively.
However, counterexamples are readily at hand. For instance, it is a simple coding
exercise to implement any transderivational constraint as a global constraint by
concatenating the distinct derivations into one big derivation, provided there are
no substantial restrictions on how we may enrich our grammar formalism. As an-
other example, it was shown in [16] that Minimalist Grammars with the Specifier
Island Constraint (SPIC) but without the Shortest Move Constraint can gener-
ate any type-0 language. But the SPIC is a very simple derivational constraint,
so it unequivocally belongs to the weakest class in the hierarchy, which is at odds
with its unexpected effects on expressivity. Therefore, the MS-hierarchy makes
the wrong predictions in its current form, or rather, it makes no predictions at
all, because its notion of complexity and its assumptions concerning the power
of the syntactic framework are left unspecified.

In this paper, I show how a model theoretically informed perspective does
away with these shortcomings and enables us to refine the MS-hierarchy such
that the relations between constraint classes can be studied in a rigorous yet
linguistically insightful way. In particular, I adopt Rogers’s multi-dimensional
trees framework [31] as a restricted metatheory of linguistic proposals in order
to ensure that the results hold for a wide range of syntactic theories. We proceed
as follows: After a brief discussion of technical preliminaries I move on to the
definition of classes of NCCs in Sect. 2 and study their behavior and interre-
lationship in arbitrary multi-dimensional tree grammars. I show that a proper
subclass of the global constraints can be reduced to local constraints. In Sect. 3, I
then turn to a discussion of CCs, why they require the model theoretic approach
to be supplemented by optimality systems [5], and which CCs can be reduced
to NCCs.

1 Preliminaries

Most of my results I couch in terms of the multi-dimensional tree (MDT) frame-
work developed by Rogers [31, 32]. The main appeal of MDTs for this endeavor
is that they make it possible to abstract away from theory-specific idiosyncrasies.
This allows for general characterizations of constraint classes and their reducibil-
ity that hold for a diverse range of linguistic theories. MDT renditions of GB
[29], GPSG [27] and TAG [30] have already been developed; the translation pro-
cedure from HPSG to TAG defined in [14] should allow us to reign in (a fragment
of) the former as well. Further, recent results suggest that an approximation of
Minimalist Grammars [33] is feasible, too: for every Minimalist Grammar we can
construct a strongly equivalent k-MCFG [20], and for each k ≥ 2, the class of
2k−1-MCFLs properly includes the class of level-k control languages [12], which
in turn are equivalent to the string yield of the set of (k + 1)-dimensional trees
[31].

While initially intimidating due to cumbersome notation, MDTs are fairly
easy to grasp at an intuitive level. Looking at familiar cases first, we note that
a string can be understood as a unary branching tree, a set of nodes ordered by

4

E

G
H

B
D

F

A

C
I

J

N

K
M

PL
O

Z

A

D

E F

G H

I

J M

N O

L

P

Z = ε F = 〈〈0〉 , 〈1〉〉 L = 〈〈1〉 , 〈1, 0〉〉
A = 〈ε〉 G = 〈〈0〉 , 〈1, 0〉〉 M = 〈〈1〉 , 〈1〉 , ε〉
B = 〈〈0〉〉 H = 〈〈0〉 , 〈1, 1〉〉 N = 〈〈1〉 , 〈1〉 , 〈0〉〉
C = 〈〈1〉〉 I = 〈〈1〉 , ε〉 O = 〈〈1〉 , 〈1〉 , 〈1〉〉
D = 〈〈0〉 , ε〉 J = 〈〈1〉 , 〈0〉〉 P = 〈〈1〉 , 〈1〉 , 〈2〉〉
E = 〈〈0〉 , 〈0〉〉 K = 〈〈1〉 , 〈1〉〉

Fig. 2. A T 3 (with O a foot node), its node addresses and its 2-dimensional yield

the precedence relation. But as there is only one axis along which its nodes are
ordered, it is reasonable to call a string a one-dimensional tree, rather than a
unary branching one. In a standard tree, on the other hand, the set of nodes is
ordered by two relations, usually called dominance and precedence. Suppose s
is the mother of two nodes t and u in some standard tree, and also assume that
t precedes u. Then we might say that s dominates the string tu. Given our new
perspective on strings as one-dimensional trees, this suggests to construe stan-
dard trees as relating nodes to one-dimensional trees by immediate dominance.
Thus it makes only sense to refer to them as two-dimensional objects. But from
here it is only a small step to the concept of MDTs. A three-dimensional tree (see
Fig. 2 for an example) relates nodes to two-dimensional, i.e. standard trees (for
readers familiar with TAG, it might be helpful to know that three-dimensional
trees correspond to TAG derivations). A four-dimensional tree relates nodes to
three-dimensional trees, and so on. In general, a d-dimensional tree is a set of
nodes ordered by d dominance relations such that the nth dominance relation
relates nodes to (n − 1)-dimensional trees (for d = 1, assume that single nodes
are zero-dimensional trees).

