
UNIVERSITY OF CALIFORNIA

Los Angeles

Logics of Phonological Reasoning

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Arts in Linguistics

by

Thomas Graf

2010

c© Copyright by

Thomas Graf

2010

The thesis of Thomas Graf is approved.

Robert Daland

Edward L. Keenan

Kie Zuraw

Edward P. Stabler, Committee Chair

University of California, Los Angeles

2010

ii

To: whoever knows their name belongs here

iii

TABLE OF CONTENTS

Introduction . 1

1 SPE & Government Phonology . 5

1.1 Overview . 5

1.2 SPE . 5

1.3 Government Phonology . 10

1.3.1 Feature System . 11

1.3.2 Phonological Structure . 17

1.3.3 Melodic Licensing . 20

1.3.4 Empty Categories and p-Licensing 25

1.3.5 Spreading . 30

2 Logical Formalization . 34

2.1 Overview . 34

2.2 The Virtues of a Formal Approach . 34

2.2.1 Why Logic? . 34

2.2.2 Why not Automata Theory? . 39

2.3 Logic — A Mathematical Primer . 43

2.4 Formalization . 48

2.4.1 Reinterpreting GP-Structures as Strings 48

2.4.2 Logical Formalization . 52

iv

3 Formal Comparison of Theories . 64

3.1 Overview . 64

3.2 The Phonological Hierarchy . 64

3.3 How Much Expressivity is Needed? . 70

3.3.1 Caveat: The Power of Feature Coding 70

3.3.2 Beyond GPÃ
+

— Sanskrit n-Retroflexion 71

3.3.3 Beyond GPU — Primary Stress Assignment in Creek and Cairene

Arabic . 76

3.4 Further Parameters . 78

3.4.1 Feature Systems . 78

3.4.2 Syllable Template . 79

3.5 Evaluation . 80

Conclusion . 83

A Mathematical Preliminaries . 84

B Proof of Theorem 3.2 . 86

Bibliography . 100

v

LIST OF FIGURES

1.1 Extended Chomsky hierarchy . 8

1.2 A common version of the traditional syllable template 17

1.3 GP’s modified syllable template . 18

1.4 The six basic building blocks of phonological structure in GP 20

1.5 Examples of licit and illicit structures . 21

1.6 GP analysis of consonant clusters and word final consonants 23

1.7 Ways of associating PEs to skeleton nodes 24

1.8 A conceivable GP analysis of German [
>
pföO

>
pf@n] 25

1.9 Some phonological structures in GP (with IPA notation) 26

1.10 Proper government in Hebrew paradigms 29

1.11 Analysis of Turkish vowel harmony . 33

2.1 Formulas and models . 36

2.2 Two automata and their intersection . 42

2.3 Examples of syllable structures in simplified notation 50

2.4 Comparison of GP structure and formal model 52

B.1 Naming conventions used for parts of the strings s and t 99

vi

LIST OF TABLES

1.1 The elements A, I, U as feature bundles 12

1.2 Three phonological expressions of GP as SPE feature bundles 13

1.3 An approximate mapping from GP elements to articulatory properties 15

1.4 Typologically common phonological expressions for various phonemes 15

1.5 The vowel system of Finnish . 16

1.6 Vowel harmony in Turkish . 31

2.1 Parameterization of spreading patterns with respect to σ 62

3.1 Hierarchy of classes of phonological theories 70

vii

ACKNOWLEDGMENTS

A short comparison between this thesis and earlier publications of mine on the

topics discussed herein (Graf 2010a,b) makes it patently obvious that I benefited

a lot from the input of my committee members. I would especially like to thank

Ed Stabler and Kie Zuraw; while this project was still in its infancy, both of them

suggested to take it in a more empirical direction, which resulted in what might

prove to be the most important contributions of this undertaking. Kie was also

of great help in my subsequent search for empirical phenomena instantiating the

relevant formal patterns, and so was Bruce Hayes. I am also indebted to Craig

Melchert for answering all my emails concerning Sanskrit, and doing so at super-

human speed to boot. The same can be said about Marcus Kracht and my emails

concerning technical details of mathematical model theory. Finally, it would be

shameful for me not to pay off my debts of the past by failing to mention how much

I learned from the Vienna phonology group, in particular Marcus Pöchtrager. The

answer: almost everything I know about phonology (modulo OT, of course ;-)).

During its transmogrification, various parts of the thesis were presented at

the 33rd Penn Linguistics Colloquium and the ESSLLI 2009 Student Session, and

the comments and questions of the respective reviewers and/or audiences led to

numerous improvements in the exposition. It should come as no surprise to the

reader that the usual mea culpa applies.

viii

ABSTRACT OF THE THESIS

Logics of Phonological Reasoning

by

Thomas Graf

Master of Arts in Linguistics

University of California, Los Angeles, 2010

Professor Edward P. Stabler, Chair

Inspired by Kracht (Kracht 2003) and Potts and Pullum (Potts and Pullum 2002),

who use tools from mathematical logic in their investigation of phonological theories,

I develop an extendable modal logic over string structures, which in turn is used

to formalize a specific phonological theory, Government Phonology. Building on

this logical foundation, I compare Government Phonology to SPE and arrive at the

surprising result that Government Phonology corresponds to a very weak fragment

of SPE yet can attain the latter’s full expressivity by extending the power of feature

spreading. I then exhibit two attested phonological phenomena that require moving

beyond the power of standard Government Phonology: n-retroflexion in Sanskrit

and primary stress assignment in Creek and Cairene Arabic. I further identify

several other axes along which Government Phonology can be generalized, moving

us towards a parametric metatheory of phonology.

These results are of interest to linguists as they (i) establish a lower bound on

the power every descriptively adequate phonological theory has to make available,

(ii) tell us how this power can be measured in a precise way, and (iii) show how

different phonological proposals are related to each other, thus complementing

the well-established empirical methods of theory comparison. Computational

ix

phonologists, on the other hand, will appreciate the explicit formalization of a

subregular theory of phonology and the (implicit) demonstration that the majority

of empirical phenomena does not need full finite-state expressivity.

Most of the results reported herein can also be found in Graf (2010a,b). This the-

sis, however, vastly exceeds them in terms of clarity, exhaustiveness and preciseness,

thanks to the lack of page restrictions.

x

INTRODUCTION

One often finds that scrutinizing the world around you — already instructive by

itself — comes with the added bonus of also teaching you something new about

yourself. From this perspective, it is easy to appreciate the prominent position that

comparisons of different frameworks have always enjoyed in modern linguistics.

Some might deride it as a trademark of any field that is still in its infancy, with

a lot of competing approaches, methodologies and ontologies trying to establish

themselves as the predominant paradigm. Be that as it may, the merits of reflecting

on the properties of one’s theory of choice and how it relates to the rest of the

field cannot be disputed. For instance, Michael Brody’s defense of his mirror theory

has furthered our understanding of the differences between representational and

derivational frameworks (see e.g. Brody 1995, 2002), and Johnson and Lappin

(1997) and Sternefeld (1996) were among the first to seriously investigate the role

of optimality conditions in syntax.

Strikingly, though, all these comparative studies are ultimately based on em-

pirical considerations, that is, their results are obtained by meticulous analysis of

empirical data. Moreover, the few studies that rely on purely formal reasoning

(Kornai and Pullum 1990, for example) have mostly been ignored by the linguistic

community. The importance of conceptual arguments such as minimality con-

siderations has admittedly increased considerably in recent years in the wake of

Chomsky’s Minimalist Program, but the general consensus still seems to be that

such reasoning by itself does not tarnish a proposal, let alone refute it.

In this thesis, I argue for a new, formally grounded approach to comparing

theories in the realm of phonology: model-theoretic phonology (MTP). MTP is based

on the insight that many attributes of a theory are reflected in the properties of the

1

weakest language one can use to describe it. In model-theoretic approaches, this

description language is some logic chosen from the array of logics one encounters

in mathematics and computer science. In particular, a set of logical formulas is

a formalization of a linguistic theory if the structures that do not violate any of

these formulas are exactly those that are deemed grammatical by the theory. Since

mathematical logic is a field with rich connections to formal language theory and

complexity theory, logical formalization can act as a link between linguistics and

those fields. These bonds also allow it to unearth the implicit cognitive claims of

linguistic proposals, thus making theoretical linguistics (at least partially) amenable

to psycholinguistic research and allowing it to break out of its “competence sandbox”

(see Pullum and Rogers 2006 for further elaboration of this point).

MTP complements the established empirical methods (rather than obsoleting

them) in that for many problems it involves considerably less analytical toiling and

permits us to rigorously prove claims that the latter cannot even formulate in its

accustomed vocabulary. It does all that while at the same time remaining sufficiently

transparent so that linguists can easily evaluate the claims that are put forward.

The reader will have plenty of opportunities to convince himself of the practicality

of the approach when I put it to good use in order to compare a particular theory,

Government Phonology, to SPE, the shortcomings of which it set out to rectify. In

particular, he or she will see that the results tell us as much about Government

Phonology itself as about its relation to SPE, and that they translate into interesting

empirical questions to boot. Among other things, I establish that:

• Government Phonology is strictly weaker than SPE.

• Modifying a single parameter of Government Phonology, one can subsequently

increase its power until it reaches the level of SPE.

2

• Phenomena that invariably require moving beyond the power of Government

Phonology are scarce.

It should be pointed out that logical approaches have already been used to great

effect in the realm of syntax for two decades. Among other things, it was shown that

late Government-and-Binding theory in the spirit of Rizzi (1990) is weaker than

Minimalist syntax (a corollary of the results in Rogers 1998 and Michaelis 2001) and

that the kind of universals envisioned by the Principles-and-Parameters approach

are fundamentally different from universals in GPSG (Rogers 1996) (see Pullum

2007 for a survey with further results). By putting the focus on the structures

licensed by a linguistic theory, it also becomes easier to see how this theory would

have to be tweaked to account for phenomena it is currently too weak for.

Hopefully this handful of examples will have the reader convinced that my

interests are of a genuinely linguistic nature, and that the method I use can benefit

them beyond the immediate results on Government Phonology reported herein.

This is not to say that only phonologists will find something of interest in here.

Computational linguists might appreciate the formalization of a rather atypical

phonological theory as well as the investigation of the generative capacity of

phonology in the last chapter — while we have a good mathematical understanding

of the power of syntax nowadays, the same does not hold true of phonology, mostly

because it is presumably weaker than any of the formal language classes usually

studied in computer science. Even logicians could find something of interest here,

as some of the questions I can only briefly touch upon translate into challenging

problems in finite model-theory.

The thesis is laid out in three chapters that are dedicated to the linguistic pre-

liminaries, the logical formalization and the comparison of Government Phonology

and SPE, respectively. In the first chapter, I start out with a very brief overview of

3

SPE, highlighting some of the more obscure parts of the machinery that are easily

forgotten. More importance, though, is put on the mathematical properties of SPE,

which most readers are likely not familiar with. After this short excursus into formal

terrain, I swiftly return to purely linguistic matters in my extensive introduction

to Government Phonology. Since this framework also marks new terrain for many

readers, I proceed rather slowly, relying throughout the presentation on examples

and figures, but not to the detriment of precise definitions. My goal is to convey

to the reader just how different Government Phonology and SPE are (at least at

first sight), yet at the same time provide enough of a working knowledge so that

one can follow the logical formalization in Chap. 2. There I first engage in a

detailed discussion of MTP and its general methodology, focussing in particular

on its advantages over empirical as well as competing formal approaches. This

is followed by a beginner-friendly introduction to mathematical logic, before I

finally turn to the formalization itself. In the last chapter, I show how we can map

logics and the phonological theories they formalize onto a phonological expressivity

hierarchy, and I exhibit two empirical phenomena, Sanskrit [n]-retroflexion and

primary stress assignment in Cairene Arabic and Creek, that exceed the power of

Government Phonology, but not of SPE. I close with a thorough evaluation of the

results, carefully contextualizing them and pointing out their limitations so that

they won’t be misconstrued.

The thesis contains two appendices. The first one explains basic mathematical

terminology that I do not define anywhere else; it should be unnecessary for

anybody who has taken at least an introduction to semantics or philosophical logic

at the undergraduate level. The second appendix is devoted to a proof of Thm. 3.2

that uses Ehrenfeucht-Fraïssé pebble games. It is not for the faint of heart.

4

CHAPTER 1

SPE & Government Phonology

1.1 Overview

This chapter serves a dual purpose. On the one hand, it provides an introduction

to SPE and Government Phonology (with the former proceeding at a considerably

brisker pace than the latter) and thus lays the foundation for the more technical

discussion that ensues in the chapters 2 and 3. On the other hand, it is meant to

give the reader a feeling for how different the two theories are so that the success

of MTP in positioning GP with respect to SPE can be fully appreciated. In Sec. 1.2

I start out with a very short reminder of the formalism itself before turning my

attention to its treatment in the computational literature. This is followed up by a

(hopefully) accessible introduction to Government Phonology in Sec. 1.3.

1.2 SPE

Since it is safe to assume that the reader is familiar with at least the basics of SPE

as put forward in Chomsky and Halle (1968), my primary focus will be on the

mathematical properties of SPE.

Just like transformational syntax before the introduction of Government-and-

Binding Theory in Chomsky (1981) (i.e. Chomsky 1957, Chomsky 1965), SPE is a

derivational formalism in which rewriting rules apply to underlying representations

5

to yield surface representations. An underlying representation is a finite string of

sounds represented by matrices over finitely-valued features drawn from a finite set

F of features (in the case of SPE, F contains between 20 and 24 features, most

of which are binary-valued and defined in terms of articulatory phonetics). The

strings may also contain diacritic symbols such as # and + for word and morpheme

boundaries, respectively, which for the sake of uniformity can also be encoded by

matrices.

The matrices are then manipulated by a sequence of rewrite rules of the form

R := α→ β | γ__δ, where α is a matrix or the empty string and β , γ, δ are either

strings of matrices or the empty string. A rule like R encodes the instruction that

the substring γαδ is to be rewritten as γβδ. A special case are transformational

rules which switch the position of adjacent segments. They can be viewed as

one of many notational devices that serve to condense multiple rules into one,

e.g. various kind of brackets and variables for feature values. It is important to

realize, though, that those enriched rules aren’t proper rewrite rules but rather

rule schemata that have to be compiled out to obtain the intended rewrite rules.1

Rules can be optional or mandatory, and some can be unordered relative to each

other with respect to the timing of their application. Moreover, the directionality

of rules is also parameterized, with some applying from left-to-right, some from

right-to-left, and some simultaneously to all matching substrings. Consider the rule

a → b | ab__ba that turns ababa into abbba. Given the input string abababa,

left-to-right application of the rule yields the string abbbaba, whereas right-to-left

application yields ababbba. The output of simultaneous application is abbbbba.

1Nonetheless they have an important role to play in SPE regarding naturalness: the naturalness
of a process is measured by the complexity of the shortest rule schema that encodes it. Moreover,
disjunctive rule ordering, i.e. cases where rule R may be applied only if the adjacent rule R′ cannot,
is permissible only if the two rules can be collapsed into a schema by using bracket notation to
indicate optionality of segments.

6

The way rules are allowed to be applied iteratively is of utmost importance in

determining what kind of languages can be generated in SPE. Formal language

theory tells us that the rules of SPE are the rules of a context-sensitive grammar,

so in terms of the Chomsky hierarchy of formal languages, SPE should be capable

of deriving at least context-sensitive languages (also known as Type-1 languages),

which are significantly more powerful than what is considered necessary even

for syntax (see Fig. 1.1 on the following page). To add insult to injury, any SPE

grammar in which the input of a rule may be rewritten by the empty string is in

fact an unrestricted (also known as Type-0) rewriting system, i.e. SPE has the same

power as a Turing machine. That is to say, if SPE cannot derive a language, no

algorithmic computing device can. Most interestingly, though, Johnson (1972)

observed that a simple restriction will ensure that SPE generates only regular

languages, which are the weakest class in the Chomsky hierarchy: no rule may

apply to its own output. Here “output” does not refer to the entire output string but

only the material that was newly introduced by the rule or is the result of rewriting

a symbol in the input string. Hence every rule may rewrite every symbol in the

input at most once.

Consider the rule a → b | b__. Assume it applies from left-to-right, and that

the input is baa. The first substring that is in the domain of the rule is ba, which

is rewritten as bb, yielding bba. Now the rule as it is stated cannnot apply to

the substring bb, but it can still apply to the substring ba, even though the b was

created by a previous application of the rule. The important thing is that the rule

will only rewrite a, which was not meddled with by any previous applications of

the rule.

In order to see why this ban against rules rewriting their own output is important,

consider the rule ε→ ab | a__b, which allows us to insert the sequence ab after an

7

regular

context-free

mildly context-sensitive

copying

context-sensitive

type-0

Figure 1.1: Extended version of the Chomsky hierarchy; both phonology and re-
stricted SPE are regular, syntax is mildly context-sensitive, unbounded reduplication
can be faithfully modelled only by copying languages, and standard SPE is type-0

a that is immediately followed by a b. When given the string ab (= εaεbε), the

rule will rewrite it as aabb (= εaεaεbεbε). With the ban in place, this is the end

of the derivation. The reasoning goes as follows: the only possible target is the

ε between the last a and the first b, but this is new material that was previously

introduced by the rewriting rule in question (keep in mind that the entire substring

aεb is new, the symbols of the input string are now at the edges of the output

string, not in the middle). Since a rule may not apply to its own output, there

are no licit targets left. Without the ban, however, we can continue the rewriting

procedure, yielding aaabbb, aaaabbbb, and so on. The result will be the language

an bn, where n occurrences of a are followed by n occurrences of b, which is not a

regular language (it is context-free).

The proof that the condition proposed by Johnson limits SPE to regular lan-

guages can be found in Kaplan and Kay (1994). It is very tedious, but the upshot is

that all parameters of rule application (optionality, directionality, relative ordering)

can be accommodated without problems. Kaplan and Kay even go so far as to

8

contend that all aspects of SPE that are invoked in linguistic analyses can be fit

into the restricted variant of SPE. This claim should be taken with a grain of salt.