To make this precise, we define d-dimensional trees as generalizations of Gorn
tree domains. First, let a higher-order sequence be defined inductively as follows:

– 01 := {1}
– n+11 is the smallest set containing 〈〉 and if both 〈x1, . . . , xl〉 ∈ n+11 and
y ∈ n1 then 〈x1, . . . , xl, y〉 ∈ n+11.

Concatenation of sequences is denoted by · and defined only for sequences of the
same order. A 0-dimensional tree is either ∅ or {1}. For d ≥ 1, a d-dimensional
tree T d is a set of dth-order sequences satisfying

5

– T d ⊆ d1, and
– ∀s, t ∈ d1[s · t ∈ T d → s ∈ T d], and
– ∀s ∈ d1[

{
w ∈ (d−1)1 | s · 〈w〉 ∈ T d

}
is a (d− 1)-dimensional tree].

The reader might want to take a look at Fig. 2 again for a better understanding
of the correspondence between sequences and tree nodes (first-order sequences
are represented by numerals to improve readability; e.g. 0 = 〈〉 and 2 = 〈1, 1〉).

Several important notions are straightforwardly defined in terms of higher-
order sequences. The leaves of T d are the nodes at addresses that are not prop-
erly extended by any other address in T d. The depth of T d is the length of its
longest top level sequence, which in more intuitive terms corresponds to the
length of the longest path of successors at dimension d from the root to a leaf.
Given a T d and some node s of T d, the child structure of s in T d is the set{
t ∈ T d−1 | s · 〈t〉 ∈ T d

}
. For example, the child structure of B in Fig. 2 is the

T 2 with its root labeled D. For any T d and 1 ≤ i ≤ d, its branching factor at di-
mension i is 1 plus the maximum depth of the T i−1 child structures contained by
T d. If the branching factor of some T d is at most n for all dimensions 1 ≤ i ≤ d,
we call it n-branching and write T dn .

For any non-empty alphabet Σ, T dΣ := 〈T, `〉, T a T d and ` a function from
Σ to ℘(T), is a Σ-labeled d-dimensional tree. In general, we require all trees to
be labeled and simply write T dΣ . The i-dimensional yield of T dΣ is obtained by
recursively rewriting all nodes at dimension j > i, starting at dimension d, by
their (j − 1)-dimensional child structure. Trees with more than two dimensions
have some of their leaves at each dimension i > 2 marked as foot nodes, which
are the joints where the (i− 1) child structures are merged together. In forming
the 2-dimensional yield of our example tree, K is rewritten by the 2-dimensional
tree rooted by M. The daughter of K ends up dominated by O rather than N or
P because O is marked as the foot node. For a sufficiently rigorous description
of how the i-dimensional yield is computed, see [31, p.281–283] and [32, p.301–
307]. A sequence 〈s1, . . . , sm〉 of nodes of T d, m ≥ 1, is an i-path iff with respect
to the i-dimensional yield of T d, s1 is the root, sm a leaf, and for all sj , sj+1,
1 ≤ j < m, it holds that sj immediately dominates sj+1 at dimension i. The set
of all i-paths of T d is its i-path language.

A set of T dΣs is also called a T d language, denoted LdΣ . Unless stated otherwise,
the branching factor is assumed to be bounded for every LdΣ , that is to say, there
is some n ∈ N such that each T ∈ LdΣ is n-branching. Call T d local iff its depth
is 1. In Fig. 2, the T 3 rooted by K and the T 2 rooted by M are local; the T 3

rooted by B is also local, even though its child structure, the T 2 rooted by D,
is not. A T d grammar GdΣ over an alphabet Σ is a finite language of local T dΣs.
Let GdΣ(Σ0) denote the set of T dΣs licensed by a grammar GdΣ relative to a set of
initial symbols Σ0 ⊆ Σ, which is the set of all T dΣs with their root labeled by a
symbol drawn from Σ0 and each of their local d-dimensional subtrees contained
in GdΣ . A language LdΣ is a local set iff it is GdΣ(Σ0) for some GdΣ and some
Σ0 ⊆ Σ. Intuitively, a local set of T ds is a T d language where all trees can be
built up from local trees. An important fact about local sets is that they are
fully characterized by subtree substitution closure.

6

Theorem 1 (Subtree substitution closure). LdΣ is a local set of T dΣs iff for
all T, T ′ ∈ LdΣ, all s ∈ T and all t ∈ T ′, if s and t have the same label, then the
result of substituting the subtree rooted by s for the subtree rooted by t is in LdΣ.