To my knowledge, there are indeed no analyses that rely on rules rewriting their

own output. However, there are arcane, seldom invoked parts of SPE that might be

problematic. In his famous paper on conspiracies, for example, Kisseberth (1970)

introduces rules that are triggered only if the input violates certain constraints.

In Sommerstein (1974), these constraints are extended to full truth-conditions,

which highlights the problem that if no restrictions are put on what qualifies as a

licit constraint, we once again run risk of blowing the expressivity of SPE out of

proportion.2 A constraint like “rule R is triggered if and only if the string encodes the

Gödel number of a theorem of first-order logic” could be used to generate languages

that lie even outside the Chomsky hierarchy. That is to say, SPE would be capable

of deriving non-computable languages. Thus a more appropriate interpretation of

Kaplan and Kay’s claim would view it as a conjecture about how much expressivity

is likely necessary for phonology given what we know after decades of linguistic

research (and, just as importantly, natural language processing). But this raises the

question if phonology is indeed regular.

The consensus in the computational phonology community is that it is, except

for one phenomenon: unbounded reduplication, in which strings of unbounded

size are copied and then concatenated (see Albro 2005 for examples and a formal

analysis). Copying is beyond the reach of what is commonly assumed to be suffi-

cient even for syntax (but see Kobele 2006 for empirical evidence that copying is

indispensable in syntax, too). So far, no fully satisfying answer has been given as

to why phonology sticks with the power of regular languages yet at the same time

seems to require means of expressivity that greatly exceed anything else found in

2My thanks go to Kie Zuraw for bringing this paper to my attention.

9

natural language. It is suspicious, though, that reduplication is a morphonological

process, so its complexity might be an epiphenomenon of the intricate interaction

of two considerably less complex individual systems, phonology and morphology.

As I will restrict myself to phonology proper, it is probably safe to assume for our

purposes that the power of regular languages is all one needs. In a certain way,

then, SPE establishes an upper bound on how much expressivity is desirable for

phonology.

1.3 Government Phonology

Returning to a strictly linguistic perspective on SPE, we may characterize it in

broad strokes by the following attributes: it is derivational, assumes a very shallow

and flat structure, and uses a plethora of binary features that are assembled into

matrices. Government Phonology (GP) is its very opposite, as the reader will see

in this section: decidedly constraint-based, highly structured, and restricted to a

select few privative features which are again combined into structured expressions.

A priori, it seems like the two formalisms have virtually nothing in common. The

essence of the research reported here is that they are in fact very similar, but it

takes a mathematically informed perspective to make the superficial differences

disappear. In order to appreciate the result though, the reader has to be shown just

how different GP is, which is the purpose of the remainder of this section.

First, though, a note on the sources used is in order. Just like Government-and-

Binding theory, GP has changed a lot since its inception, and its practitioners hardly

ever fully specify the details of their preferred version of GP. However, there seems

to be a consensus that a GP-variant should be deemed canonical if it incorporates

the following modules:

10

• government, the syllable template, coda licensing and the ECP from Kaye

et al. (1990), and

• magic licensing from Kaye (1992), and

• licensing constraints and the revised theory of elements from Charette and

Göksel (1996) and Kaye (2000, 2001).

The strategy I will pursue in the exposition is in line with this decree in so far as

I follow the definitions in Kaye (2000) as closely as possible and fill in any gaps

using the relevant literature.

1.3.1 Feature System

GP replaces SPE’s system of binary or attribute valued features by a set of privative

features called elements. Privative features take no values, they are either present

on a segment or not; such features are commonly used in autosegmental analyses

of tone systems (starting with Goldsmith 1976), where two privative features L and

H — denoting low and high tone, respectively — are used to account for various

tone patterns and their interaction. For instance, a toneless segment would lack

both features, a high tone segment would be specified only for H, and a falling

tone would be rendered as H spreading to the right into a position associated with

L. GP’s elements are a straight-forward generalization of such autosegmental tone

features to all phonological features (impatient readers may go ahead and take a

look at the examples in Tab. 1.4 on page 15).

In contrast to SPE, GP’s feature system has undergone numerous revisions, all of

which served the sole purpose of reducing the number of elements in order to bring

the number of combinatorial possibilities in line with the typologically attested

11

maximum of roughly 120 phonemes3 for any language. For the sake of simplicity, I

discuss only the model described in Kaye (2000), which takes the set of elements to

consist of A, I, U, L, H and P; as the reader will see in later chapters, this has no

ramifications for the validity of any formal claims I make about GP.

SPE’s feature matrices are replaced by phonological expressions (PE), which

consist of a possibly empty set of elements in operator position and at most one

element in head position. No element is allowed to occur twice in a PE. By

convention, PEs are written as pairs (in round brackets) with the first coordinate

denoting the set of operators and the second the head. It is furthermore common

practice to mark the head by underlining. However, if a position is empty, this is

also indicated by an underline. Thus, given the set of elements proposed in Kaye

(2000), the pairs ({A, I} ,U), ({A} , _), and (
�

_
	

, _) are PEs. The pairs ({A} , {U, I})

and ({A, I} ,A), on the other hand, are not, because the second has more than one

head, while the first contains two occurrences of the same element.

Regarding the mapping from PEs to sounds, beginners might follow Kaye et al.

(1985) in treating elements as bundles of fully specified SPE features which are

combined in a specific way to produce a SPE feature matrix. Under this conception,

A, I, U and empty heads/operators are defined as in Tab. 1.1. The feature matrix of

A :=















− lab
+ back
− hi
− ATR
+ lo















I :=















− lab
− back
+ hi
− ATR
− lo















U :=















+ lab
+ back
+ hi
− ATR
− lo















_ :=















− lab
+ back
+ hi
− ATR
− lo















Table 1.1: The elements A, I, U as feature bundles

3Usage of the term phoneme is generally frowned upon by Government phonologists for various
technical but plausible reasons. At rare occasions I will nevertheless make use of it, albeit in a purely
descriptive way.

12

a PE is then calculated by first computing the matrix of the head and subsequently

copying the values of any underlined features of the elements in operator position

into the head’s matrix. For the three PEs mentioned above, this procedure will yield

the matrices in Tab. 1.2. As an easy exercise, the reader may try to compute the

matrices for (
�

_
	

,A) and ({A} , I).

({A, I} ,U) =















+ lab
− back
− hi
− ATR
− lo















({A} , _) =















− lab
+ back
− hi
− ATR
− lo















(
�

_
	

, _) =















− lab
+ back
+ hi
− ATR
− lo















Table 1.2: Three phonological expressions of GP as SPE feature bundles

I refrain from presenting the matrices for the remaining elements, for the

simple reason that while the matrix-based approach to elements might be more

intuitive to phonologists accustomed to SPE-like feature systems, it misrepresents

the current conception of elements by tying them to specific phonetic realizations.

In contemporary GP, the phonetic interpretation of PEs is considered a matter of

the phonology-phonetics interface rather than phonology proper, and crucially

there might be minor language-specific differences with respect to the phonetic

realization of a particular PE. The PE (_, _), for instance, yields a [@] in German and

a [1] in Turkish. Therefore, the PE corresponding to some sound in some language

can only be determined by investigation of its phonological behavior, i.e. which

phonological well-formedness conditions it obeys and how it interacts with other

sounds in this language. Furthermore, the actual contribution of elements differs

between vowels and consonants and which position they occupy in a PE. The

element A, for instance, may denote an [a]-like quality for vowels but coronality

for consonants (again with some language-specific leeway). Clearly, such a loose

13

mapping from phonology to phonetics does not square well with a conception of

elements as bundles of fully specified phonetic features.

Arguably the best way to think about elements at a phonetic level, then, is the

following. For vowels, imagine a triangle representing the vowel system of the

language. The head of the PE determines which corner to start at and the operators

tell you in which direction you have to move. Thus ({A} , I) takes you from [i]

towards [a], yielding [e], whereas ({I} ,A) takes you from [a] towards [i], yielding

[E]. The same procedure applies for U, unless A and I are already present and U

acts as an operator, in which case it will only contribute labiality. If the head or the

operator are empty, take the tense or lax variant, respectively, of whatever sound is

specified by the remainder of the PE. For example, (
�

_
	

, I) is mapped to [i], and

({I} , _) to [I]. Finally, the features L and H occur only as operators and add a low

and a high tone, respectively, while P never occurs in PEs for vowels at all.

Things are more complicated for consonants, mainly because most work on

subsegmental structure that has been carried out in the GP tradition focuses on

vowels. In particular, it is often difficult to decide for consonants which element

should function as the head. With that said, the map from elements to phonetic

properties is still fairly simple in most cases. In head position, A, I and U determine

the place of articulation: alveolar, palatal and labial, respectively. If a consonant is

velar, its head is empty. In operator position, these three elements add coronality,

palatalization and velarization. The element P is always used to denote stops,

irrespective of its role in the PE. The remaining two elements H and L are usually

restricted to operator position and may add a variety of properties. PEs for fricatives

often (but not always) contain an H, which might also indicate aspiration for stops,

while L is employed to mark voicing and nasality.4 Table 1.3 on the following page

4The duality of L is intended to explain why nasals do not show phonemic voicing distinctions.

14

gives a summary of how elements are mapped to phonetic properties, and Tab. 1.4

lists several examples.

Vowels Consonants
Element Head Operator Head Operator

A source target alveolar coronality
I source target palatal palatalization

U source
target bilabial

velarization
labiality labiodental

H NA high tone NA
fricative
aspirated

L NA low tone NA
nasal
voiced

P NA NA stop stop
_ lax tense velar vacuous

Table 1.3: An approximate mapping from GP elements to articulatory properties

r (
�

_
	

,A) a (
�

_
	

,A)
j (

�

_
	

, I) i (
�

_
	

, I)
w (

�

_
	

,U) u (
�

_
	

,U)
g ({P}, _) 1 (

�

_
	

, _)
s ({H} ,A) e ({A} , I)
n ({L,P},A) E ({I} ,A)

Table 1.4: Typologically common phonological expressions for various phonemes

A more recent revision of GP’s feature calculus are licensing constraints (Charette

and Göksel 1996; Kaye 2000, 2001). They were originally introduced as a further

restriction on how elements may combine in order to account for cross-linguistic

Unfortunately, though, there is a well-known counterexample, the phoneme system of Icelandic.
In Icelandic, voiced and voiceless nasals are in phonemic opposition, for example in senda [’sEnt5]
’to send’ versus senta [’sEn

˚
t5] ’to feel’. If we adopt the standard assumption that L denotes both

voicing and nasality at the same time, voiceless nasals — even though they are a phonetic option
due to the loose mapping from PEs to sounds — cannot contrast with their voiced counterparts at a
phonological level. If, on the other hand, we maintain that L denotes either voicing or nasality but
not both at the same time, we need an additional element for voiced nasals, thus rendering them
structurally more complex than their voiceless counterparts, which seems counterintuitive. To my
knowledge, there have been no attempts to solve this conundrum.

15

({},A) [A] ({A},I) [E] ({I},A) [æ]
({},I) [i] ({A},U) [O] ({A,I},U) [œ]
({},U) [u] ({I},U) [y]

Table 1.5: The vowel system of Finnish

variation in phoneme inventories. For instance, two licensing constraints suffice to

get the full vowel system of Finnish, which is listed in Tab. 1.5 (note that as Finnish

isn’t a tone language, only A, I and U are licit vowel features).

(1) a. All PEs have a non-empty head.

b. U cannot be an operator.

Practitioners of GP consider the step from over 20 binary to less than 10 pri-

vative features with few empirically notable sacrifices in expressivity (although

what counts as “notable” is open to interpretation) as one of its most important

traits. Thus it is no wonder that — as already indicated at the beginning of this

section — there have been numerous modifications in the literature to the feature

system described above. Harris and Lindsey (1995), for example, propose a slightly

different system comprising A, I, U, R, h, P and enrich it with both an elaborate

feature geometry and acoustic phonetic content (in contrast to the articulatory

grounding of SPE’s features). Jensen (1994), noting the very restricted utility of P,

proposes that the property of being a stop should not be encoded by features but

rather by structural means, thereby reducing the set of features to A, I, U, H and

L. A comparable argument is put forth by Pöchtrager (2006) regarding H. Finally,

Pöchtrager (p.c.) suggests that A and L, too, are structural in nature. From an SPE

perspective, these assertions seem to make little sense, because feature matrices

are the only information-encoding structures SPE has at its disposal. So what kind

of additional structure are Jensen, Pöchtrager and other Government phonologists

talking about?

16

1.3.2 Phonological Structure

GP takes another hint from autosegmental phonology in assuming that phonology

does not operate on mere strings of feature matrices but on highly structured

representations that differentiate between melody, i.e. elements and PEs, and the

phonological structure, which the melodic material is attached to. In autosegmental

phonology, the structural material consists of a string of nodes called the skeleton

and the association lines that connect the melodic material to said string. The

skeleton effectively establishes a linear order on the phonological representation

such that it can be mapped to a sequence of phonetic instructions. GP takes

the structural component of autosegmental phonology and combines it with an

impoverished version of the familiar syllable template, in which vowels occupy

nucleus positions while consonants may appear in onset or coda positions (see

Fig. 1.2).

σ

Onset

C C

Rhyme

Nucleus

V V

Coda

C C

Figure 1.2: A common version of the traditional syllable template

In line with the traditional syllable template, GP requires every skeleton node to

be associated to exactly one nucleus, onset or coda. A constituent c with a node x

associated to it is said to dominate x . GP also leaves the branching factor mostly

unaltered for these three constituents: nuclei and onsets may dominate at most two

17

skeleton nodes, codas, however at most one. For rhymes it is further stipulated that

they may branch only if their nucleus does not. Thus no branching nucleus can be

followed by a coda, and any such configuration has to be reanalyzed as a coda-less

structure. This is formally expressed by the binarity theorem, for which one extends

the notion of dominance to the entire syllable template in the obvious way:

(2) Binarity Theorem

No constituent may properly dominate more than two skeleton nodes.

Since a rhyme with both a coda and a branching nucleus properly dominates three

skeleton nodes, it is ruled out by the Binarity Theorem. Puzzlingly, the theorem

also seems to rule out configurations in which σ properly dominates three skeleton

nodes: branching nuclei following a (possibly branching) onset, branching onsets

preceding a (possibly branching) nucleus, and onset-nucleus-coda configurations.

But this problem does not arise in GP, because, speaking in syntactic terms, onsets

and rhymes are the roots of distinct trees. Rather than Fig. 1.2, we find Fig. 1.3,

where onsets and rhymes aren’t connected by a σ-node and codas are analyzed as

rhymal complements, i.e. as the right daughter of a rhyme.5

Onset Rhyme

Nucleus

Figure 1.3: GP’s modified syllable template (dashed branches may not cooccur)

5This minor shift in perspective has the advantage that all remaining constituents — rhymes,
onsets and nuclei — have many properties in common, among them their maximum branching factor.
Nothing hinges on the rhymal complement analysis of codas, though; for my formalization of GP in
Chap. 2, a dedicated coda constituent is in fact the more convenient solution.

18

But now that onsets and rhymes aren’t sisters anymore, additional machinery

is required to ensure that not every arbitrary sequence of constituents may qualify

as a well-formed phonological structure. This is taken care of by the following

constraints.

(3) Cooccurrence Restrictions on Onsets and Rhymes

a. Every nucleus may license an immediately preceding onset.

b. Every nucleus is immediately preceded by an onset.

c. Every onset must be licensed by an immediately following nucleus.

d. Every branching rhyme immediately precedes a unary branching onset.

The first three conditions guarantee that phonological expressions consist of se-

quences of onset-rhyme-pairs, while the latter ensures that words may not end in

a coda. This is obviously counter-intuitive considering the abundance of words

ending in a single consonant, but I ask the reader to bear with me for now until we

reach Subsec. 1.3.4.

The notion of licensing introduced in (3) above can be exploited to enforce

another requirement on nuclei.

(4) Every constituent licensor must dominate a skeletal point.

In other words, every nucleus must be associated to a skeletal point. Now this is

a truly puzzling constraint. Didn’t we already say that constituents are associated

to skeletal nodes? Well, no, in fact we only required that for every node there

has to be a constituent that dominates it. This doesn’t rule out unassociated

constituents floating around freely in our phonological representation. Thus it is

less the additional restriction on nuclei established by (4) that is noteworthy, than

the lack of an analogous principle for onsets. That is to say, onsets do not have to

19

be associated to skeleton nodes, in stark contrast to nuclei (and codas, which aren’t

constituents by stipulation).

Summing up the effects of the conditions above, the syllable template reduces to

six basic building blocks in Fig. 1.4, which are assembled according to the rules in

(5) to yield GP’s constituent structure. As an easy exercise, the reader might want

to check that the example structures in Fig. 1.5 on the following page are indeed

(il)licit.

O O

x

O

x x

++++++++++

R

N

x

R

N

x x

CCCCC

R

N

x x

++++++++++

Figure 1.4: The six basic building blocks of phonological structure in GP

(5) How to combine the building blocks

a. Every structure consists of at least one rhyme.

b. Every rhyme is immediately preceded by exactly one onset.

c. Every onset immediately precedes exactly one rhyme.

d. Every branching rhyme immediately precedes a unary branching onset.

1.3.3 Melodic Licensing

The licensing conditions of the previous section are located at the level of con-

stituents, or speaking in pictorial terms, above the skeletal nodes. But there are

also conditions that apply below them, at the level of melody, where the PEs reside.

As a rule of thumb, every PE has to be associated to exactly one skeletal node, but

skeletal nodes need not be associated to any melodic material. There are several

20

O R

N

x x

O R

N

x

O R

N

x x x

CCCCC

O R

N

x x

++++++++++

x

O R O N

N

x x

++++++++++

x x

* R O

N

x x

++++++++++

x

* O R O R

N N

x x x

++++++++++

x

* O R O N

N

x x x

++++++++++

x x

++++++++++

x

Figure 1.5: Examples of licit and illicit structures

exceptions to this generalization, some of which have to be deferred to the next

two sections. For now, we observe only that

• no node may have more than two PEs associated to it, and

• in binary branching constituents, each node must have some PE associated to

it, and

• the PE associated to right node of branching onset must be melodically

licensed by the PE associated to the left node, and

• the PE associated to right node of a branching rhyme (i.e. the coda) must

be melodically licensed by the PE associated to the node of the onset that

immediately follows the coda, and

• a node with more than one PE associated to it cannot be melodically licensed.

The first two conditions are straightforward and merely serve in establishing

lower and upper bounds on the numbers of PEs per node for specific configurations.

The other three invoke the as yet undefined notion of melodic licensing. This is

merely a technical device that represents the basic fact that certain sequences of

21

consonants or vowels are licit, while others are not — just think of English plow

versus ∗lpow. Astute readers might object, though, that [lp] is a licit consonant

cluster in coda positions, as is witnessed by a plethora of monomorphemic words,

foremost help. But this is exactly the reason why codas have to be licensed “from

the right” instead. To see how this follows, we first need to understand what the

GP structures for word-final codas look like, an important point that I left open

earlier during the discussion of the syllable template. Figure 1.6 exemplifies how

GP reinterprets the canonical syllable template such that what might appear to be a

word final coda is, in fact, not word final. It is either an onset followed by a nucleus,

or a coda and an onset followed by a nucleus. For as we now allow skeletal nodes

to be free of melodic content, this nucleus can remain hidden and hence makes it

possible to accommodate all kinds of clusters that previously seemed problematic

for GP’s insistence on onset-rhyme pairs.

The way GP reinterprets coda clusters makes an empirical prediction: since the

licensing of consonant clusters in coda position (i.e. C-O under GP’s analysis) is

the mirror image of branching onsets, in which it proceeds from left to right rather

than the other way round, we predict that an onset cluster is licit in a language

if and only if its mirror image is a licit coda cluster. This is borne out for many

clusters such as [pl] in English, but there are notable exceptions. In particular, it

seems that coda clusters are less restricted than onset clusters. For instance, [mp]

is a well-formed coda cluster of English (camp, clamp, ramp, and plenty more),

while [pm] is not a licit onset. Apparently, then, the conditions for when a PE is

melodically licensed may vary between structural configurations. Unfortunately,

very little is known about melodic licensing. So far, a tentative consensus has

been reached that for consonants, a PE q is licensed by a PE p if p contains fewer

elements than q, whereas for vowels, q is licensed only if p contains the element A.

I know of no specific proposal that accounts for the differences between onset and

22

coda clusters, though.

Class.: O R

N C

CCCCC

x x x

h a t

GP: O R O R

N N

x x x x

h a t

Class.: O R

N C

CCCCC

x x x x

CCCCC

h e l p

GP: O R O R

N N

x x x

++++++++++

x x

h e l p

Figure 1.6: GP analysis of consonant clusters and word final consonants

As in the previous section, I deem it prudent to give an explicit list of the

configurations that obey the constraints above (Fig. 1.7) so that the reader can

simply commit those few structures to his memory and then use them as the basic

building blocks for more complex representations.

From the previous example, the reader might have already concluded that

branching onsets with exactly one PE associated to each node represent onset

clusters. By analogy, then, branching nuclei represent diphthongs. The obvious

question, then, is what kind of sounds are represented by two PEs associated to the

same node. In the case of nuclei, the answer is well-established: light diphthongs (in

return, branching nuclei only represent long diphthongs). For onsets, on the other

hand, it has been conjectured that they yield affricates such as in German Pfropfen

[
>
pföO

>
pf@n] “plug”, which is assigned the structure in Fig. 1.8 on page 25. But the

mirror image of this sequence is apparently exceedingly rare, with Karpfen“carp”

being the only example that comes to mind. This one is problematic, however,

23

a) O/N

x

b) O/N

x

PE

c) O/N

x

PE PE

CCCCC

d) O/N

x x

CCCCC

PE PE

e) O/N

x x

CCCCC

PE

{{{{{
PE PE

f) R O

N

x x

++++++++++

x

PE PE PE

g) R O

N

x x

++++++++++

x

PE

{{{{{
PE PE PE

Figure 1.7: Ways of associating PEs to skeleton nodes

because it is usually pronounced [kA:
>
pf@n] rather than [kaö

>
pf@n]. At least with

nasals, though, there are several coda clusters such as Kampf “battle”’, Ampfer

“sorrel”, stampfen “to stomp” and Austrian German Zumpferl [
>
tsUm

>
pf5l] “pecker”.

This might be taken as an indication that the absence of consonant-affricate clusters

in coda position is more of a lexical accident than a fact about the structure of

affricates. But then again, [
>
pfm] is not an attested onset cluster (and sounds very

weird to me, significantly stranger than a [ö
>
pf] coda cluster), which suggests that

something else than just lexical idiosyncrasies are involved here.6 In sum, affricates

6With the exception of Kampf, the structures can moreover be reanalyzed as follows using several
empty nuclei.

O R O R O R O R

N N N N

x x

++++++++++

x x x x x

++++++++++

x x x

p f ö o p f @ n

This analysis does not violate the restrictions on the distribution of empty nuclei that are introduced
in the next section.

24

O R O R O R

N N N

x x

++++++++++

x x x x x

p

{{{{{
f ö O p

{{{{{
f @ n

Figure 1.8: A conceivable GP analysis of German [
>
pföO

>
pf@n]

might be analyzed as two PEs attaching to one node dominated by an onset, but it

is not an innocent assumption.7

With normal vowels and consonsants as well diphthongs and affricates suffi-

ciently covered, there are still two classes to take care of, namely long vowels and

geminates. These constitute the exception to the rule of thumb stated at the begin-

ning of this section in so far as they are interpreted as a single PE associated to both

nodes of a branching constituent — nuclei for long vowels, onsets for geminates.

Examples are given in Fig. 1.9 on the following page, which also showcases some

of the other configurations we have encountered.

1.3.4 Empty Categories and p-Licensing

As we just saw, GP allows for certain positions to remain unpronounced, just like

traces in syntax. An unpronounced constituent is called an empty category, and the

use of empty categories is what allows GP to reconcile its restricted syllable template

with the wide range of attested syllable types. But obviously the distribution of

empty categories has to be carefully regulated lest any kind of syllable structure

could be derived in GP as sequences of onsets and possibly empty nuclei. To

7Therefore, the formalization in Chap. 2 allows only nodes dominated by a nucleus to be
associated to two PEs. However, it can easily be extended that way by removing the reference to
onsets in axiom M2.

25

O R O R

N N

x x

++++++++++

x x

888888888888

x x

t r e I

CCCCC

n d

O R O R O R

N N N

x x x x x

++++++++++

x x

t E k s t

O R O R

N N

x x x

CCCCC

x x

f A:

{{{{{
t 5

O R O R

N N

x x x x

++++++++++

x

p a b:

{{{{{
I

Figure 1.9: Some phonological structures in GP (with IPA notation)

illustrate: no language allows monomorphemic words to contain a cluster of five

adjacent consonants, yet if any nucleus may remain unpronounced, we could model

such a cluster as a sequence of five pairs consisting of a unary branching onset

and an unrealized nucleus. The task of restricting the distribution of empty nuclei

is handled by the Empty Category Principle (ECP), which is sometimes called the

phonological ECP to distinguish it from its syntactic counterpart.

(6) The phonological ECP

A p-licensed empty category receives no phonetic interpretation.

Before we turn to the intricate notion of p-licensing, let me point out that the ECP

holds only of empty categories. Whether a nucleus is empty or not, i.e. whether it

is associated with a phonological expression is determined in the lexicon but may

be altered by (mor)phonological processes later on. In any case, only the nuclei

dominating no phonological expressions are subject to the ECP; if a nucleus already

dominates a phonological expression, it is immaterial whether it is p-licensed or

not, the phonological expression will have to be pronounced in any case. But this

26

raises the question, of course, what phonetic interpretation could be assigned to

an empty category, which by definition has no phonetic content in the first place.

The intuitively most appealing conjecture is that languages should pick whatever is

their realization of the empty PE, i.e. (_, _). Somewhat surprisingly, this seems to

be correct. In Turkish and Arabic, for example, an empty nucleus is realized as [1],

whereas German opts for [@].

Let us return to p-licensing now. An empty category is p-licensed iff it satisfies

at least one out of three structural criteria, two of which are fairly simple. The

first one is in fact a language-specific parameter, the Final Empty Nuclei Parameter

(FEN). If the parameter is set to true, any word-final empty nucleus is p-licensed and

may thus remain unpronounced. We have already seen several instances of such

unpronounced word-final nuclei, e.g. in the analysis of German Pfropfen (Fig. 1.8).

The second condition is Magic Licensing, according to which a nucleus is licensed if

it is followed by a coda-onset sequence in which the coda hosts a sibilant. Such a

configuration is part of the structure of [tEkst] depicted in Fig. 1.9 on the previous

page. The third condition, Proper Government, is significantly more difficult to grasp.

Its definition reads as follows:

(7) Proper Government

Nucleus a properly governs nucleus b iff

a. a and b are adjacent on the relevant projection level, and

b. a is not itself p-licensed, and

c. neither a nor b are government licensors.

As I chose to cut back on terminology in the exposition, not all the technical

vocabulary is in place to make sense of these requirements. However, (7) can be

rewritten as the noticeably less opaque (8).

27

(8) Proper Government (simplified)

Nucleus a properly governs nucleus b iff

a. a is the first nucleus to the right of b, and

b. a is not itself p-licensed, and

c. no skeleton nodes between a and b are involved in any melodic licens-

ing.

Now (8a) and (8b) should be almost self-explanatory, while (8c) simply comes

down to the requirement that no branching onset or coda-onset configurations

appear between the two nuclei, since these are the configurations where melodic

licensing takes place.

The best empirical arguments for Proper Government come from templatic

languages like Hebrew, where a lexical item is fully specified by its root, a sequence

of 3 or 4 consonants. For example, the root for write is /ktb/. Given GP’s method

of syllabification, this can be analyzed as three onset-rhyme pairs, where each onset

hosts one consonant and the rhymes are lexically empty. Now the interesting catch is

that how the root is realized depends only on the presence of further morphological

affixes. Take a look at Fig. 1.10 on the following page. In the first row, you see the

structures for [kt1b] “he writes” and [k1tbu] “they write”. The third person singular

is not morphologically marked in Hebrew, so [kt1b] is the pronunciation of the

unmodified root. How does this come about? Since proper government proceeds

from right to left, we start out at the right edge of the word and move leftwards.

The word-final nucleus N3 is of course the first one we encounter. It contains no

lexical material, so in order to see whether it must be pronounced we have to check

if it is p-licensed. Assuming that the FEN-parameter is set for Hebrew, it is indeed

p-licensed and does not have to be pronounced. Now we move to the left and stop

at N2. The first nucleus to the right of it is N3, which as we have already verified

28

is p-licensed. Consequently, N3 cannot properly govern N2. Nor is N2 word final

or in a magic licensing configurations. Thus N2 is not p-licensed. Now if we move

further to the left, we encounter the last nucleus, N1. As N2, it is neither word-final

nor in a magic licensing configuration. However, the first nucleus to its right, that

is N2, is not p-licensed. We also find that the two are separated only by a single

unary branching onset, so no melodic licensing takes places between them and N2

is indeed a proper governor for N1. Hence the latter remains unpronounced.

In the case of [k1tbu], the third person plural is represented by the suffix /u/,

which moves into the last nucleus of the word. Since said nucleus is now lexically

filled, it is not subject to FEN, so it is not p-licensed and properly governs N2, which

thus remains silent. But now that N2 is p-licensed, it no longer properly governs

N1, and as none of the other conditions for p-licensing are satisfied either, N1 isn’t

p-licensed and must be pronounced.

O1 N1 O2 N2 O3 N3

x x x x x x

k t 1

proper gov.

OO b

O1 N1 O2 N2 O3 N3

x x x x x x

k 1 t b u

proper gov.

OO

O1 N1 O2 N2 O3 N3

x x x x x x

k 1 t bOO

O1 N1 O2 N2 O3 N3

x x x x x x

k tOO b u

proper gov.

OO

XX

Figure 1.10: Proper government in Hebrew paradigms

An example for the relevance of melodic licesing comes from French (see

Charette 1990 for details). The words ennemi “enemy”, semaine “week” and revenu

29

“came back” are pronounced [Enmi], [smEn] and [r@vny], respectively. Given our

newly-gained knowledge of proper government, this is hardly surprising. In fact,

French seems to behave exactly like Hebrew, as the reader should be able to verify

for himself. But for secret “secret”, the correct pronunciation is [s@krE], not [skrE].

This is so because [k] occupies a coda position and is melodically licensed by the [r]

residing in the onset. Hence the nucleus hosting [E], although it is not p-licensed,

cannot properly govern the first nucleus, whence it has to be realized as a schwa.

Putting it all together, we get the definition of p-licensing below.

(9) p-licensing

a. Final Empty Nuclei Parameter (FEN)

Domain-final empty categories are/aren’t p-licensed.

b. Magic Licensing

Sibilant-consonant codas p-license a preceding empty nucleus.

c. Proper Government

Properly governed (empty) nuclei are p-licensed.

1.3.5 Spreading

So far we have seen a lot of talk about PEs, constituents and various licensing

conditions. But the procedural aspects that lay at the core of early generative

phonology have been mostly ignored. How does GP account for the kind of interac-

tions between sounds that are so ubiquitous in phonology? The answer is spreading:

every element is allowed to associate itself to multiple nodes. A short remark is in

order here: Spreading is slightly at odds with what was said in Sect. 1.3.3, namely

that entire PEs are associated to skeleton nodes. For the purposes of spreading,

it makes sense to reinterpret PEs as a simplified notation for a system with two

30

Stem Gloss Imperative
k1s “reduce” k1s1n
kal “remain” kal1n
gir “enter” girin
kes “cut” kesin
kur “establish” kurun
sor “ask” sorun
gül “laugh” gülün
gör “see” görün

Table 1.6: Vowel harmony in Turkish

melodic tiers, one for heads and one for operators, where the individual elements

reside and are connected directly to the skeleton node.

Consider the small data set for Turkish vowel harmony in Tab. 1.6(taken from

Charette and Göksel 1996). The alternation in the vowel of the suffix can be

accounted for if we make three assumptions:

• the nucleus of the suffix is empty, and

• I and U may spread, and

• A may not spread.

The analysis is sketched in Fig. 1.11 on page 33. The general idea is that since

the nucleus of the suffix is empty, the elements of the stem can freely spread into

it — if they are capable of spreading, that is. In the case of k1s and kal, there are no

elements that could spread into the suffix, and so we get the unaltered form of a

pronounced empty nucleus in Turkish, [1].8 In all the other cases, it suffices to know

what elements a sound consist of to predict which vowel will surface in the suffix.

8Some readers might wonder why we get [k1s1n] rather than [ks1n]. This might be related to
morphology, about the effects of which very little is known in GP (though see Kaye 1995). Kie
Zuraw (p.c.) furthermore points out that no words in Turkish are allowed to start with [ks], and
word-initial consonant-clusters are fairly rare in general.

31

Generally, the suffix contains the vowel that is represented by the PE that can be

obtained from the PE of the stem vowel by removing A, as this is the only feature

that does not spread.

Unfortunately, very little is known about the specifics of spreading. As for

directionality, spreading can proceed to the left or to the right, but it is unclear if

one feature can spread in both directions simultaneously, whether it can change

directions after a while, and how far it can spread. It is also not clear from

which positions features may spread, and whether certain configurations come with

specific restrictions (e.g. if spreading is mandatory from nuclei and optional from

onsets). Nor are there claims in the literature concerning the minimum or maximum

distance that a feature can (or must) spread. There is also the open question of the

status of delinking, i.e. the removal of association lines in order to detach features,

which seems to be required for dissimilation and even some cases of assimilation

(for instance, as m= ({L,P},U) and n= ({L,P},A), assimilation of /n/ to [m] after

/b/ seems to require both spreading of U and delinking of A). Moreover, many

aspects of the interaction of phonology and morphology are not well understood yet

in GP. While this is undeniably a shortcoming of GP, it is a defendable one. After all,

GP was designed to deal with problems that seemed arbitrary or overly complicated

at best from the perspective of SPE or autosegmental phonology. But with a few

exceptions like vowel harmony and umlaut, these aren’t the kind of problems where

spreading has a decisive role to play. The focus of GP has always been on how the

interaction of elements, the syllable template and the ECP can explain puzzling

paradigms. Without ruining the surprise, I can already tell the reader that the

model-theoretic formalization of GP does indeed highlight a difference between

these modules on the one side and spreading on the other.

32

O N O N O N

x x x x x x

k s n

O N O N O N

x x x x x x

k A l n

O N O N O N

x x x x x x

g I

mmmm
r n

O N O N O N

x x x x x x

k I

mmmm
s n

A

O N O N O N

x x x x x x

k U

mmmm
r n

O N O N O N

x x x x x x

s U

mmmm
r n

A

O N O N O N

x x x x x x

g U

mmmm
l n

I

O N O N O N

x x x x x x

g U

mmmm
r n

A,I

Figure 1.11: Analysis of Turkish vowel harmony

33

CHAPTER 2

Logical Formalization

2.1 Overview

This chapter is devoted to the logical formalization of GP. Before that, though, I

discuss the advantages of an approach grounded in mathematical logic, after which

a short introduction to the basics of formal logic is given in Sec. 2.3.

2.2 The Virtues of a Formal Approach

2.2.1 Why Logic?

Linguistic theories aren’t monolithic entities; they usually come in numerous flavors

that differ to varying degrees from the original proposals. Variants of Optimality

Theory (OT), for example, can be built from a vast array of components such as

output-output correspondence and sympathy constraints. Clearly, these modifi-

cations aren’t ad hoc inventions but are motivated by empirical concerns, so we

should expect them to a have a noticeable impact on the inner workings of the

theory. Unfortunately, it is often difficult to see how exactly these changes affect

the original theory and the predictions it makes. This creates a big problem for

theory comparisons: instead of comparing, say, OT to SPE, different incarnations

of OT have to be compared to different incarnations of SPE. A quick survey of the

34

development of phonology over the last 40 years shows that any well-developed

phonological theory has at least three such optional modifications which can be

mixed and matched, thereby giving rise to eight variants. Even under optimal

conditions, then, a thorough comparison would have to consider at least sixteen

theories, truly a herculean task.