Proof. An easy lift of the proof in [28] to arbitrary dimension d. ut

For our logical approach, we interpret a T dn,Σ as an initial segment of the
relational structure Tdn :=

〈
Tdn, /i

〉
1≤i≤d, where Tdn is the infinite T d in which

every point has a child structure of depth n−1 in all its dimensions, and where /i
denotes immediate dominance at dimension i, that is x/i y iff y is the immediate
successor of x in the ith dimension.

x /d y iff y = x · 〈s〉
x /d−1 y iff x = p · 〈s〉 and y = p · 〈s · 〈w〉〉

...
x /1 y iff x = p · 〈s · 〈· · · 〈w〉 · · ·〉〉 and y = p · 〈s · 〈· · · 〈w · 1〉 · · ·〉〉

The weak monadic second-order logic for Tdn is denoted by msod and includes
— besides the usual connectives, quantifiers and grouping symbols — constants
for each /i, 1 ≤ i ≤ d, and two countably infinite sets of variables ranging
over individuals and finite subsets, respectively. As usual, we write Tdn |= φ[s] to
assert that φ is satisfied in Tdn under assignment s. For any T d, all quantifiers are
assumed to be implicitly restricted to the initial segment of Tdn corresponding to
T d. The set of models of φ is denoted by Mod(φ). This notation extends to sets
of formulas in the obvious way. Note that LdΣ is recognizable iff LdΣ = Mod(Φ)
for some set Φ of msod formulas.

Let me close this section with several minor remarks. The notation A \B is
used to denote set difference. Regular expressions are employed at certain points
in the usual way, with the small addition of x≤1 as a stand-in for ε and x. Finally,
I will liberally drop subscripts and superscripts whenever possible.

2 Non-comparative Constraints

2.1 Logics for Non-comparative Constraints

A short glimpse at the MS-hierarchy in Fig. 1 reveals that NCCs are distin-
guished by two parameters: the distance between the nodes they restrict (1
versus unbounded) and the type of structure they operate on (representations
versus derivations). As I will show now, this categorization can be sharpened by
recasting it in logical terms, thereby opening it up to our mathematical explo-
rations in the following section.

The distinction between representations and derivations is merely a termi-
nological confusion in our multi-dimensional setup. A two-dimensional tree, for
instance, can be interpreted as both a representational tree structure and a string
derivation. This ambiguity is particularly salient for higher dimensions, where
there are no linguistic preconceptions concerning the type of structure we are
operating on. A better solution, then, is to distinguish NCCs according to the

7

highest dimension they mention in their specification (this will be made precise
soon).

As for the distance between restricted nodes, it seems to be best captured
by the distinction between local and recognizable sets, the latter allowing for
unbounded dependencies between nodes while the former are limited to well-
formedness conditions that apply within trees of depth 1. As mentioned in
Sect. 1, definability in mso is a logical characterization of recognizability, so
in conjunction with the MDT framework, this already gives us everything we
need to give a theory-neutral definition of global NCCs. For the second, re-
stricted kind of constraints, however, we still need a logical characterization of
local sets. Fortunately, this characterization was obtained for two-dimensional
trees by Rogers in [28] and can easily be lifted to higher dimensions as follows.

For any D ∈ {/i, .i}i≥1, let Dφ(x) abbreviate the msok formula ∃y[xDy ∧
φ(y)], where x.iy := y/ix. We require that Tdn |= Dφ(x)[s] iff Tdn |= ∀x∃y[xDy∧
φ(y)][s]. Declaring all other uses of quantification to be illicit yields what may
be regarded as a normal modal logic.

Definition 2 (RLOCk). rlock (relaxed lock) is the smallest set of msok

formulas over the boolean operators, individual variables, set variables and all
/i, .i, 1 ≤ i ≤ k.

In the next step, we restrict disjunction. Let lock+ be the smallest set of
rlock formulas such that

– all /i and .j , i < j ≤ k, are in the scope of exactly one more /k than .k, and
– all /k are in the scope of exactly as many .k as /k.

Similarly, let lock− be the smallest set of rlock formulas such that

– all /i and .j , i < j ≤ k, are in the scope of exactly as many /k as .k, and
– all /k are in the scope of exactly one more .k than /k.

Definition 3 (LOCk). The set of lock formulas consists of all and only those
formulas that are conjunctions of

– disjunctions of formulas in lock+, and
– disjunctions of formulas in lock−.

The following lemmata tell us that lock restricts only /k and .k in a mean-
ingful way. This will also be of use in the next section.

Lemma 4 (RLOCk and LOCk+1). A formula φ is an rlock formula iff it is
a lock+1 formula containing no /k+1 and no .k+1.

Proof. By induction on the complexity of φ. The crucial condition is the first
clause in the definition of lock−. ut

Lemma 5 (Normal forms). Every lock+ formula is equivalent to a disjunc-
tion of conjunctions of lock+ formulas of the form (/k{/i, .i}∗1≤i<k)≤1φ, φ a
propositional formula. Similarly, every lock− formula is equivalent to a disjunc-
tion of conjunctions of lock− formulas of the form ({/i, .i}∗1≤i<k.k)≤1φ.

8

Proof. The proof in [28] holds for all k ≥ 1. ut

With Lemma 5 under our belt, we can proceed to prove the sought after
equivalence of definability in locd and locality of sets of d-dimensional trees.