An efficient way to reduce the complexity of the comparisons is to group theories

into classes from which they inherit certain properties. If these properties are our

only concern, it is sufficient to consider only classes instead of all the theories they

contain. But what measure should be used as a classification scheme? Ideally, it will

be general enough to allow for an easy and reliable classification of specific theories,

while at the same time offering enough detail to capture properties of genuine

linguistic interest. In this section, I shall try to convince the reader that tools from

mathematical logic provide us with a classification mechanism that fulfills both

requirements.

Allow me to illustrate the connection between linguistic theories and mathe-

matical logic with an example first. Consider the formula L→¬H of propositional

logic. It states that the presence of a low tone implies the absence of a high tone.

We could just as well phrase the logical formula as a linguistic constraint: “No

segment associated with L may be associated with H”. Now take a look at the

structure in Fig. 2.1 on the following page. It is easy to see that only the leftmost

structure obeys the constraint — or as logicians would say, only the leftmost struc-

ture satisfies L→¬H and is thus a model of it. This is also why I call my approach

model-theoretic phonology.

We may use additional formulas to impose further well-formedness conditions,

just as we can add further rules and constraints to phonological theories. But when

we try to write a formula which imposes the requirement that every syllable with a

35

high tone is both preceded and followed by syllables with a low tone, we run into

a problem. Propositional logic cannot do this, as it considers only isolated nodes

and fails to take context information into account.1 This can be fixed by enriching

the logic with two operators Ã and Â, which talk about the nodes immediately to

the left and immediately to the right, respectively. Our propositional logic has now

become a modal logic. The formula H →ÃÃ L∧ÂÂ L then enforces that two steps

to the left and two steps to the right of a high tone there is a low tone. By now the

reader should be able to check that only the structure in the middle is a model of

this formula. Crucially, this implies that none of the structures is a model for both

formulas.

k u m o n á

L

mmmm
H

k u m o n á n â

L

mmmm
H

mmmm
L

k u s i b á l ó l â

L

mmmm
H

mmmm
ffffff
L

Figure 2.1: The formulas L → ¬H and H →ÃÃ L∧ ÂÂ L are satisfied only by
the leftmost structure and the one in the middle, respectively. None of the three
structures satisfies both formulas.

Using more and more formulas as illustrated above, one restricts the set of

well-formed structures in the same way a phonological theory does, although

certain parts of a theory might require further operators or other modifications to

propositional logic. The mathematical literature offers a broad range of logics which

can be obtained in this way, the properties of which are well-known. The approach

I am advocating here is all about establishing connections between theories and

these logics, or putting it slightly differently, about using logics to classify linguistic

1If we assume that propositional symbols range not over isolated nodes but rather continuous
sequences thereof, propositional logic is indeed capable of talking about structure, too. However,
this perspective is not ideally suited to the formalization of most phonological theories, as they
posit nodes rather than substrings as the atomic unit whose distribution and surface-realization
is to be regulated. In addition, we will see later on that from a modal logic perspective ways of
generalizing GP readily suggest themselves, whereas from a purely propositional perspective they
arguably wouldn’t.

36

theories. In particular, a theory can be assumed to inherit some of the properties of

the weakest logic that is still sufficiently powerful to formalize it.

While the idea seems rather abstract, it is natural and efficient in praxis. Most

importantly, the classification of multiple variants requires hardly any additional

work. After formalizing the original proposal, e.g. OT with correspondence theory,

we are left with the easy task of formalizing the modifications, say, sympathy

constraints. If it turns out that the logic used for the original theory is too weak for

the altered version, we immediately know that the latter is more powerful than the

former. This is exactly what Potts and Pullum (2002) did in their investigation of OT

to show that sympathy constraints and output-output correspondence are proper

extensions of standard OT. Potts and Pullum’s case study also demonstrates that the

perspective from mathematical logic affords us new insights that are of immediate

linguistic relevance and would be very difficult to obtain with traditional methods

based on empirical comparisons. For instance, it allows us to derive universal

insufficiency results by proving that specific phonological phenomena are beyond

the reach of certain classes. That is to say, every phonological theory belonging

to class C will fail to account for phenomenon P if P cannot be described in the

logic corresponding to C . The traditional approach, on the other hand, derives

theory-specific sufficiency results by devising an account of a specific phonological

phenomenon in the theory under scrutiny. Rather than a replacement, then, the

logical approach is a useful complement to the traditional one.

That it is no substitute for thorough empirical comparisons is also witnessed by

the fact that the gains from a deliberate restriction to classes of theories come at the

cost of reduced granularity. Hence MTP fairs better than alternative approaches in

getting the big picture right; it derives general, broadly applicable results pertaining

to generative capacity, computational complexity, memory requirements and parsing.

37

It has less to say about technical minutiae that do not correspond to class distinctions.

This does not mean that we cannot use MTP for the investigation of such details,

but it would be just as laborious a task as with any other approach.

It should also be pointed out that the way model-theoretic syntax employs

logic differs significantly from earlier logical approaches, such as Stabler (1992).

These approaches are proof-theoretic in nature, which means that they construe

a linguistic theory as a set of axioms and the language licensed by said theory as

the set of logical theorems that can be proved starting from these axioms. As a

metaphor (a clumsy one, as metaphors usually are), linguists may think of this as

a derivational perspective, where we start out with some primitives, e.g. Merge,

Move and the lexical items, and then try to construct the desired tree. Such an

approach is particularly helpful in determining how different parts of a theory

interact. For instance, Stabler (1992) showed that the Barriers framework of

Chomsky (1986) still derives CED effects as intended if one removes Subjacency

from the theory, but not if the ECP is dispensed with; this refutes claims to the

contrary made by Chomsky, which were also challenged by Browning (1989) on

empirical grounds. Clearly, then, this approach has its merits, too. However, for my

project, a model-theoretic approach is easier to handle.2 It directly represents the

structures licensed by a theory, and thus makes the connection between linguistic

structures and linguistic theories more tangible. In particular, we may explicitly

restrict our attention to the class of mathematical objects that we deem relevant

to the enterprise (in our case, strings rather than trees or even more complex

graphs) and not worry about whether the logic is capable of picking out this

mathematical class all by itself. This is beneficial because we are interested in

2There is a philosophical issue here as to whether a scientific theory should be thought of as a set
of basic statements or a class of models. While this is an interesting point to ponder on an epistemic
and methodological level, it is of no relevance to the results reported herein and will be ignored.

38

linguistic rather than purely mathematical aspects that make a linguistic theory

more complex than another one — that string structures cannot be axiomatized

in various logics is unlikely to prove insightful to linguists. By keeping an eye on

the licensed structures, it is also easier to figure out what pieces of a theory are

but notation without relying on advanced computational tools such as automatic

theorem provers. This is important when considering non-standard logics for which

such tools are not readily available. Many of the logics we will encounter in later

sections are such non-standard logics.

2.2.2 Why not Automata Theory?

Readers that show at least a cursory familiarity with computational phonology

might wonder why I choose to advocate logic to the detriment of better established

formal tools such as automata theory. First of all, it should be noted that I am not

arguing against automata theory as such. Logic has rich connections to automata

theory (and, by extension, formal language theory), and I do make use of them

several times in this thesis, foremost in Chap. 3. Thus I do not argue against

automata theory but rather against the use of automata for the formalization of

theories. There are several reasons for that, all of which can be traced back to

differences as to what a formal approach to phonology is thought to accomplish. For

most computational phonologists, formalization is all about laying the foundations

for computationally tractable software implementations, where the gold standard

of “computational tractability” is computability by finite-state devices. But as will

become evident later on, finite-state devices — restricted as they might be in terms

of expressivity — are much more powerful than what is needed for most areas of

phonology. For our purposes, this means that virtually all phonological theories

belong to the same class when considered from the perspective of finite-state

39

automata.

Admittedly there are automata-theoretic characterizations for weaker classes,

too, but in my opinion these are somewhat cumbersome to work with; more impor-

tantly, the multiplication of different automata models only serves in aggravating

a general problem of automata-based formalizations, the lack of succinctness and

modularity in comparison to the model-theoretic approach.3 This is best illustrated

by a simple example. In Fig. 2.2 on page 42, the automata for two simple modal

formulas are given. The formulas are N →Ã O∨Ã N — every nucleus is preceded

by an onset or a nucleus — and O→ ¬ Ã O ∨¬ Â O — no onset is both preceded

and followed by an onset (i.e. onsets are at most binary branching). A string is

accepted by the automaton if one can start at the initial state (the one marked with

an incoming arrow) and then, moving from left to right through the string, follow

the arrows labeled with the corresponding symbols in the string and end in a final

state (indicated by a double circle). So a string like ONNO is accepted by the first

automaton, because starting in state 1 we can first move along an O-labeled branch

that takes us to state 2, wherefrom we proceed along the N-labeled branch into

state 3. From there the second N leads us back to state 1, and there we can once

again follow an O-branch, but this one takes us from 1 back to 1 itself. Now we are

done scanning the string and the last state we reached is a final state, so the string

is accepted by the automaton. Note that we could have taken different routes, some

of which might not have ended in a final state, but this is immaterial. As long as

3 Mathematical succinctness results are well-known. Consider monadic second-order logic (MSO)
over strings. We know that every MSO formula can be translated into a finite-state automaton.
We also know that this formula may be non-elementarily more succinct than the corresponding
automaton — each quantifier may induce an exponential blow-up in the number of states. Crucially,
the translation procedure is optimal, that is to say, there is no smaller automaton that would be
equivalent to the formula (Meyer 1975). As for the modularity, this problem could possibly be
circumvented by decomposing the automata in the spirit of Krohn and Rhodes (1965), but this is a
very difficult task and the result would presumalby still be significantly more complicated than the
logical formulas we will encounter here.

40

there is at least one route leading to an accepting state, the string is accepted. A

string like NN, on the other hand, is always rejected, because there is no N-labeled

branch that leaves the initial state.

As the reader might have noted working through this simple example, the au-

tomata, albeit rather simple, fail to make fully explicit the restrictions the constraints

imposed on the language, because they give a complete encoding of all the strings

that obey the constraint. For instance we find references to codas even though

those are never directly mentioned in the constraints. Their presence only follows

from extra assumptions about GP constituents. Note that this means that a purely

automata-theoretic approach struggles to express constraints in a theory-neutral

fashion, it also embodies other assumptions of the theory, whence it is more difficult

to port the formalized constraint from one proposal to another. And while these

shortcomings might appear manageable for these small automata, just taking their

intersection (i.e. enforcing both constraints) yields an automaton that is supremely

opaque (see once more Fig. 2.2). Whoever is capable of taking a glance at said

automaton and effortlessly extracting the well-formedness conditions it encodes is

worthy of the highest appraisal. In comparison, it only takes a passing familiarity

with modal logic to get the gist of the corresponding formulas.

In summing up, logic provides us with a tool that allows us to investigate

classes of theories rather than specific incarnations thereof, and it does so in an

intuitive, easily accessible way that at the same time allows us to relate phonology

to areas such as formal language theory and complexity theory, which are of utmost

importance in determining the expressivity and parsing properties of those theories.

Alternative approaches that are deeply entrenched in computational phonology,

foremost automata theory, can be employed in the same way, but they are more

cumbersome to use and do not scale well with the number of constraints as they

41

1 2 3 4 5 6

1,4

1,51,6

2,5 2,6

3,4

O

O,C

N

N,C
O N

O,N,C

O
N,C

O

N,C

O

N,C

C

O

O

O

C

O

C

N,C

O

N

O

N,C
N

N
N,C

O

O

Figure 2.2: Finite-state automata for N →Ã O∨Ã N and O→¬Ã O ∨¬Â O), and
their intersection (with inaccessible states removed)

42

are “overly explicit”, i.e. their mode of representation encodes more information

than is necessary for our purposes.

2.3 Logic — A Mathematical Primer

Before venturing any further into the mathematical details of the formalization of

GP, it seems advisable to look a little closer at what a logic actually is. The previous

section already established several intuitive notions and concepts, foremost that

there are in fact different kinds of logics and how a logical formula may represent

linguistic constraints. These issues are related to what is commonly referred to as the

syntax and the semantics of a logic. The syntax specifies what sequences of formal

symbols belong to the logic. From a syntactic perspective, then, a logic is simply a

formal language over some alphabet. Let us start with the syntax of propositional

logic. Assume we are given some set P of proposition letters (also called propositional

variables). Proposition letters may stand for features, constituents, sounds, strings,

or maybe something completely different; for now we don’t commit ourselves to

any particular interpretation. Then the propositional logic LP is the set of strings

that can be built up inductively as follows:

• If p is a proposition letter in P, then p belongs to LP .

43

• If φ and ψ are strings of LP , then the following strings also belong to LP .

(¬φ) not φ

(φ ∧ψ) both φ and ψ

(φ ∨ψ) φ or ψ or both

(φ→ψ) φ implies ψ

(φ↔ψ) φ and ψ imply each other

So the strings p, (¬p) and ((¬(p ∧ q))→ (¬q)) would belong to LP (provided p

and q are proposition letters of P), whereas ¬ or (p¬∧ q) would not.

Logicians usually refer to the strings in LP as (propositional) formulas or simply

proposition, and we shall follow this convention. Propositional logics represent the

barest kind of logic, and they can be extended in various ways. The best-known

extension is first-order logic, in which variables and operators quantifying over those

variables are introduced. The technical machinery of first-order logic can be rather

daunting for the uninitiated, but fortunately we will operate with an extension of

propositional logic that is much weaker and thus easier to master, namely modal

logic. Nonetheless familiarity with some foundational facts of first-order logic is

required to understand some of the more technical remarks in Chap. 3, whence I

briefly present them here.

First-order logic extends propositional logic by adding variables, predicates over

those variables, the quantifiers ∃ “there is at least one” and ∀ “for every” over those

variables, and square brackets that indicate the scope of the quantifiers. A formula

like ∀x[P(x)→ ∃y[¬Q(y)]] can be read as “for all x it holds that if P is true of

x , then Q does not hold of some y”. Most readers certainly will have encountered

such formulas before in linguistics. The new tidbit of mathematical background

44

knowledge that has to be committed to memory is that one can distinguish fragments

of first-order logic depending on the number of variables that they allow to appear in

one formula. For instance, the two-variable fragment of first-order logic, abbreviated

FO2, allows only formulas with two variables. So the formula above is an FO2

formula, whilst a formula like ∃x∃y∃z[P(x)∧Q(y)∧¬P(z)∧¬Q(z)∧ x 6= y ∧ x 6=

z ∧ y 6= z] belongs to FO3 (this formula states that there are distinct x , y, and z

such that P is true of x , Q is true of y , and neither is true of z).

Whereas first-order logic looks significantly different from propositional logic,

all one has to do to turn a propositional logic into a modal logic is add a number of

operators. Let O be the set of these operators. Then we add the following clause to

the syntactic definition above.

• If 〈o〉 is an operator belonging to O and φ is a string of LP , then (〈o〉φ) is a

string of L .

Let’s work through a short example. Suppose we are given the operators Ã and Â,

and further the proposition letters p and q. Then the strings (Ã p), (¬(Ã (p ∧ q)))

and ((Ã p) ∧ (Â q)) all belong to L , but (Ã) and (Ã p)(Â q) do not. Strictly

speaking, p∧q isn’t a well-formed string either, since it lacks the outermost brackets,

but it is common usage to drop redundant brackets wherever possible, such that the

formulas above may be rewritten as Ã p or Ã p∧Â q. However, (¬(Ã (p∧ q))) may

not be rewritten as ¬Ã p ∧ q, as this would correspond to the formula (¬Ã p)∧ q.

Thus one has to be careful to drop brackets only according to the following scope

rules:

• Negation and modal operators are stronger binders than any other connective.

• The connectives ∧ and ∨ are stronger binders than→ and↔.

45

Thus a formula like ¬p ∨ (Ã ¬p ∧ q→Â (q ∨ p)) corresponds to the fully bracketed

formula ((¬p)∨ (((Ã (¬p))∧ q)→ (Â (q ∨ p)))). There are also rules that regulate

how formulas like p ∧ q∨ Â q or p → q↔ p is to be disambiguated, but for the

sake of readability I will always make the relevant scope relations explicit through

the use of brackets.

Now that we know how to write formulas of a modal logic, we have to specify

what they mean, i.e. the semantics of the logic. The general idea is that a formula

is evaluated with respect to some structure by first determining which propositions

are true at which nodes in the structure (e.g. an SPE feature like -consonantal is

true at every segment of the string that isn’t a consonant) and then decomposing

the connectives and modal operators into a sequence of instructions as to which

nodes have to satisfy which propositions. For instance, p→Ã q will be true iff for

every node n at which p holds, q is true at some node that is related to n by Ã. If

the interpretation of Ã is “take one step to the left”, this formula states that every

node satisfying p has a node to its left that satisfies q.

The formal setup proceeds as follows. First we are given a frame, which repre-

sents the bare bone structure without any information about which propositions

are satisfied where. For syntax, say, the frames would be unlabeled trees. If our

syntactic theory furthermore makes the assumption that no node may have more

than two daughters, the frames would be trees that are at most binary branching.

In this paper, our frames will be strings, i.e. a set of nodes that is linearly ordered

by the right successor relation. In fact, we will even assume that the frames are

bidirectional, which means that we can also follow the order defined by the relation

in the other direction, such that we effectively have both a right successor and a left

successor relation. The relations are then associated to the operators of our modal

logic. For example, Â would be associated to the right successor relation such that

46

it can be read as the instruction “move to the right successor of whatever node

you are currently at”. Frames are then turned into models by adding a valuation, a

function that tells us for each proposition letter at which nodes in the frame it is

satisfied. It is this process of mapping proposition letters to nodes that establishes

their meaning. Crucially, several proposition letters may be true at the same node,

so they are more like features rather than labels.