Theorem 6 (Locality and LOC). A set L of finite T dns, d, n ≥ 1, is local iff
it is definable in locd.

Proof. As the proof in [28] for the correspondence between loc2 and the local
sets of 2-dimensional trees is easily generalized to all positive d 6= 2, a short
sketch suffices.
⇒ Since L is local, there is a grammar G that derives L, i.e. L can be

fully specified by a finite set of trees of depth 1. Assume that T1, . . . , Tn are all
the trees in G with their root labeled A and φ1, . . . , φn are rlocd−1 formulas
describing the child structure of A in T1, . . . , Tn, respectively (for d = 1, φi is
propositional). As there is an upper bound on the size of child structures for all
T ∈ G, such φ are guaranteed to exist. Then φA := A→ /d

∨
1≤i≤n φi is a locd+

formula, whence φΣ :=
∧
A∈Σ φA is in locd. It only remains to conjoin φΣ with

the locd− formulas
∨
A∈Σ A(x) and ¬ .d > →

∨
A∈Σ0

A(x) to ensure that all
nodes are labeled and in particular that root nodes are labeled with an initial
symbol. The result is a locd formula.
⇐ This follows from Lemma 5. It is easy to see that the truth value of

loc formulas in normal form at some node t depends only on the local tree
rooted at either some t′ in the same local tree as t for lock+ or the parent of t′

for lock−. In either case the truth value of the formula remains unaffected by
subtree substitution, whence all sets satisfying it are local. ut

Thus everything is in place now for the logical classification of NCCs we
outlined before.

Definition 7 (Classes of non-comparative constraints). A constraint c is

– k-global iff it can be defined by an msok formula.
– k-local iff it can be defined by a lock formula.
– fully k-local iff
• for k = 1, c is 1-local
• for k > 1, c is definable by a lock formula φ built up from lock+ and

lock− formulas φ1, . . . , φn in normal form such that for each 1 ≤ i ≤ n
the formula ψi obtained from φi by removing all occurrences of /k and
.k is fully (k − 1)-local.

2.2 Reducibility with and without Fixed Signatures

We now turn to interdefinability results for NCCs. The well-understood rela-
tion between local and recognizable sets [4, 36] in conjunction with their logical
definability [28, 31] immediately derives the reducibility of global constraints.

9

Theorem 8 (Reducibility by features). Let Φ be a set of msod formulas and
cg a k-global constraint, 1 ≤ k ≤ d, with Mod(Φ ∪ {cg}) a recognizable set of
Σ-labeled T ds. Then there is a fully k-local constraint cl such that Mod(Φ∪{cl})
is a set of Σ ∪Ω-labeled T ds and a projection of Mod(Φ ∪ {cl}).

The familiar idea underlying the theorem is that we only need to set aside a
certain amount of diacritic features to make all the non-local information used
in cg accessible to cl. The details of this procedure were studied by Marcus
Kracht in his work on coding theory [17–19].1

Unfortunately, Theorem 8 is at most of peripheral importance to linguists,
who usually do not want their grammar to contain spurious labels or features
that have no independent empirical motivation. But comparable results can be
obtained if the signature is fixed, at least for all dimensions but the highest one.
The trick is to exploit the structure of trees to reencode global constraints as local
constraints at higher dimensions. Lemma 4 already hinted at this possibility,
but it is too weak to actually derive it. The missing piece of the puzzle is the
expressivity of locd with respect to rlocd−1 and msod−1 at dimension d − 1,
which is partially answered by the following two lemmata.

Lemma 9 (RLOCd−1 < LOCd). There is a set Φ of locd formulas, d > 1,
such that the (d− 1)-dimensional yield of Mod(Φ) is not definable in rlocd−1.

Proof. We already know from Lemma 4 that rlocd−1 ≤ locd. Now consider
the language L := ({a, b, d}∗ (ab∗c)∗ {a, b, d}∗)∗. So every string in L with a c
also has an a preceding it, and no b may intervene between the two. It is easy to
write an rloc1 formula that requires every node in the string to be labeled with
exactly one symbol drawn from {a, b, c, d}. Thus it only remains to sufficiently
restrict the distribution of c. If a is at most n steps to the left of c, this can be
done by the formula

φ := c→ .1a ∨ (.1 .1 a ∧ .1d) ∨ . . . ∨ (.n1a ∧ .1d ∧ . . . ∧ .n−1
1 d),

where .n1 is a sequence of n many .1. But by virtue of our formulas being required
to be finite, the presence of an a can be enforced only up to n steps to the left of c.
So if a is n+1 steps away from c, then φ will be false. Similar problems arise if one
starts with a moving to the right. Nor is it possible to use d as an intermediary,
as in, say, the formula ψ := d→ (.1a∨.1d)∧(¬.1.1(a∨¬a)→ .1a), which forces
every sequence of ds to be ultimately preceded by an a. The second conjunct is
essential, since it rules out strings of the form d∗c. But ψ is too strong, because
it is not satisfied by any L-strings containing the substrings bd or cd. Note that
we cannot limit ψ to ds preceding c, again due to the finite length of rloc1

formulas, which is also the reason why we cannot write an implicational formula
with b as its antecedent that will block bs from occurring between a and c. This

1 Note that Φ can remain unchanged since the logical perspective allows for a node
to be assigned multiple labels l1, . . . , ln instead of the sequence 〈l1, . . . , ln〉 (which is
the standard procedure in automata theory).