In mathematical terms, this reads as follows: A frame is an (n + 1)-tuple

F :=

D, Ri
�

1≤i≤n (read F :=

D, R1, R2, . . . , Rn−1, Rn
�

), such that D is a non-empty

set of nodes and each Ri ⊆ D × D is a binary relation between nodes of D. A

model is a pair M := 〈F, V 〉, where the valuation V maps propositional variables to

subsets of D. Given sets O :=
�

oi
�	

1≤i≤n of modal operators and P of propositional

variables, a formula φ is satisfied by M iff it is true at every node w of the domain,

where truth is determined according to the rules below:

M, w |= p iff w ∈ V (p)

M, w |= ¬φ iff M, w |= φ is false

M, w |= φ ∧ψ iff both M, w |= φ and M, w |=ψ are true

M, w |= φ ∨ψ iff M, w |= φ or M, w |=ψ is true (or both)

M, w |= φ→ψ iff if M, w |= φ is true, then M, w |=ψ is also true

M, w |= φ↔ψ iff M, w |= φ is true iff M, w |=ψ is true

M, w |=

oi
�

φ iff there is a node v related to w by Ri such that M, v |= φ

Some authors (including myself) prefer to save some lines by using a neat trick to

reduce the number of connectives. One can show that the four logical connectives

of propositional logic can be reduced to the already familiar implication connective

→ and the so-called falsum ⊥, a special proposition that is false at every node in

every structure. The formula ¬φ, for instance, can be rewritten as φ → ⊥. This

way one can use all the four connectives but only give the semantics for→ and ⊥.

47

The latter is simply defined by stipulating that M, w |=⊥ is always false.

This closes our discussion of the mathematics underlying the formalization we

are about to begin in the next section. At this point the reader should return to

Fig. 2.1 on page 36 and write out a step by step computation that shows that the

formula H →ÃÃ L∧ ÂÂ L is satisfied only by the structure in the middle. It may

safely be assumed that the models are defined over bidirectional frames, but one

has to be explicit about the set of proposition letters P as well as the valuation V . As

soon as those are suitably defined, the rest is a fairly simple mechanical procedure;

just keep in mind that a formula is satisfied by a model iff it is true at every node of

the model.

2.4 Formalization

2.4.1 Reinterpreting GP-Structures as Strings

Before diving headfirst into a pile of formulas, it is a good idea to get an intuitive

idea of what our models will look like. The first step of the formalization is to

accommodate GP’s feature system. Recall (or go back to Tab. 1.4 on page 15 to

refresh your memory) that GP replaces SPE’s feature matrices by a pair consisting

of a set of privative features, called operators, and a single privative feature, which

functions as the head. In my formalization, head and operator features are distinct

propositions that are generated from a unique set of base features. Given a GP

theory with three features A, I, U, one would use three “head features” A, I, U

and three “operator features” A, I, U. This makes it possible to regulate the entire

feature calculus using only propositional logic. Given the six features just listed, the

pair for the sound E = ({I} ,A), for instance, is represented by the logical formula

A∧¬I∧¬U∧¬A∧ I∧¬U. It is also straightforward to enforce the uniqueness of

48

the head feature by formulas such as A→¬I∧¬U for every head feature. Similarly,

formulas such as A→¬A ensure that a feature, in this case A, does not occupy both

a head and an operator position.

Next we turn the syllable template, which is built around four types of con-

stituents: onsets (O), rhymes (R), nuclei (N) and codas (C), where N and C are

dominated by the rhyme. The constituents have to appear in a certain linear order,

and the structural configuration they appear in determines whether they are al-

lowed to branch. The precise rules were discussed in Sec. 1.3.2. As in the example

in Fig. 2.1 from Sec. 2.2.1, propositional logic is too weak to express such structural

information. But we can use a modal logic with operators Ã and Â to take the

neighborhood of a node into account. With dedicated propositions for N, O and

C (and optionally also R), this logic is capable of expressing all relevant structural

constraints. The condition that every coda is followed by an onset, for example, can

be rendered as the formula C →Â O.

There are two special cases that need to be taken care of, though. The first

one concerns onsets that are not associated to any skeleton node. This rather

rare configuration is used to explain certain phenomena pertaining to word initial

/h/ in French (the distinction between h muet and h aspiré, to be precise). For

mathematical reasons, I model this as a normal unary branching O — i.e. an O

associated to a single skeleton node — which in turn hosts a special feature fake.

The feature fake tells us that the onset in question represents an unassociated

onset. Therefore, restricting the distribution of unassociated onsets is tantatmount

to restricting the distribution of the feature fake, a simple task. The second

minor complication is due to binary branching constituents, which I encode as two

adjacent unary branching constituents of the same type. This does not introduce

any conceptual confusions since such configurations cannot normally arise in GP,

49

whence it is safe to assume that they represent binary branching constituents. Note

that I am driven to this move by considerations of mathematical simplicity and

elegance, but none of my results hinge on these minor alterations.

With these modifications, we get bare GP syllable structures that look like the

ones in Fig. 2.3.4

O N

x x

O N N O N

x x x x x

fake

O O N

x x x

O N C O N

x x x x x

fake

Figure 2.3: Examples of syllable structures in simplified notation

It might be at this point that government phonologists start to take issue with my

formalization and the slight simplifications it embodies; the subsequent treatment

of empty categories will in all likelihood raise even greater concerns. The defini-

tions and constraints involved in the distribution of empty categories are rather

complex, but if we ignore for a moment domain-final nuclei and magic licensing

configurations, the underlying intuition is easy to express in the simplified template:

If a nucleus is pronounced, the preceding nucleus may remain unpronounced. If a

nucleus is not pronounced, the preceding nucleus has to be pronounced. However,

if the two nuclei are separated by two or more skeleton nodes associated to O or

C, both have to be pronounced under all circumstances. Disbelieving readers may

want to check for themselves that this formulation yields the same results as the

original definition of the Proper Government condition from Sec. 1.3.4. The reason

4GP practitioners might wonder how I accommodate short diphthongs, which are represented
by two distinct phonological expressions, say, one for [A] and one for [E], associated to the same
skeleton node. I choose to handle this within the feature calculus by introducing another feature
parameter (the first one being the distinction between heads and operators) that tells us whether a
feature belongs to the first or the second expression.

50

is that the nuclei are farther apart only if a branching onset or an onset licensing

a coda intervenes, and these are exactly the cases where proper government is

interrupted. As soon as this is known, we only have to introduce two diacritic

features Ø and µ (read mute) that tell us, respectively, if a nucleus is p-licensed and

if it is pronounced.

Admittedly, though, a single result that shows how these conditions can be

simplified given a different encoding of the syllable template is insufficient to dispel

doubts about the faithfulness of the formalization. Even though it is foremost an

issue of philosophy of science to determine which parts of a theory need to be

represented explicitly in its technical machinery, I believe my modeling decisions

can be sufficiently supported on purely pragmatic grounds alone. For one has to

keep in mind that the goal is to use as weak a logic as possible; but the weakest logic

that might be expressive enough to allow for a direct translation of the conditions

involved in proper government, the two variable fragment of first-order logic (FO2),

is significantly more powerful than the modal logic I propose to use. One could of

course try to put further restrictions on FO2 to push it down to the level of a modal

logic, but there is nothing to be gained from such a cumbersome move, because the

two logics would then be identical for our purposes. In sum, the underlying issue

here is that a formal approach always has to reconcile linguistic faithfulness with

mathematical desiderata if it wants to be useful; the changes to GP I adopt above

are, in my opinion, the best compromise between those two poles. Even if some of

the readers may still take issue with the slight deviance of our formalization, they

can rest assured that it is immaterial for the claims made in this paper, thanks to

the granularity of the properties we are interested in.5

The last module to be formalized is spreading. Here I employ once more the

5Moreover, GP actually benefits from these slight re-encodings, as we would otherwise be pressed
to postulate that a very expressive logic is necessary for modeling GP when, in fact, it is not.

51

O R O R O R

N N N

x x

<<<<<<<

x x x
XXXXX

x x

A A U
]]]]]]]

A U

{I} {H} {I} {L,P}

7 6 5 4 3 2 1 0

{O,fake}

{R, N , A, I , U s}

{R, C , A, v}

{O, v, H}

{R, N , U , I}

{R, N , A, v}

{O, U , L, P}

{R, N ,Ø,µ}

Figure 2.4: Comparison of GP structure and formal model

strategy of adding subscripts to features, this time in order to distinguish spread

from local features. Marking the former with a subscripted s (and indicating empty

heads or operators by the symbol v), our final models will look like the example in

Fig. 2.4.

2.4.2 Logical Formalization

The material in this section is significantly more technical than anything else we

have encountered so far, and the reader may find himself at a loss as to what is

crucial information and what but minor technicalities. Hence I have decided to

highlight only those points that flesh out or extend the intuitions that I tried to

convey in the previous sections. It follows that if some definition or constraint is

not elaborated upon, I do not deem it indispensable for a full understanding of the

formalization and it will be of interest only to readers that find pleasure in the math

itself.

As was established several times by now, I use a modal logic that uses two

52

modal operators corresponding to “one step to the left” and “one step to the right”.

Logicians may think of it as the result of removing the “sometime in the future” and

“sometime in the past” modalities from restricted temporal logic (Cohen et al. 1993;

Etessami et al. 1997). To this audience it might also be of interest to know that the

tree model property of modal logic implies that my logic is too weak to define the

intended class of models, so we are in fact dealing with a formal description rather

than a proper axiomatization. That is to say, the axioms given below are compatible

with many models, most of which are not the kind of structure envisioned by GP.

Only if we restrict our attention to string models do the axioms constrain the models

as desired.

The first step is to multiply out the feature system as indicated in the previous

section. Let E be some non-empty finite set of basic elements different from the

neutral element v (which represents the empty set of GP’s feature calculus). We

define the set of elements E := (E × {1, 2} ×
�

head, operator
	

×
�

local, spread
	

) ∪

({v} × {1, 2} ×
�

head, operator
	

× {local}). The intended role of the head/operator

and local/spread parameter is to distinguish elements according to their position

in the phonological expression (PE) and whether they arose from a spreading

operation, respectively. The second projection is of very limited use and required

only by GP’s rendition of light diphthongs as two PEs associated to one node in the

structure (see fn. 4 on page 50).

Now we add a small number of diacritic features to the mix. The set of melodic

featuresM := E∪
�

µ,fake,Ø
	

will be our set of propositional variables. The intent

is for µ (remember that this is mnemonic for mute) and Ø to mark unpronounced

and licensed segments, respectively, while fake denotes an unassociated onset.

For the sake of increased readability, the set of propositional variables is “sorted”

such that x ∈M is represented by m, m ∈ E by e, heads by h, and operators by o.

53

The variable en is taken to stand for any element such that π2(e) = n, where πi(x)

returns the ith projection of x (for instance π2(〈a, b, c〉) = b). On rare occasions, I

write e and e for a specific element e in head and operator position, respectively.

Furthermore, there are three nullary modalities6, N , O, C , the set of which is

designated by S , read skeleton. In addition, we introduce two unary diamond

operators Ã and Â. The set of well-formed formulas is built up in the usual way

fromM , S , Ã, Â,→ and ⊥ (see Sec. 2.3).

Our intended models M := 〈F, V 〉 are built over bidirectional frames F :=

D, Ri, RÃ
�

i∈S , where D is an initial subset of N, Ri ⊆ D for each i ∈ S , and RÃ

is the successor function over N. The valuation function V : M → ℘(D) maps

propositional variables to subsets of D. The definition of satisfaction is standard,

though it should be noted that our models are “numbered from right to left”. That

is to say, 0 ∈ D marks the right edge of a structure and n+ 1 is to the left of n. This

is the easiest route due to GP’s proper government being computed from right to

left.

M, w |=⊥ never

M, w |= p iff w ∈ V (p)

M, w |= φ→ψ iff M, w |= φ implies M, w |=ψ

M, w |= N iff w ∈ RN

M, w |= O iff w ∈ RO

M, w |= C iff w ∈ RC

M, w |=Ã φ iff M, w+ 1 |= φ

M, w |=Â φ iff M, w− 1 |= φ

6I follow the terminology of Blackburn et al. (2002) here. Nullary modalities correspond to
unary relations and can hence be thought of as propositional constants. As far as I can see, nothing
hinges on whether we treat constituent labels as nullary modalities, propositional constants, or
propositional variables; my motivation in separating them from phonological features stems solely
from the parallel distinction between melody and constituency in GP.

54

With the logic fully defined, we can turn to the axioms for GP. The formalization

of the skeleton is straightforward with the assumptions introduced in the previous

section, i.e. that one models binary branching constituents as two adjacent unary

branching ones and views rhymes as mere notational devices. Recall that Ns

containing light diphthongs are implemented as a single N with both e1 and e2

elements associated to it.

S1
∧

i∈S (i↔
∧

i 6= j∈S ¬ j) Unique constituency

S2 (¬Ã ¬⊥→ O)∧ (¬Â ¬⊥→ N) Word edges

S3 R↔ (N ∨ C) Definition of rhyme

S4 N →Ã O∨Ã N Nucleus placement

S5 O→¬Ã O ∨¬Â O Binary branching onsets

S6 R→¬Ã R∨¬Â R Binary branching rhymes

S7 C →Ã N∧Â O Coda placement

Axioms S1 and S2 are slightly more complicated than S3–S7, for different

reasons. In S1, a notational trick is made use of in the form of big connectives

in order to shorten the formula. Big connectives are similar to quantifiers in that

they bind a variable and instantiate it with different values. In the case at hand,

there are two variables, i and j, which are instantiated such that i is some element

of S (i.e. N , O or C) and j some element of S distinct from i. One then has to

go through all possible instantiations of the variables and connect the generated

formulas by the small counterpart of the big connective. For example, if i = N , we

get the formula φ := N ↔¬O ∧¬C , for i = O the formula ψ := O↔¬N ∧¬C ,

and for i = C the formula ρ := C ↔¬N ∧¬O. Thus the fully expanded version of

S1 corresponds to φ ∧ψ∧ρ.

55

The difficulty in S2 does not stem from the syntax of the formula, but from the

interpretation of ¬Ã ¬⊥ and its analog in the other direction. These constructs pick

out the edges of the string, but it is not readily apparent how they do so. First recall

that ⊥ is false at every node in the model. So the negation of ⊥ is true at every node.

Now Ã ¬⊥ is true at a node w if and only if there is a node immediately to the left

of w where ¬⊥ is true. Clearly this will be true no matter what the node will look

like. However, if there is no such node to begin with, i.e. if w is the leftmost node

in the string, then the predicate will be false because the Ã-operator presupposes

the existence of a node to the left of w. From this simple line of reasoning it follows

that ¬Ã ¬⊥ is satisfied only at the left edge of the string. The case with Â works

exactly the same.

Proceeding with the formalization, we turn to GP’s feature calculus. Here we

need to introduce some further terminology. It is worth pointing out that the

terminology is not part of the logic itself but belongs only to the metalanguage

used in its description. A propositional formula φ over a set of variables x1, . . . , xk

is called exhaustive iff φ :=
∧

1≤i≤kψi, where for every i, ψi is either x i or ¬x i.

This means that exhaustive formulas do not allow for underspecification (and

indeed we use them to describe PEs, which are fully specified with respect to their

feature makeup). A PE φ is an exhaustive propositional formula over E such that
�

φ,F1,F2,F3,F4,
∨

h,
∨

o
	

is consistent (i.e. none of the formulas contradict each

other).

F1
∧

(hn→
∧

hn 6=h′n
¬h′n) Exactly one head

F2 ¬v→
∧

(hn→
∧

π1(h)=π1(o)
¬on) No basic element (except v) twice

F3 v→
∧

o 6=v ¬o v excludes other operators

F4
∧

(e2→
∨

h1 ∧
∨

o1) Pseudo branching implies first branch

56

Let PH be the least set containing all PEs (noting that a PE is now a particular

kind of propositional formula), and let lic : PH→ ℘(PH) map every PE to its set of

melodic licensors. Furthermore, S ⊆ PH designates the set of PEs that may occur in

the codas of magic licensing configurations (the letter S is mnemonic for “sibilants”).

Once again neither lic nor S are part of the logic itself. The following five axioms,

then, sufficiently restrict the melody.

M1
∧

i∈S

�

i→
∨

φ∈PHφ ∨µ∨ fake
�

Universal annotation

M2 ((O ∨ C∨Ã N∨Â N)→
∧

¬e2) No pseudo branching for O, C &

branching N

M3 O∧Ã O→
∧

φ∈PH(φ→
∨

ψ∈lic(φ) Ãψ) Licensing within branching

onsets

M4 C ∧
∧

i∈S ¬i→Ã ¬µ∧
∧

φ∈PH(φ→
∨

ψ∈lic(φ) Âψ) Melodic coda

licensing

M5 fake→ O ∧
∧

m6=fake¬m Fake onsets

For the sake of illustration, let us take a closer look at M4. The antecedent of

the conditional, C ∧
∧

i∈S ¬i can be translated as “you are a coda that does not

host a sibilant”. The consequent then enforces two well-formedness conditions.

First, the coda is preceded by a pronounced node (Ã ¬µ; this is guaranteed to be

a nucleus due to the peculiarities of the syllable template, so we do not have to

mention this fact explicitly). The second condition is more complicated. The big

connective notation should be sufficiently familiar by now. The new twist is the

invocation of the function lic in the subscripts. The idea is that for every PE φ,

lic picks out its licensors such that the variable ψ can be instantiated accordingly.

So if, for instance, there are exactly two PEs φ and φ′, and both of them have

57

only the licensors described by the formulas ψ and ρ, the full extension of M4 is

(φ→Âψ∨Â ρ)∧ (φ′→Âψ∨Â ρ).

Remember that GP allows languages to impose further restrictions on the melody

by recourse to licensing constraints. It is easy to see that licensing constraints

operating on single PEs can be captured by propositional formulas. The licensing

constraint “A must be head”, for instance, corresponds to the propositional formula

¬A. Licensing constraints that extend beyond a single segment can be modeled

using Ã and Â, provided their domain of application is finitely bounded (see the

discussion on spreading below for further details). Thus licensing constraints pose

no obstacle to formalization in our logic, either.

With skeletal and melodic constraints taken care of, we can turn to the two most

intricate modules of GP, empty categories and spreading, starting with the former.

As mentioned above, I use µ to mark “mute” segments that will be realized as the

empty string. The distribution of µ is very simple for O and C — C never allows it,

and O only if it is unary branching and followed by a pronounced N. For N, on the

other hand, we first need to distribute Ø in a principled manner across the string to

mark the licensed nuclei, i.e. those N that may remain unpronounced. Note that

unpronounced segments must not contain any other elements (which would affect

spreading).7

L1 µ→
∧

m/∈{µ,Ø} ¬m∧¬C ∧ (N →Ø) Empty categories

L2 N∧Ã N → (µ↔Ã µ) No partially mute branching nuclei

L3 O ∧µ→¬Ã O∧Â (N ∧¬µ) Mute onsets

7The constraint can be relaxed such that unpronounced segments must not contain any local
elements but may perfectly well host spread elements, in which case they would act as an invis-
ible landing site for feature spreading to overcome locality barriers. This slight modification is
incorporated by changing the subscript of the big connective in L1 to π1(m) = local.

58

L4 N ∧Ø↔Â (C ∧
∨

i∈S i)
︸ ︷︷ ︸

Magic Licensing

∨ (¬Ã N ∧¬Â ¬⊥)
︸ ︷︷ ︸

FEN

∨ P-licensing

((¬Ã N →Ã (Ã N ∨¬Ã ¬⊥))∧ (¬Â N →ÂÂ (N ∧¬µ)))
︸ ︷︷ ︸

Proper Government

Axiom L4 looks intimidating at first but is easy to unravel. It states that a nucleus

is licensed iff it satisfies at least one of three conditions: Magic Licensing, FEN or

Proper Government. The Magic Licensing conditions is simply a logical description

of the configurations that allow for Magic Licensing: N is licensed if it is followed

by a sibilant in coda position.8 The FEN condition ensures that wordfinal N are

licensed if they are non-branching (recall that ¬ Â ¬⊥ picks out the right word

edge). The proper government condition is the most complex one, though it is

actually simpler than the original GP definition, as I was eager to point out in

the preceding section. As I explained there, N is properly governed if the first N

following it is pronounced and neither a branching onset nor a coda intervenes.

Since we treat a binary branching constituent as two adjacent unary branching

constituents, the proper government condition can be reinterpreted as a structural

requirement such that N (or the first N if we are talking about two adjacent N) may

not be preceded by two constituents that are not N and (the second N) may not

be followed by two constituents that are not N or not pronounced. Together with

axioms S1–S7, this gives the same results as the original constraint.9

8Note that we can easily restrict the context, if this appears to be necessary for empirical reasons.
Strengthening the condition to Â (C ∧

∨

i∈S i)∧Ã ¬Ã ¬⊥, for example, restricts magic licensing to
the N occupying the second position in the string.

9In this case, the modal logic is once again flexible enough to accommodate various alternatives.
For instance, if proper government should be limited to non-branching Ns, one only has to replace
both occurrences of→ by ∧. Also, my formalization establishes no requirement for a segment to
remain silent, because N often are pronounced in magic licensing configurations or at the end of a
word in a FEN language. For proper government, however, it is sometimes assumed that licensed
nuclei have to remain silent, giving rise to a strictly alternating pattern of realized and unrealized
Ns. If we seek to accommodate such a system, we have to distinguish Ns that are magically licensed
or FEN licensed from Ns that are licensed by virtue of being properly governed. The easiest way
to do so is to split Ø into two features Øo and Øm (optional and mandatory), the latter of which

59

Before we move on to spreading, it should be pointed out how simple our

axioms are from a logical perspective. An easy way of measuring the complexity of

modal formulas is to look at their quantifier depth, which is a measure of how many

levels of modal operator nesting we find.10 It is defined as follows, where qd(φ)

denotes the quantifier depth of φ:

• If p is a proposition symbol, qd(p) = 0.

• If φ is a formula, qd(¬φ) = qd(φ).

• If φ andψ are formulas and · ∈ {∧,∨,→,↔}, qd(φ ·ψ) =max(qd(φ), qd(ψ))

(i.e. the greater of the two).

• If φ is a formula and 〈o〉 some modal operator, qd(〈o〉φ) = qd(φ) + 1.

So qd(p∧ Ã q) = qd(p∧ Â q) = 1, but also qd(Ã (Ã p ∧ q)) = qd(Ã (Ã

p∧ Ã q)) = 2, even though the latter contains more modal operators. Most

intriguingly, almost all the axioms above have a quantifier depth of 1 or less. The

only exception is Proper Government, which has a quantifier depth of 2 (this is

surprising considering the complexity of the original definitions and might be taken

to highlight the underlying simplicity of the idea). Obviously these are very small

numbers — even very simple modal formulas reach high quantifier depth values

very fast — which suggests that GP is indeed a highly restricted theory.

is reserved for properly governed Ns. The simple formula Øm → µ will force such Ns to remain
unpronounced.

10This measure is commonly used for classical logic, i.e. variants of first-order logic. Recall for
instance from Fn. 3 that each quantifier in an MSO formula may induce an exponential blow-up in
the number of states of the corresponding automaton. It is also known that a first-order formula
with n quantifiers can tell whether two strings are of the same length only if at least one of them is
of length l < 2n (Libkin 2004), whence a formula with more quantifiers can distinguish more strings.
Examples of the importance of quantifier depth for modal logics are too technical to explain here,
but do exist (Halpern 1995; Infante-Lopez et al. 2003).

60

Quantifier depth will increase significantly, however, with the introduction of

spreading. Or rather, it might increase significantly, as most properties of spreading

are language specific — only the set of spreadable features and the ban against

onset internal spreading are universal. To capture this variability, I define a general

spreading scheme σ with six parameters i, j, ω, ω, min and max. Since this scheme

is already supremely confusing to read as it is, I omit for now the ban against onset

internal spreading.

σ :=
∧

π1(i)=π1(j)

(i ∧ω→
max
∨

n=min

◊n(j ∧ ω))

As I just mentioned, this is not a true formula but rather a formula scheme, that is to

say, a parameterized template from which we can generate the intended formulas

by substituting the desired values for the parameters. Here the variables i, j ∈ E,

coupled with judicious use of the formulas ω and ωregulate the optionality of

spreading. If spreading is optional, i is a spread element and ω, ωare formulas

describing, respectively, the structural configuration of the target of spreading

and the set of licit sources for spreading operations to said target. If spreading is

mandatory, then i is a local element and ω, ωdescribe the source and the set of

targets. If we want spreading to be mandatory in only those cases where a target is

actually available, ω has to contain the subformula
∨max

n=min◊
n ω. Observe moreover

that we need to make sure that every structural configuration is covered by some

ω, so that unwanted spreading can be blocked by rendering ωnot satisfiable.

As further parameters, the finite values min, max > 0 encode the minimum and

maximum distance of spreading, respectively. Finally, the operator ◊ ∈ {Ã,Â} fixes

the direction of spreading for the entire formula (◊n is the n-fold iteration of ◊).

With optional spreading, the direction of the operator is opposite to the direction of

spreading, otherwise they are identical. The different ways of interaction between

61

Mode Direction i ω ω ◊

optional left spread target source Â
optional right spread target source Ã
mandatory left local source target Ã
mandatory right local source target Â

Table 2.1: Parameterization of spreading patterns with respect to σ

the parameters is summarized in Table 2.1.

To incorporate the ban against onset internal spreading, we only have to increase

the minimum spreading distance by one for branching onsets. This yields the

extended scheme below.

σ :=
∧

π1(i)=π1(j)

(i ∧ω→
max
∨

n=min

◊n(j ∧ ω)∧ (O ∧◊O→
max
∨

n=min+1

◊n(j ∧ ω)))

As the astute reader (and all readers that glimpsed at footnotes 7, 8 and 9) will

have noticed by now, nothing in our logic prevents us from defining alternative

versions of GP. Whether this is a welcome state of affairs is a matter of perspective.

On the one hand, the flexibility of our logic ensures its applicability to a wide range

of different variants of GP, e.g. to versions where spreading is allowed within onsets

or where the details of proper government and the restrictions on branching vary.

On the other hand, it raises the question whether there isn’t an even weaker modal

logic that is still expressive enough to formalize GP. However, the basic feature

calculus of GP already requires the logical symbols ¬ and ∧, which gives us the

complete set of logical connectives, and we furthermore need Ã and Â to move us

along the phonological string. Hence, imposing any further syntactic restrictions

on formulas requires advanced technical concepts such as the number of quantifier

alternations. But this brings us back to an issue I discussed in the preface to this

section: the loose grip of mathematical methods, and why it isn’t as problematic as

62

it might seem initially. Lest I unnecessarily bore the reader with methodological

remarks, I shall merely point out that it is doubtful that a further weakening of the

logic would have interesting ramifications given the questions I set out to answer;

I am not interested in the logic that provides the best fit for a specific theory but

in the investigation of entire classes of string-based phonological theories from a

model-theoretic perspective. In the next section, I try to get closer to this goal.

63

CHAPTER 3

Formal Comparison of Theories

3.1 Overview

With a formal model of GP in place, it is time to see if my claims about MTP — foremost

that it provides us with a general perspective on the expressivity of phonological

theories and factors out the components that enhance or restrict it — were overly

optimistic. In order to prove that they were not, I show why spreading rather than

p-licensing, the syllable template or the feature system can be viewed as the locus of

power in GP. I first demonstrate how spreading can be generalized in a very natural

way by increasing the power of our modal logic, and I conduct empirical case

studies to determine if this power is actually needed, thereby buttressing further

claims of mine that MTP has something to offer for strictly empirically-minded

linguists, too. After feature spreading has been established as a decisive factor for

the generative capacity of a theory, I show that the same is not true of melodic and

skeletal restrictions.

3.2 The Phonological Hierarchy

Implicit in the closing discussion of the previous chapter was the insight that

our logic is powerful enough to account for all finitely bounded phonological

phenomena. The reason is that if a phenomenon, say assimilation between onsets,

64

is restricted to a domain with an upper limit on its size, e.g. to onsets that are

separated by exactly one rhyme, then there are only finitely many configurations

that have to be regulated by our logic. In the case at hand, we only have to consider

substrings of the form onset-rhyme-onset, and since the length of onsets and rhymes

is itself bounded to a maximum of 2, we only have to consider strings of length 6 or

less. This means that a formula of finite quantifier depth is sufficient to enforce the

desired restrictions. In linguistic parlance, we might also say that all local processes,

rules and constraints — including many unattested ones — can be accounted for in

our logic (note that this does not imply that GP itself can account for all of them,

since many of them will be ruled out by, say, the syllable template or the ECP).

Unbounded processes, i.e. long-distance phenomena that allow an unlimited

amount of phonological material to intervene between source and target, are

more problematic. Our logic above is limited to formulas of finite length, whence

each formula can only see a certain number of steps to the left or the right. Its

viewing distance is determined by its quantifier depth. For example, a formula

like Ã p∨ÂÂ q sees one step to the left and two steps to the right. At an abstract

level, then, we might associate with a phonological theory a window that moves

over the phonological string and shows us only n many consecutive symbols at a

time, where n is the highest quantifier depth value of all the formulas encoding

the theory. This perspective reinforces at an intuitive level the claim above that

every strictly local phenomenon can be modelled by this logic, and it also makes

it obvious why unbounded processes pose a challenge to such a “moving window”

version of phonology.

Interestingly, though, it is possible to reconcile long-distance phenomena with

the moving window model, provided that they can be reinterpreted as arising

from iterated application of finitely bounded processes or conditions. Consider for

65

example a stress rule for some language L that assigns primary stress to the last

syllable that is preceded by an even number of syllables. Assume furthermore that

secondary stress in L is trochaic, that is to say it falls on every odd syllable but the

last one. Let 1 and 2 stand for primary and secondary stress, respectively. Unstressed

syllables are assigned the feature 0. Then the following formula will ensure the

correct assignment of primary stress (for the sake of simplicity, we assume that every

node in the string represents a syllable; it is an easy but unenlightening exercise to

rewrite the formula for our GP syllable template).

∨

i∈{0,1,2}

i ∧
∧

i 6= j∈{0,1,2}

(i→¬ j)∧ (¬Ã ¬⊥→ 1∨ 2)∧ (2→Â 0)∧

(0→Â (1∨ 2)∨¬Â ¬⊥)∧ (1→¬Ã 1∧ (¬Â ¬⊥∨Â ¬Â ¬⊥))

The intuition here is that we do not need a window that covers the entire string in

order to determine if we are an odd or an even number of syllables away from the

left edge of the string because this information can be recovered in a local way from

the position of secondary stress, which is itself assigned in a strictly local manner.

Other seemingly unbounded phenomena arising from iteration of local processes,

most importantly vowel harmony (see Charette and Göksel 1994, 1996 for a GP

analysis), can be captured in a similar way. However, a priori we cannot rule out the

existence of unbounded phonological phenomena that require increased expressivity.

The lingering question, then, is how our logic can be modified accordingly.

Depending on the mathematical background of the reader, it might come as

no surprise that such modifications are readily available and have been studied

extensively in the literature, in particular in the form of various incarnations of

linear temporal logic (see Kröger and Merz 2008 for a thorough introduction). The

name might cause unnecessary confusion, but the reader can rest assured that

66

temporal logics differ from the modal logics we have encountered so far only in the

addition of new operators that significantly increase their power.

The first natural step in enhancing our modal logic is the addition of two

operators Ã+ and Â+ with the corresponding relation R+Ã, the transitive closure of

RÃ (recall from Sec. 2.3 that operators need a relational counterpart defined over

the frame). A node n1 is related to nm by R+Ã iff there is are nodes n2, . . ., nm−1 such

that RÃ relates n1 to n2, n2 to n3 and so on. In other words, the operators Ã+ and

Â+ simply mean “somewhere to the left” and “somewhere to the right”, respectively,

so their field of view is unbounded. They come with a significant disadvantage

though: They have no depth perception. The relation R+Ã does not keep track of

how many steps to the left or to the right one has to take, it just tells us that there is

some sequence of left/right-successors that will eventually take us where we want

to go. Thus, in combination with the Ã and Â, what we get in terms of locality

might be viewed as a window of finite size (determined by the depth of Ã and Â

nestings), beyond the edges of which we only see a hazy cloud of nodes without

being able to gauge which are closer to us and which farther away.

Mathematically inclined readers might be delighted to hear that this new logic

is exactly as powerful as restricted temporal logic (Cohen et al. 1993), which in

turn has been shown in Etessami et al. (1997) to exactly match the expressivity

of the two-variable fragment of first-order logic (FO2; see Weil 2004 for further

equivalence results). Linguists, on the other hand, will appreciate that among other

things, OCP effects (Leben 1973; Goldsmith 1976) can now be captured in an

elegant way. The formula O ∧A∧ L∧ P→Â+ ¬(O ∧A∧ P), for example, disallows

alveolar nasals to be followed by another alveolar stop, no matter how far the two

are apart. Note that this entails that if we fail to restrict the domain of the formula,

the OCP effect may hold even across word boundaries, which isn’t desirable in the

67

general case.

Due to their depth perception problem, Ã+ and Â+ are too coarse for faithful

renditions of unbounded spreading. They are incapable of defining, say, all intervals

of arbitrary size within which a certain condition has to hold (e.g. no b may appear

between a and c, or a suitably restricted variant of the OCP formula above). This

should be evident once one realizes that in order to restrict an interval, one has to

locate the start point, the end point, and the nodes in between. If one doesn’t know

the linear order between the nodes, this is impossible to do.

An easy remedy comes in the form of the until and since operators U and S

that can be considered a trademark of the canonical version of linear temporal

logic. Both are dyadic operators, which means that they scope over two formulas

rather than one. So instead of Uφ, one writes U(φ,ψ). The interpretation of this

formula, in intuitive terms is, “somewhere to the left of here, there is a node n at

which φ is true such that at no node between here and n, ψ is true”. For instance,

O→ U(A,¬I∧¬I) asserts that for every onset o, there is a node n somewhere to

the left of o with element A in head position and no I occurring between o and n,

neither in head nor in operator position. Since the notion of an interval is directly

built into U and S, they can easily step in for Ã+ and Â+ should intervals be needed.

As for their mathematical properties, we know that the addition of these oper-

ators grants us the power of full first-order logic, which, somewhat perplexingly,

is identical to the power of the three-variable fragment of first-order logic (FO3)

when we restrict our attention to strings (Immerman and Kozen 1989). This is to

say, the minimal increase in expressivity from FO2 to FO3 affords us all the power

we need to talk about intervals. From the equivalence with first-order logic it also

follows that we can now define even star-free languages (McNaughton and Pappert

1971; Thomas 1979; Cohen 1991; Cohen et al. 1993). The star-free languages form

68

the most powerful class of string languages that are still strictly weaker than the

regular languages.

To go the last mile and push the logic to the level of regular languages, we

could add a rather complicated device called fixed point operators (Vardi 1988),

or alternatively, directly incorporate regular expressions as they are commonly

used in computer science for representing regular languages (Leucker and Sánchez

2005). In either case, the syntax and semantics of the logic get rather complicated,

whence even short examples would pose the risk of derailing the discussion. For

practical purposes, it would probably be easier to use another equivalent logic

instead, monadic second-order logic (Büchi 1960), but these issues are peripheral

to our discussion. The general upshot that all three extensions enable us to define

more elaborate spreading patterns that are unbounded, can recognize intervals, and

even carry out simple computations like counting modulo m to the right starting

from some node n (which will pick out all the nodes that are m, 2m, 3m, . . . steps

to the right of n; if m = 2, this is equivalent to distinguishing odd from even nodes).