10

exhausts all possibilities, establishing that rloc1 fails to define L because it is
in general incapable of restricting sequences of unbounded size.2

That L is definable in loc2 is witnessed by the following grammar of local 2-
dimensional trees (with Σ0 := {b}), which derives L without the use of additional
features:

b

ε

b

b b

b

a

b

d

b

a c

a

a d

d

d d

This case can be lifted to any dimension k by regarding L as the k-path
language of some T d, 1 ≤ k ≤ d. ut

Lemma 10 (MSOd ≮ LOCd+1). There is a set Φ of msod formulas, d ≥ 1,
such that there is no locd+1 definable set Ld+1 whose d-dimensional yield is
identical to Mod(Φ).

Proof. Consider the language L := (aa)∗. Clearly, this language is definable in
mso1 but not in first-order logic over strings, since it involves modulo counting.
Hence it cannot be defined in loc1 either. We now show that loc2 is also too
weak to define L. As Σ := {a}, the grammar for the tree language with L as its
string yield can only consist of trees of depth 1 with all nodes labeled a. Clearly,
none of the trees may have an odd number of leaf nodes, since this would allow
us to derive a language with an odd number of as. So assume that all trees
in our grammar have only an even number of leaves. But local tree sets are
characterized by subtree substitution closure, whence we could rewrite a single
leaf in a tree with an even number of leaves by another tree with an even numer
of leaves, yielding a complex tree with an odd number of leaf nodes. This proves
undefinability of L in loc2. We can again lift this example to any dimension
d ≥ 2 by viewing L as a path language. ut

We now have lock < rlock < lock+1 and rlock < msok and msok ≮
lock+1 with respect to expressivity at dimension k, from which it follows im-
mediately that a proper subset of all global constraints can be replaced by local
ones.

Theorem 11 (Reducibility at lower dimensions). Let C be the set of all
k-global but not k-local constraints. Then C properly includes the set of all c ∈ C
for which there is a set Φ of msod formulas, k < d, such that Mod(Φ ∪ {c})
is recognizable and there is a (k + 1)-local constraint c′ with Mod(Φ ∪ {c}) =
Mod(Φ ∪ {c′}).
2 A relaxed version of L is definable by an infinite set of rloc1 formulas. Let L′ be

the set of all strings over {a, b, c, d}∗ containing no substring of the form (ad∗b+d∗c)
but a c does not have to be preceded by an a. Then one may write a formula φ that
checks two intervals I, I ′ of size m and n, respectively. In particular, φ enforces that
no b occurs in I if a is at the left edge of I and no c is contained in I and c is at
the right edge of I ′ and no a is contained in I ′. Occurrences of b in I ′ are banned in
a symmetrical way. Pumping m and n independently gives rise to an infinite set of
rloc1 formulas that defines L′.

11

Since rlock is essentially a modal logic, we can even use model theoretic prop-
erties of modal logics, e.g. bisimulation invariance, to exhibit sufficient (but not
necessary) conditions for reducibility of global constraints.

The results in this section have interesting implications for linguistic theo-
rizing. The neutralizing effects of excessive feature coding with respect to NCCs
lend support to recent proposals which try to do away with mechanisms of this
kind in the analysis of phenomena such as pied-piping (e.g. [1]). That reducibility
is limited to a proper subclass of the global constraints, on the other hand, pro-
vides us with a new perspective on approaches which severely constrain the size
of representational locality domains by recourse to local constraints on deriva-
tions (e.g. [22]). In the light of my results, they seem to be less about reducing
the size of locality domains — a quantitative notion — than determining the
qualitative power of global constraints in syntax.

3 Comparative Constraints

3.1 Model Theory and Comparative Constraints — A Problem

Our interest in NCCs is almost entirely motivated by linguistic considerations.
CCs, on the other hand, are intriguing from a mathematical perspective, too,
because they make the well-formedness of a structure depend on the presence or
absence of other structures, which is uncommon in model theoretic settings, to
say the least. As we will see in a moment when we take a look at the properties of
various subclasses of CCs, this peculiar trait forces us to move beyond a purely
model theoretic approach, but — unexpectedly — not for all CCs.

According to Müller [21], CCs are either translocal or transderivational. Sev-
eral years earlier, however, it had already been noticed by Potts [24] that the
metarules of GPSG instantiate a well-behaved subclass of CCs. By definition,
metarules are restrictions on the form of a grammar. They specify a template,
and a grammar has to contain all rules that can be generated from said template.
Metarules can be fruitfully applied towards several ends, e.g. to extract multiple
constituent orders from a single rule or to ensure that the legitimacy of one con-
struction in language L entails that another construction is licit in L, too. From
these two examples it should already be clear that metarules, although they are
stated as restrictions on grammars, serve in restricting entire languages rather
than just the structures contained by them. In particular, metarules are a special
case of closure conditions on tree languages. From this perspective, it is not too
surprising that GPSG-style metarules are provably mso2-definable [24]. In fact,
many closure constraints besides metarules can be expressed in mso2 as formula
schemes [27]. With respect to the MS-hierarchy, this has several implications.
First, there are more subclasses of CCs than predicted. Second, metarules in-
stantiate a subclass that despite initial appearance can be represented by global
constraints. Third, not all closure constraints are reducible to global constraints,
since a formula scheme might give rise to an infinite set of formulas, which cannot
be replaced by a single mso formula of finite length.

12

Given that closure constraints are already more powerful than global con-
straints, the high position of translocal and transderivational constraints in the
MS-hierarchy would be corroborated if closure constraints could be shown to be
too weak to faithfully capture either class. This seems to be the case. Consider
the translocal constraint Avoid Pronoun. Upon being handed a 2-dimensional
tree T ∈ L, Avoid Pronoun computes T ’s reference set, which is the set of trees
in L that can be obtained from T by replacing overt pronouns by covert ones
and vice versa. Out of this set, it then picks the tree containing the fewest oc-
currences of overt pronouns as the optimal output candidate. One might try to
formalize Avoid Pronoun as a closure constraint on L such that for every T ∈ L,
no T ′ 6= T in the reference set of T is contained in L. This will run into prob-
lems when there are several optimal output candidates, but it is only a minor
complication compared to the greater, in fact insurmountable challenge a closure
constraint implementation of Avoid Pronoun faces: it permits any output can-
didate T ′, not just optimal ones, to be in L as long as no candidates competing
with T ′ belong to L. In other words, the closure constraint implementation of
Avoid Pronoun allows for the selection of any candidate as the optimal output
candidate under the proviso that all other output candidates are discarded. This
means complete failure at capturing optimality, the very essence of CCs.

3.2 Comparative Constraints as Optimality Systems

From a model theoretic perspective, CCs are a conundrum. In order to verify
that a set L of structures satisfies a CC, it does not suffice to look at L in
isolation, we also have to consider what L looked like before the CC was applied
to it. This kind of temporal reasoning is not readily available in model theory.
Admittedly one could meddle with the models to encode such metadata, e.g.
by moving to an ordered set of sets, but this is likely to obfuscate rather than
illuminate our understanding of CCs in linguistics. Besides, trees are sets of
nodes and tree languages are sets of sets of nodes, so our models would be sets
of sets of sets of nodes and hence out of the reach of mso, pushing us into the
realm of higher-order logics and beyond decidability. For these reasons, then,
it seems advisable to approach CCs from a different angle with tools that are
already well-adapted to optimality and economy conditions: optimality systems
(OSs) [5].

Definition 12 (Optimality system). An optimality system over languages
L, L′ is a pair O := 〈Gen, C〉 with Gen ⊆ L×L′ and C := 〈c1, . . . , cn〉 a linearly
ordered sequence of functions ci : range(Gen) → N. For 〈i, o〉 , 〈i, o′〉 ∈ Gen,
〈i, o〉 <O 〈i, o′〉 iff there is an 1 ≤ k ≤ n such that ck(o) < ck(o′) and for all
j < k, cj(o) = cj(o′). The output language of O is LO := range({〈i, o〉 ∈ Gen |
there is no o′ such that 〈i, o′〉 <O 〈i, o〉}).

The idea underlying OSs is very simple and taken directly from Optimality
Theory [25]. Given some input language L, we compute for every i ∈ L its set
of output candidates, i.e. the set of o ∈ L′ such that 〈i, o〉 ∈ Gen. We then

13

determine for each such o how often it violates the constraint c1 and only the
candidates with the fewest violations are kept as possible output candidates. All
other candidates are discarded. We then proceed analogously for c2 until cn. The
remaining output candidates are the optimal output candidates for i. In sum,
an OS filters the set of output candidates in a stepwise manner while ensuring
all along the way that the set is never emptied.

It should be easy to see that without further restrictions, any recursively
enumerable language can be derived by an OS. Interestingly, though, it has
been established in a series of papers [5, 7, 11, 13, 37] that an OS defines a
rational transduction if all the conditions below are satisfied (the converse does
not hold).3

– L is a recognizable set.
– Gen is a rational relation.
– Every constraint defines a rational relation on the set of competing output

candidates.
– Optimality is global: If o ∈ L′ is an optimal output candidate for i ∈ L,

then there is no i′ ∈ L such that o is an output candidate for i′ but not an
optimal one (see [11] for details).