Still we cannot capture more elaborate patterns that are very common in syntax,

foremost unbounded center embedding and unbounded cross-serial dependencies.

It is generally assumed, though, that these have no role to play in phonology (see

also my brief remarks at the very end of Sec. 1.2).

Table 3.1 on the next page summarizes the properties of the extensions of the

basic GP logic that were surveyed in this section. Recall from Sec. 1.2 that SPE

defines exactly the class of regular languages (Johnson 1972; Kaplan and Kay 1994).

Hence, the class of GP theories with elaborate spreading patterns is identical to the

class of SPE theories.

69

GPÃ GPÃ
+

GPU GPν/SPE
Modal logic Ã RTL LTL ν-LTL = RLTL

Predicate logic — FO2 FO3 = FO MSO
Formal language — — star-free regular

Table 3.1: Hierarchy of classes of phonological theories

3.3 How Much Expressivity is Needed?

3.3.1 Caveat: The Power of Feature Coding

In this section, I show that two attested phonological phenomena require a more

powerful formalism than standard GP. The result needs to be prefaced by a short

disclaimer, though. Invoking a comparatively little-known mathematical theorem

(Thatcher 1967), one can show that all variants of GP can define regular languages,

the highest level of our hierarchy, if non-local dependencies may be encoded by

diacritic features, as this allows us to reinterpret unbounded dependencies as the

result of iterated local spreading of these diacritic features. Painting in broad

strokes, a feature is a diacritic if it never has a visible effect on the surface string,

such as the slash-feature of GPSG in syntax (Gazdar et al. 1985).1 To recapitulate

in linguistic terms, Thatcher’s result tells us that for any SPE grammar over a set

F of features, there is an equivalent GP grammar over a set of features that is an

extension of F . But fortunately, the use of such diacritic features is frowned upon

by linguists, and if we assume that the set of features is fixed across all theories, the

expressivity hierarchy above holds unchanged. Nevertheless, the power of feature

coding forces us to explicitly relativize the results to specific feature sets, which

1The notion is difficult to pin down because if we assume a universal feature set, certain features
might be redundant in language L but not in language L′, whence they would not be a diacritic in
the strict sense but could still be used in this way for language L. I expect that in those borderline
cases, one would also find disagreement between linguists whether an analysis (ab)using those
redundant features would be considered insightful.

70

makes them somewhat cumbersome to read.

3.3.2 Beyond GPÃ
+

— Sanskrit n-Retroflexion

My first case study revolves around a well-known long-distance phenomenon, n-

retroflexion in Vedic Sanskrit, also known as nati. As discussed in Schein and

Steriade (1986) and Hansson (2001) (building on data given in Whitney 1889

and Macdonell 1910), the process turns the first n following a continuant retroflex

consonant (r, ù) into a retroflex ï.

As shown in (10), the process applies under direct adjacency, across vowels, and

across (non-coronal) consonants. Notably, the process is apparently non-local, i.e.

there is no upper bound on the length of the intervening material (see Whitney

1889:225–230 for the full data set).

(10) a. /iù-na:/→ iù-ïa-

b. /cakù-a:na-/→ cakù-aïa

c. /vrk-na-/→ vr
"
k-ïa-

d. /krp-a-ma:na-/→ kr
"
p-a-ma:ïa-

That nati is indeed non-iterative, that is to say, it does not apply to any n after

the first one, is witnessed by (11).

(11) a. pra-ïina:ya (∗pra-ïi-ïa:ya)

b. kr
"
ï-va:na (∗kr

"
ï-va:ïa)

In (12), we see that the process is blocked by any intervening coronal consonants

(dental, palatal, as well as retroflex ones, and both obstruents and sonorants).

(12) a. mr
"
d-na:- (∗mr

"
d-ïa:-)

71

b. marj-a:na- (∗marj-a:ïa-)

c. kr
"
t-a-ma:na- (∗kr

"
t-a-ma:ïa-)

d. kùved-a:na- (∗kùved-a:ïa-)

Moreover, nati is blocked if the target is not immediately followed by a sonorant.

(13) a. brahman (∗brahmaï)

b. tr=n=t-te (∗tr=ï=t-te)

Finally, the target may not be followed by a segment that could itself be followed

by a source for nati, i.e. n may not be followed by another continuant retroflex

consonant.

(14) a. pra:-nr
"
tyat (∗pra:-ïr

"
tyat)

b. pari-nakùati (∗pari-ïakùati)

From the data we derive the following description: nati turns the first n following

a continuant retroflex consonant (r, ù) into a retroflex ï iff the following conditions

are fulfilled:

(15) a. No coronal consonant intervenes between trigger and target.

b. The nasal is immediately followed by a (nonliquid) sonorant.

c. The nasal is not followed by a retroflex continuant.

We now prove in two steps that a process like nati cannot be captured by

the class GPÃ or GPÃ
+
. The first theorem asserts that there is a GP-variant that is

expressive enough to faithfully model this process, whereas the second demonstrates

the insufficiency of GPÃ and GPÃ
+
.

Theorem 3.1. There is a feature set F such that there is a theory over F that belongs

to the class GPU and accounts for nati.

72

Proof. The conditions in (15) translate into the three GPU axioms below. Remember

that the feature µ is used to denote unpronounced segments. Furthermore, for any

sound or class of sounds i, we use ðiñ to denote the PE i, i.e. the propositional

formula over F that uniquely represents i. In the special case of ðderived ïñ, this

corresponds to a formula that is obtained from the formula ðïñ by replacing the

feature(s) that distinguish ï from n by their spread analogue. It is easy to see

that there are feature systems where ï has more features than n (so that ï has

some features that can be replaced) and where all expressions in the axioms can

be uniquely represented. Hence there is at least one suitable F . Together with the

three GPU axioms this proves the theorem.2

N1 ðderived ïñ→ U(ðrñ∨ ðùñ,¬ðcoronalñ∧¬ðnñ)

“If derived ï is true at node w, then there is a node v labeled r or s to the

left of w and neither a coronal nor an n occurs between v and w.”

N2 ðderived ïñ→Â ðsonorantñ

“If derived ï is true at node w, then there is a sonorant immediately to

the right of w.”

N3 ðderived ïñ→¬Â+ ðretroflex continuantñ

“If derived ï is true at node w, then there is no retroflex continuant to

the right of w.”

2 If there are other processes P1, . . . , Pn that also derive ï, their are two options. Either we say
that nati is a last resort operation, so it applies only if no other process is applicable. In this case,
the antecedent of each axiom has to be strengthened to ðderived ïñ∧

∧n
i=1¬φi , where each φi is

a description of the configuration under which Pi may take place. Alternatively, we may say that
a surface string is licit if it can be derived by some process, in which case the axioms have to be
combined into one as follows:

ðderived ïñ→ (U(ðrñ∨ðùñ,¬ðcoronalñ∧¬ðnñ)∧Â ðsonorantñ∧¬Â+ ðretroflex continuantñ)∨
n
∨

i=1

φi

Since we are only interested in the complexity of nati itself, we disregard these special cases.

73

For the second theorem, though, an additional assumption has to be introduced,

namely that we have to account for nati at the sentence-level, rather than the

word-level. That is to say, our phonological theory has to decide for entire sentences

whether they are well-formed, rather than for words in isolation. This assumption is

actually rather plausible, as there are plenty of phonological processes that operate

across word boundaries yet do not seem to behave any different from word-internal

processes. We have to introduce this additional assumption because nati is in fact

GPÃ
+
-definable if we restrict our attention to isolated words. This is due to N3,

which requires that the target of nati may not be followed by any sounds that

could act as nati-triggers. With this restriction in place, nati can be captured by the

following formula:

ðderived ïñ→¬Ã+ (ðretroflex continuantñ∧¬Â+ (ðrñ∨ ðsñ))

It states that if there is a retroflex continuant somewhere to the left of a nati target,

then somewhere to the right of said continuant, there has to be a nati trigger — as

N3 does not allow the trigger to be to the right of the target, it has to be between

the target and the continuant. In particular, this entails that no retroflex continuant

occurs between the target of the nati and the first source to its left. Now if we

consider sentences rather than isolated words, N3 does not ban the occurence of

triggers to the right of targets anymore and the formula above does not have the

intended result.3

Keeping this important caveat in mind, we may now turn to the second theorem.

3A pathological but nevertheless noteworthy special scenario arises if our feature system cannot
distinguish between lexical and derived instances of ï. As ï may also be phonemic in Sanskrit
(Kobayashi 2004), the formula above would give the desired result only if the distribution of
phonemic ï can be described in terms of GPÃ

+
-formulas. This ties in with my remarks in Fn. 2.

Thanks to Craig Melchert for bringing the dual status of ï to my attention and pointing me to the
relevant literature.

74

Theorem 3.2. There is a feature set F such that at least one theory over F which

belongs to the class GPU accounts for nati at the sentence-level but no theory over F

belonging to a weaker class does.

Proof. Since axioms N2 and N3, which represent (15b) and (15c), are in fact GPÃ
+

formulas, the culprit has to be N1, the formal encoding of (15a). As we have

previously seen, GPÃ
+

is a special variant of restricted temporal logic over strings,

which can be formalized in FO2. Hence it suffices to show that (15a) cannot be

stated in FO2. This can be demonstrated using standard techniques from finite

model theory. Due to its formal difficulties, though, the proof is relegated to the

appendix. But even on an intuitive level it should be manifest that we need three

variables for (15a): two in order to mark the edges of the interval defined by trigger

and target, and a third one to restrict the nodes within said interval.

Presumably the astute reader did already realize that the proof of Thm. 3.2

establishes a stronger result: given such a F , there is no theory in the class GPÃ
+

that accounts for any process which involves checking nodes within an interval of

unbounded size. Under the proviso that there are empirical phenomena besides nati

that exhibit this property, Thm. 3.2 immediately gives us a catalog of phenomena

that GPÃ
+
-theories cannot account for without careful tweaking of their feature

system.

But the discovery of further “unbounded interval” processes is likely to prove

difficult, because it is a notoriously hard task to establish conclusively that the

unboundedness of the size of the interval doesn’t arise from the iteration of bounded

spreading steps. In the case of nati, for instance, it is also conceivable (see Hansson

2001:242f) that we are actually dealing with a sequence of local retroflexion-steps

only the last of which is marked in the Sanskrit writing system. Then nati could

easily be accommodated in a GPÃ-theory. Well-formedness conditions not involving

75

any spreading to begin with (e.g. “no s between p and t”) would thus constitute a

better place to look for such unbounded intervals, but they all seem to be restricted

to small phonological constituents such as syllables or onsets, for the size of which

we can establish an upper bound.

3.3.3 Beyond GPU — Primary Stress Assignment in Creek and Cairene Arabic

We now turn to primary stress assignment in Creek and Cairene Arabic (Mitchell

1960; Haas 1977; McCarthy 1979). I only list the stress rules of Cairene Arabic, as

our general reasoning carries over to Creek just as well.

(16) Stress assignment in Cairene Arabic

a. Stress the final syllable, if it is superheavy (CV:C or CVCC).

b. Else stress the penult, if it is heavy (CV: or CVC).

c. Else stress the penult or the antepenult, whichever is separated by an

even number of syllables from the closest preceding heavy syllable (or,

if there is no such syllable, from the beginning of the word).

d. There is no overt marking of secondary stress.

Ignoring for a moment (16d), note that conditions (16a) – (16c) are fairly

unremarkable from a typological perspective and can be found in hundreds of

languages, often in conjunction with trochaic or iambic secondary stress assignment.

In fact, we have already encountered a simplified variant of such systems in Sec. 3.2

as an example of how unbounded dependencies can arise from the iteration of local

dependencies. So we already know that such a system can be captured in GPÃ, and

hence in GPU , too.4

4Recall that the technical details are slightly more intricate than is apparent due to stress rules
operating on syllables, which do not exist as discrete entities in GP.

76

The important insight in Sec. 3.2 was that the distribution of primary stress can

be computed in a strictly local manner from the position of secondary stress, which

can be assigned in a local fashion, too. This approach is much in the spirit of metric

analyses with binary branching feet (Hayes 1995). In the case of Cairene Arabic,

however, we cannot rely on secondary stress: (16d) makes it clear that there is

no overt secondary stress in Cairene Arabic, and as a consequence, the secondary

stress feature is degraded to the status of a coding feature, and as such it cannot be

assumed to be an integral part of all feature systems.5 As a consequence, GPÃ, or as

we will see in a second, all variants up to GPU are too weak to define the correct

constraints on primary stress assignment.

Theorem 3.3. There is a feature set F such that there is a theory over F that belongs

to GPν and accounts for primary stress assignment in Cairene Arabic.

Proof. From our discussion above it follows that the crucial factor in assigning

primary stress is counting the number of syllables. In particular, we need to be

able to distinguish even from odd syllables. This corresponds to counting modulo 2

(remember that n modulo 2 is the remainder of dividing n by 2, so n modulo 2 is 0 if

n is even and 1 otherwise). We know from the combined work of Büchi (1960) and

Vardi (1988) that a language can be defined in GPν iff it is regular. There is also

a simple and well-known algorithm for constructing a finite state automaton that

counts modulo n, n finite, whence counting modulo n does not exceed the power of

regular languages. A fortiori, then, any GPν theory can count modulo 2. Note that

since the only feature needed for assigning stress is a primary stress feature, almost

every choice of F is sufficient.

5This should not be construed as a claim about the validity of metric approaches such as Hayes’s.
It is merely a strict methodological requirement that we have to enforce here to prevent the
phonological hierarchy from collapsing and ensure the general validity of our theorems. It might
well be the case that secondary stress is computed even though it has no overt exponent. In fact, the
loose mapping from phonology to phonetics assumed in GP makes this a very plausible assumption.

77

Theorem 3.4. There is a feature set F such that at least one theory over F which

belongs to the class GPν accounts for nati but no theory over F belonging to a weaker

class does.

Proof. It is well known that full first-order logic cannot count modulo n. As was

proved by McNaughton and Pappert (1971) and Thomas (1979), the stringsets

definable in first-order logic are the star-free stringsets, which in turn are also the

stringsets definable in LTL (Cohen et al. 1993), in which we formalized GPU .

Once more I feel obliged to point out that my line of reasoning here hinges

on data that is far from undisputed; whether secondary stress marking is indeed

indicated, but only in very subtle ways, is a contentious issue. Thus one must

conclude that both instances of “non-GPÃ phenomena” involve a considerable

amount of uncertainty. The apparent scarcity of conclusive evidence for mechanisms

in natural language phonology that go beyond GPÃ is somewhat unexpected given

that both SPE and OT are significantly more powerful (see Kaplan and Kay 1994

and Frank and Satta 1998, respectively).

3.4 Further Parameters

3.4.1 Feature Systems

The restriction to privative features is immaterial. A set of PEs is denoted by

some propositional formula over E, and the boolean closure of E is isomorphic to

℘(E). But Keenan (2008:81–109) shows that a binary feature system using a set

of features F can be modeled by the powerset algebra ℘(F), too. So if |E|= |F|,

then ℘(E) ∼= ℘(F), whence the two feature systems are isomorphic. The same

result holds for systems using more than two feature values, provided their number

78

is finitely bounded, since multivalued features can be replaced by a collection of

binary valued features given sufficient cooccurrence restrictions on feature values

(which can easily be formalized in propositional logic).

One might argue, though, that the core restriction of privative feature systems

does not arise from the feature system itself but from the methodological principle

that absent features, i.e. negative feature values, behave like constituency informa-

tion and cannot spread. In general, though, this is not a substantial restriction either,

as for every privative feature system E we can easily design a privative feature

system F :=
�

e+, e− | e ∈ E
	

such that M, w |= e+ iff M, w |= e and M, w |= e− iff

M, w |= ¬e. Crucially, though, this does not entail that the methodological principle

described above has no impact on expressivity when the set of features is fixed

across all theories, which is an interesting issue for future research.

3.4.2 Syllable Template

While GP’s syllable template could in principle be generalized to arbitrary numbers

and sizes of constituents, a look at competing theories such as SPE and Strict CV

(Lowenstamm 1996; Scheer 2004) shows that the number of different constituents

is already more than sufficient. This is hardly surprising, because GP’s syllable

template is modeled after the canonical syllable template, which in general is

not thought to be in need of further refinement. Consequently, we only need to

abandon the connection between constituents and the realization of a segment,

lift the restriction on the branching factor and allow theories not to use all three

constituent types to obtain a generalized version of the syllable template than can

accommodate all three theories. In this generalized version, N does not denote

the class of vowels, but the class of segments that need not be licensed but can

be licensors. Correspondingly, O designates the class of segments that have to be

79

licensed if they themselves are licensors, and C the class of segments that always

have to be licensed. SPE then operates with a single N constituent of unbounded

size, whereas Strict CV uses N and O constituents of size 1.

But now that a constituent may dominate more than two skeletal nodes, govern-

ment has to be generalized, too. The idea is to let every theory fix the branching

factor b for each constituent and the maximum number l of licensees per head.

Every node within some constituent has to be licensed by the head, i.e. the leftmost

node of said constituent. Similarly, all nodes in a coda or non-head position have

to be licensed by the head of the following constituent. For every head the total

number of licensees may not exceed l.

Even from this informal sketch it should already be clear that the syllable

template can have a negative impact on expressivity (canonical GP cannot have,

say, a cluster of 7 consonants), but only under the right conditions. For instance, if

our feature system is set up in a way such that every symbol of our alphabet is to be

represented by a PE in N (as happens to be the case for SPE), restrictions on b and

l are without effect. It is an interesting question for future research under which

conditions the syllable template has a monotonic effect on generative capacity.