It is a well-known fact that recognizable sets are closed under rational trans-
ductions. Therefore, if an OS is equivalent to a rational transduction, then its
output language is recognizable. Recall that recognizability entails definability in
mso, so the output language of such an OS has to be definable in terms of global
constraints. Equating CCs with the subclass of OSs where Gen ⊆ L × L, this
yields an intriguing (albeit partial) characterization of reducibility for CCs. In
the following, we let O(Φ) denote the output language of O with L = Mod(Φ).

Theorem 13. Let Φ be a set of msok formulas and cc a comparative constraint
obeying the conditions listed above. Then there is an msok formula cg such that
O(Φ) = Mod(Φ ∪ {cg}).

Proof. We know from our previous discussion that LO = O(Φ) is recognizable.
Since recognizable sets are closed under complement, there is an msok formula
φ with Mod(φ) = Mod(Φ) \ O(Φ). Then cg := ¬φ. ut

In other words, a CC of this restricted type can be reduced to a global constraint.
On a methodological level, Theorem 13 allows linguists to freely employ a

subclass of all CCs without running danger of computational intractability —
a lot of the criticism commonly leveled against translocal and transderivational
accounts [10, 34] should thus turn out to be unfounded.4 The astute reader may
3 Kepser and Mönnich [15] define similar conditions for cases where L is a linear

context-free language. As a consequence, the results in this section apply just as well
to conservative extensions of the recognizable languages of d-dimensional trees, for
instance Minimalist languages.

4 On a speculative note, one may interpret Theorem 13 on an ontological level, that
is as a claim that CCs are prevalent in the early stages of language acquisition
but are subsequently recompiled into NCCs. This could offer a new perspective on
well-known phenomena such as Principle B delay [9].

14

wonder, though, how many CCs from the linguistic literature are to be found in
said subclass. This is a valid concern. While I do not have any conclusive answers
yet, it seems that most syntactic (in contrast to most semantic) CCs satisfy
global optimality [8]. Hence their reducibility hinges solely on their reference
sets and their economy metric being rational relations, which I expect to hold
for many interesting cases.

Conclusion

I demonstrated that the intuitive constraint hierarchy of [21, 23] can be given a
rigorous foundation that mostly confirms the big picture envisioned by these au-
thors (with the addition of closure constraints as a third macro-class, inbetween
non-comparative and comparative constraints). The interesting catch, however,
is that certain constraints can be reduced to simpler ones depending on pa-
rameters such as the feature signature and the dimensionality and branching
factor of our structures. From an application perspective, the reducibility of
non-comparative constraints is of limited interest, due to the power of alterna-
tive feature coding techniques; the reducibility of comparative constraints, on
the other hand, has profound repercussions as it opens up a pathway to their
efficient implementation in natural language processing systems. Both types of
reducibility results are of eminent importance to linguistic issues, foremost the
study of locality phenomena and the Minimalist dictum that language is an
optimal cognitive device.

Acknowledgments. I am grateful to Ed Stabler and Sarah Zobel for helpful
discussion and their extensive comments on numerous inferior incarnations of
this paper.

References

[1] Cable, S.: The Grammar of Q: Q-Particles and the Nature of Wh-Fronting.
Ph.D. thesis, MIT (2007)

[2] Chomsky, N.: A minimalist program for linguistic theory. In: Hale, K.,
Keyser, S.J. (eds.) The View from Building 20, pp. 1–52. MIT Press, Cam-
bridge, Mass. (1993)

[3] Chomsky, N.: The Minimalist Program. MIT Press, Cambridge, Mass.
(1995)

[4] Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free
languages. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming
and Formal Systems, pp. 118–161. Studies in Logic and the Foundations of
Mathematics, North-Holland, Amsterdam (1963)

[5] Frank, R., Satta, G.: Optimality theory and the generative complexity of
constraint violability. Computational Linguistics 24, 307–315 (1998)

[6] Gazdar, G., Klein, E., Pullum, G.K., Sag, I.A.: Generalized Phrase Struc-
ture Grammar. Blackwell, Oxford (1985)

15

[7] Gerdemann, D., van Noord, G.: Approximation and exactness in finite-state
phonology. In: Eisner, J., Karttunen, L., Thériault, A. (eds.) Finite State
Phonology. Proceedings SIGPHON 2000, ACL (2000)

[8] Graf, T.: Reference sets and congruences (in progress), ms., University of
California, Los Angeles

[9] Grodzinsky, Y., Reinhart, T.: The innateness of binding and coreference.
Linguistic Inquiry 24, 69–102 (1993)

[10] Johnson, D., Lappin, S.: Local Constraints vs. Economy. CSLI, Stanford
(1999)

[11] Jäger, G.: Gradient constraint in finite state OT: The unidirectional and the
bidirectional case. In: Kaufmann, I., Stiebels, B. (eds.) More than Words.
A Festschrift for Dieter Wunderlich, pp. 299–325. Akademie Verlag, Berlin
(2002)

[12] Kanazawa, M., Salvati, S.: Generating control languages with abstract cat-
egorial grammars. In: Kallmeyer, L., Monachesi, P., Penn, G. (eds.) For-
mal Grammar FG 2007. CSLI Publications (2007), http://www.labri.
fr/publications/mef/2007/KS07

[13] Karttunen, L.: The proper treatment of optimality in computational phonol-
ogy (1998), manuscript, Xerox Research Center Europe

[14] Kasper, R., Kiefer, B., Netter, K., Vijay-Shanker, K.: Compilation of HPSG
to TAG. In: Proceedings of the 33rd annual meeting of the Association for
Computational Linguistics. pp. 92–99 (1995)

[15] Kepser, S., Mönnich, U.: Closure properties of linear context-free tree lan-
guages with an application to optimality theory. Theoretical Computer Sci-
ence 354, 82–97 (2006)

[16] Kobele, G.M., Michaelis, J.: Two type-0 variants of minimalist grammars.
In: FG-MoL 2005. The 10th conference on Formal Grammar and the 9th
Meeting on Mathematics of Language. pp. 81–93. Edinburgh (2005)

[17] Kracht, M.: Is there a genuine modal perspective on feature structures?
Linguistics and Philosophy 18, 401–458 (1995)

[18] Kracht, M.: Syntactic codes and grammar refinement. Journal of Logic,
Language and Information 4, 41–60 (1995)

[19] Kracht, M.: Inessential features. In: Lecomte, A., Lamarche, F., Perrier, G.
(eds.) Logical Aspects of Computational Linguistics. Springer, Berlin (1997)

[20] Michaelis, J.: Derivational minimalism is mildly context-sensitive. Lecture
Notes in Artificial Intelligence 2014, 179–198 (1998)

[21] Müller, G.: Constraints in syntax. Lecture Notes, Universität Leipzig (2005)
[22] Müller, G.: On deriving CED effects from the PIC (2008), ms., Universität

Leipzig. To appear in Linguistic Inquiry 41:1 (2010).
[23] Müller, G., Sternefeld, W.: The rise of competition in syntax: A synopsis. In:

Sternefeld, W., Müller, G. (eds.) Competition in Syntax, pp. 1–68. Mouton
de Gruyter, Berlin (2000)

[24] Potts, C.: Three kinds of transderivational constraints. In: Mac Bhloscaidh,
S. (ed.) Syntax at Santa Cruz, vol. 3, pp. 21–40. Linguistics Department,
UC Santa Cruz, Santa Cruz (2001)

16

[25] Prince, A., Smolensky, P.: Optimality Theory: Constraint Interaction in
Generative Grammar. Blackwell, Oxford (2004)

[26] Reinhart, T.: Anaphora and Semantic Interpretation. Croon-Helm, Chicago
University Press (1983)

[27] Rogers, J.: “Grammarless” phrase structure grammar. Linguistics and Phi-
losophy 20, 721–746 (1997)

[28] Rogers, J.: Strict LT2 : Regular :: Local : Recognizable. In: Retoré, C.
(ed.) Logical Aspects of Computational Linguistics: First International
Conference, LACL ’96 (Selected Papers). Lectures Notes in Computer
Science/Lectures Notes in Artificial Intelligence, vol. 1328, pp. 366–385.
Springer (1997)

[29] Rogers, J.: A Descriptive Approach to Language-Theoretic Complexity.
CSLI, Stanford (1998)

[30] Rogers, J.: A descriptive characterization of tree-adjoining languages. In:
Proceedings of the 17th International Conference on Computational Lin-
guistics (COLING’98) and the 36th Annual Meeting of the Association for
Computational Linguistics (ACL’98). pp. 1117–1121 (1998)

[31] Rogers, J.: Syntactic structures as multi-dimensional trees. Research on
Language and Computation 1(1), 265–305 (2003)

[32] Rogers, J.: wMSO theories as grammar formalisms. Theoretical Computer
Science 293, 291–320 (2003)

[33] Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) Logical As-
pects of Computational Linguistics: First International Conference, LACL
’96, Nancy, France, September 23-25, 1996. Selected Papers, pp. 68–95.
Springer, Berlin (1997)

[34] Stroik, T.S.: Locality in Minimalist Syntax. MIT Press, Cambridge, Mass.
(2009)

[35] Takahashi, S., Fox, D.: MaxElide and the re-binding problem. In: Georgala,
E., Howell, J. (eds.) Proceedings of SALT XV. pp. 223–240. CLC publica-
tions, Ithaca, NY (2005)

[36] Thatcher, J.W.: Characterizing derivation trees for context-free grammars
through a generalization of finite automata theory. Journal of Computer
and System Sciences 1, 317–322 (1967)

[37] Wartena, C.: A note on the complexity of optimality systems. In: Blutner,
R., Jäger, G. (eds.) Studies in Optimality Theory, pp. 64–72. University of
Potsdam, Potsdam, Germany (2000)