3.5 Evaluation

In summing up, we have seen in this section that there might be an empirical

motivation for increasing the power of GP up to the level of SPE by tweaking the

spreading mechanism (which in a formal sense corresponds to the introduction

of new modal operators). Feature privativity and the syllable template have, if at

all, only a restrictive impact on expressivity, GP’s true locus of power lies in its

spreading mechanism. But it is important not to misconstrue these results. In a

80

certain sense they make very strong claims, namely that only a tiny portion of all

algorithmically definable formal languages are generated by SPE, and even fewer

by canonical GP. This goes to show that these theories are indeed very restrictive,

but also that there is a systematic relation between them and that we can factor out

certain parts of those theories in considering their generative capacity. But at the

same time the expressivity results are also very weak, because they fail to reflect an

important dimension of linguistic reasoning: the naturalness of an analysis.

For instance, it is an easy formal exercise to restrict SPE’s binary feature system

with feature cooccurence constraints such that the licit matrices are exactly those

corresponding to the PEs derived by GP’s privative feature calculus. But in linguistics

(and any other sciences, I surmise) nobody would pick the former over the latter, as

it seems to miss important generalizations and is cumbersome to work with. This is

even more obvious in the case of structural constraints, where it might be possible

to account for some phenomenon in GPÃ
+
, say, by writing out long lists of structural

configurations and connecting them by various coding tricks, but if there is a short

and simple GPU formula that gets the same job done, it will be the preferred choice.

Inherent to my examples is the assumption that the naturalness of an account

is directly reflected in the complexity of the formulas representing it. How exactly

this complexity is to be measured is as yet an unsolved problem — not because

there are no mathematical ways of doing so, but because those that we know all

seem promising. Kornai (2009) argues that Kolmogorov complexity provides the

right notion, whereas after several discussions with Ed Stabler I have come to the

conclusion that a perspective informed by succinctness and data compression results

is more promising (see Grohe and Schweikardt 2005 for some relevant results).

However things may eventually turn out, it cannot be emphasized enough that this

new direction is not orthogonal to the enterprise undertaken here but rather its

81

natural extension. The mathematical formalization of phonological theories is the

foundation on which the more fine-grained complexity results must rest.

At this point it must be admitted that MTP is currently not in a position to

represent every phonological theory in a format that is suitable for those explo-

rations in complexity. Representational theories like GP are naturally captured by

our declarative, model-theoretic approach, whereas derivational theories like SPE

are usually formalized in automata-theoretic terms as rational relations (Kaplan

and Kay 1994; Mohri and Sproat 1996), which resist being recast in logical terms

due to their closure properties (note that throughout the thesis I made reference

only to the output language of SPE rather than its technical machinery). But not

everything is lost. For SPE, one can use a coding trick from two-level phonology

(Koskenniemi 1983) and use an unpronounced feature like µ to ensure that all

derivationally related strings have the same length. SPE can then be interpreted

as language over pairs and hence cast in MSO terms, which was successfully done

by Vaillette (2003). Fortunately, OT is very similar to SPE on a formal level (Frank

and Satta 1998; Karttunen 1998; Jäger 2002), so Vaillette’s technique reigns in

the two most influential theories of generative phonology at once. Unfortunately,

it is unclear how this method could be extended to weaker grammars (because it

follows from Thatcher’s theorem that the individual component languages might be

of greater complexity than the language over pairs itself).

With respect to future research, then, there is a quantitative as well as a qualita-

tive axis along which MTP can be extended. Along the quantitative axis we further

the coverage of MTP to new formalisms, whilst along the qualitative axis we move

towards more refined results that characterize classes of phonological theories to

greater and greater detail with an emphasis on factors besides expressivity.

82

CONCLUSION

In this thesis, I sought to demonstrate that MTP provides us with a general frame-

work in which string-based phonological theories can be matched against each

other. To this end, I conducted a case study in which I compared two superficially

very dissimilar approaches, SPE and Government Phonology. For my description of

Government Phonology, I started with a modal logic which despite its restrictions

was still perfectly capable of defining this rather intricate theory with its structured

feature calculus, peculiar syllabification and empty categories. In fact, we observed

that very simple modal formulas are sufficient for all parts of the theory except

spreading, which is slightly surprising considering how little attention has been

devoted to spreading in the literature.

I then tried to generalize Government Phonology along several axes, some

of which readily lent themselves to conclusive results while others didn’t. Most

importantly, the power of spreading, by virtue of being an indicator of the necessary

power of the description language, has an immediate and monotonic effect on

generative capacity. This allowed us to push Government Phonology to the level

of SPE. Other parameters play only a minor role with respect to expressivity.

As mentioned just a few pages earlier, a lot of work remains to be done, but

nevertheless I am confident that the model-theoretic perspective will shed new light

on long-standing issues in phonology. I hope that linguists will conceive of it as a

welcome addition to their analytic toolbox.

83

APPENDIX A

Mathematical Preliminaries

Let a, b, c, . . ., x , y, z be (mathematical) objects. Then the set of these objects

is denoted by
�

a, b, c, . . . , x , y, z
	

, and a, b, c, . . ., x , y, z are its members. If A is

some set, one may write x ∈ A or A 3 x to indicate that x is a member of A. The

notation x /∈ A indicates that x isn’t a member of A. The cardinality of a set is

identical to the number of objects it contains. There is exactly one set of cardinality

0, the empty set, denoted by ;. Sets can also be defined implicitly; for instance,

{i | 0< i < 5} = {1,2, 3,4}. This is a good moment to point out the difference

between the easily confused symbols = and :=. The former denotes the familiar

notion of equivalence, whereas the latter should be read as “is defined as” or

“stands for”. In other words, := assigns names to objects. We could have referred to

{i | 0< i < 5} and {1,2, 3,4} by the names A and B, respectively, which in symbols

is expressed by A := {i | 0< i < 5} and B := {1, 2,3, 4}, and then expressed the

equivalence more succinctly by A= B.

Returning to sets, we say that A is a subset of B, abbreviated A ⊆ B, if every

member of A is a member of B. Similarly, A is a superset of B, written A ⊇ B, if

B ⊆ A. If both A ⊆ B and B ⊆ A, we say that A and B are identical and write

A = B. If A = B does not hold, we write A 6= B. A subset A of B is proper (⊂)

if A 6= B, and similarly for supersets (⊃). The relative complement of A and B

is A \ B := {x | A3 x /∈ B}. Given a set A, ℘(A) is its powerset, which contains

all subsets of A, and only those. For instance, the powerset of A := {1, 2,3} is

84

℘(A) := {;, {1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3} , {1, 2,3}}.

A tuple is a set in which all objects are linearly ordered with respect to each

other. Hence, while {a, b}= {b, a}, 〈b, a〉 6= 〈a, b〉. For instance, whether a kissed

b or the other way round may matter, whereas there is no difference between

“a and b kissed” and “b and a kissed”. An n-tuple consists of n objects, and 2-

tuples are often called pairs. Given two sets A and B, their cartesian product is

the set A× B := {〈a, b〉 | a ∈ A and b ∈ B}. Given sets A1, A2, . . . , An−1, An, we call

R⊆ A1× A2× . . . An−1× An an n-ary relation. For instance, the “less than”-relation

< relates x to all numbers that are greater than it. Thus 〈1,3〉 ∈<, but 〈3,1〉 /∈<.

Whenever it holds for all tuples

a1, a2, . . . , an−1, an
�

and

b1, b2, . . . , bn−1, bn
�

of R

that a1 = b1, a2 = b2, . . . , an−1 = bn−1 also implies an = bn, we call R a function from

domain A1×A2× . . .×An−1 into co-domain An, written f : A1×A2× . . .×An−1→ An.

The familiar bracket notation f (a1, a2, . . . , an−1) = an may also be expressed by

f : a1, a2, . . . , an−1 7→ an.

85

APPENDIX B

Proof of Theorem 3.2

In this appendix, I present a proof of Thm. 3.2 as formulated on page 75, which

posits that nati cannot be defined in GPÃ
+
. Recall that the crucial challenge was

posed by axiom N1:

ðderived ïñ→ (U(ðrñ∨ ðùñ,¬ðcoronalñ∧¬ðnñ))

In plain English, this formula enforces that a derived ï is preceded by an r or ù

and no coronal may intervene between the two. The subformula ¬ðnñ ensures that

the first available target is operated on by nati. Abstracting away from extraneous

details, we may interpret N1 as a ban against strings containing at least one

substring of the form ad∗cd∗b, where a represents nati-triggers, b nati-targets, c

nati-intervenors and d everything else. Or approached from the other direction, N1

is the logical description of the language L := {a, b, c, d}∗ ad∗cd∗b {a, b, c, d}∗. My

proof establishes that L is not definable in FO2[S,<], the two-variable fragment of

first-order logic enriched with predicates for the successor relation and the less-than

relation. As FO2[S,<] is equivalent to RTL, which in turn is equivalent to GPÃ
+
,

this establishes the GPÃ
+
-undefinability of N1. The undefinability of nati itself then

follows from the fact that N2 and N3 are compatible with the assumptions made

in the proof, at least if phonology operates on entire sentences rather than single

words in isolation (see the discussion in Sec. 3.3.2).

86

My proof relies on pebble games. As the content of this section is presumably

of little interest to a general audience of linguists, I grant myself the luxury of

assuming a certain familiarity with Ehrenfeucht-Fraïssé games on the reader’s part.

Curious readers that lack this background are advised to consult Libkin (2004),

which is also where the next two definitions as well as Thm. B.3 were taken from

virtually unaltered.

Definition B.1. Let A and B be two structures over the signature σ (where σ

contains no function symbols), A and B the domains ofA andB , and

a1, . . . , an
�

and

b1, . . . , bn
�

two tuples in A and B, respectively. Then
�

a1, b1

�

, . . . ,

an, bn
�	

defines a partial isomorphism betweenA andB iff the following conditions hold:

• For every i, j ≤ n, ai = a j iff bi = b j.

• For every constant symbol c from σ, and every i ≤ n, ai = cA iff bi = cB .

• For every k-ary relation symbol P from σ and every sequence

i1, . . . , ik
�

of

(not necessarily distinct) numbers from the interval [1, n],
¬

ai1 , . . . , aik

¶

∈ PA

iff
¬

bi1 , . . . , bik

¶

∈ PB .

Definition B.2. Let A and B be as above. A 2-pebble game over A and B is

played by the spoiler and the duplicator as follows. The players have two pairs of

pebbles
¬

p1
A , p1

B

¶

and
¬

p2
A , p2

B

¶

. In each move, the following happens:

• The spoiler chooses a structure, A or B , and a number i ∈ {1,2}. For the

description of the other moves, assume that the spoiler has chosenA — the

other case, when the spoiler choosesB , is completely symmetric.

• The spoiler places the pebble pi
A on some element ofA . If pi

A was already

placed onA , this means that the spoiler either leaves it there or removes it

87

and places it on some other element ofA ; if pi
A was not used, it means that

the spoiler picks that pebble and places it on an element ofA .

• The duplicator responds by placing pi
B on some element ofB .

We denote the 2-pebble game that continues for n rounds by PGn
2(A ,B). After

each round of the game, the pebbles placed onA andB define a relation F ⊆ A×B

such that if pi
A , i ∈ {1, 2}, is placed on a ∈ A and pi

B is placed on b ∈ B, then

〈a, b〉 ∈ F . The duplicator has a winning strategy in PGn
2(A ,B) iff he can ensure

that after each round j ≤ n, F is the graph of a partial isomorphism. In this case we

writeA ≡2,nB .

Theorem B.3. LetA ,B and σ as above. ThenA andB agree on all sentences of

the infinitary two-variable first-order logic of quantifier depth up to n iffA ≡2,nB .

Note that if σ is finite, there are — up to logical equivalence — only finitely

many first-order sentences of quantifier depth up to n, so in this case we are in fact

only dealing with FO2[S,<] sentences. A corollary of Thm. B.3 is that in order to

show that a structural constraint c is not FO2[S,<]-definable, it suffices to exhibit

two modelsA andB such thatA ≡2,nB but only one of the two obeys c. This is

the general strategy that underlies the proof presented here, which exploits four

weaknesses of FO2[S,<]:

1. An FO-formula of quantifier rank n cannot count past n, so for sufficiently

long strings the spoiler cannot use the number of as, bs or cs to beat the

duplicator.

2. An FO-formula of quantifier rank n cannot take more than n S-steps; metaphor-

ically speaking, its field of vision is bounded. Hence for certain structures the

spoiler cannot beat the duplicator by a sequence of S-steps towards a node

whereA andB are not isomorphic.

88

3. No <-move by the spoiler has to be precisely matched by the duplicator — the

duplicator may actually jump across more or fewer nodes than the spoiler.

4. Since only two pebble pairs are present at the same time, one of which is

replaced per round, the duplicator is very free in his <-moves.

The macro-structure of the proof is as follows. Assume that one wants to show

that the language L introduced above, which is defined over the alphabet Σ :=

{a, b, c, d}, is definable in FO2[S,<]. To simplify the induction step in the proof,

we extend FO2[S,<] to FO2[S,<, Rσ]σ∈Σ, which has a dedicated unary relation

Rσ for each σ ∈ Σ such that node w ∈ Rσ if and only if the label of w is σ. Now

for every FO2[S,<, Rσ]σ∈Σ formula φ of quantifier rank n, one can find strings

s and t over the alphabet Σ := {a, b, c, d} of the form u_1 a_u_2 c_u_3 b_u4 and

u_1 a_u_2 b_u_2 c_u_3 a_u_3 b_u4, with u1, u2, u3, u4 ∈ Σ∗, such that s |= φ iff t |= φ.

All ui, 1≤ i ≤ 4, are carefully chosen to exploit the weaknesses of FO2[S,<] listed

above so that the duplicator has a winning strategy. As s /∈ L 3 t, it follows that L is

not FO2[S,<, Rσ]σ∈Σ-definable, which implies that it is not definable in FO2[S,<]

either.

The crucial step in the proof is indeed the right choice of s and t. The spoiler

has two strategies for winning: He can either use alternating S-moves, where the

pebbles remain adjacent in every round (i.e. if p1
s is immediately to the left of p2

s ,

the spoiler places either p1
s immediately to the right of p2

s or p2
s immediately to the

left of p1
s). As these have to be exactly matched by the duplicator, the spoiler may

use them in order to maneuver the pebbles into a position with different labels (as

labels are unary relations in FO2[S,<, Rσ]σ∈Σ, pi
s and pi

t must be placed on nodes

with identical labels, i ∈ {1,2}). Or he can try to use <-moves in such a way that

the duplicator has to illegally change direction lest he violate label identity or run

out of available targets, e.g. by being too close to the end of the string. The first

89

strategy can be rendered useless by making the distances between any as, bs and cs

sufficiently large. To invalidate the second, one has to ensure that at any position w

where s and t are not isomorphic, there are enough as, bs and cs somewhere to the

left and somewhere to the right of w.

Let us put this general plan into action now. We construct the FO2[S,<, Rσ]σ∈Σ-

indistinguishable strings s and t from two basic templates as follows. We first define

strings u and v over the extended alphabet Σ∪ {♠,♣}.

u := . . .
︸︷︷︸

4α+1

α
︷ ︸︸ ︷

a . . .
︸︷︷︸

4α+1

b . . .
︸︷︷︸

4α+1

a . . .
︸︷︷︸

4α+1

c . . .
︸︷︷︸

4α+1

a . . .
︸︷︷︸

4α+1

b . . .
︸︷︷︸

4α+1

v := a . . .
︸︷︷︸

2α

♠ . . .
︸︷︷︸

2α

c . . .
︸︷︷︸

2α

♣ . . .
︸︷︷︸

2α

b

The nodes represented by the dots are assigned labels drawn from Σ \ {a, b, c},

so in the case at hand . . .
︸︷︷︸

4α+1

stands for d4α+1 and . . .
︸︷︷︸

2α

for d2α, where α is some

sufficiently large integer.

Let v[x , y] be the string obtained from v by replacing ♠ and ♣ by the strings

x and y, respectively. I write v1 and v2 to denote the substrings x and y of the

assembled string v[x , y]. Then, for σ and τ drawn from Σ\ {a, b, c} (so σ = τ = d

for our purposes), set u′ = u_a . . .
︸︷︷︸

4α+1

c . . .
︸︷︷︸

4α+1

and define

s := u_v[σ,τ]_u′

t := u_v[σ . . .
︸︷︷︸

2α

b . . .
︸︷︷︸

2α

σ,τ . . .
︸︷︷︸

2α

a . . .
︸︷︷︸

2α

τ]_u′

Note that s is a subsequence of t, or the other way round, t is an extension

of s obtained by inserting . . .
︸︷︷︸

2α

b . . .
︸︷︷︸

2α

σ and . . .
︸︷︷︸

2α

a . . .
︸︷︷︸

2α

τ right after σ and τ in s,

respectively. Now assume that each node w in s is assigned an index i such that

90

w0 is the leftmost node and if w j is the successor of wi, 0≤ i, then j = i+ 1. The

indexing is carried over from s to t such that all nodes w that belong to u, u′ or v

modulo v1 and v2 have identical indices in s and t. For the substrings v1 and v2 of t,

the indices are obtained as follows: Assume that v1 and v2 in s are assigned indices

i and j. Then for 1≤ k ≤ α+ 1, the kth nodes of v1 and v2 in t are assigned index

i+ (k− 1) and j+ (k− 1), respectively, and for 3α+ 3 ≤ k ≤ 4α+ 3, the indices

i− ((4α+3)− k) and j− ((4α+3)− k), respectively. For all other choices of k, the

index is the special symbol ∗.

A node w′ is a correspondent of w iff they are not nodes of the same string

and have the same index. We denote the set of correspondent(s) of w by cor(w).

This notation is extended to pebbles such that if pebble p is placed on node w,

then cor(p) = cor(w). We say that the pebbles pi
s and pi

t , i ∈ {1, 2}, are in sync iff

cor(pi
s) ⊆ cor(pi

t) or the other way round. For pebbles pi
s and pi

t , i ∈ {1, 2}, the

pi-rectangle is the pair consisting of the shortest substrings rs and rt of s and t,

respectively, such that rs has pi
s and w ∈ cor(pi

t) as its edge nodes and rt pi
t and

w′ ∈ cor(pi
s). If cor(pi

t) is the empty set (i.e. if pi
t is placed on a node with index

∗), let cor(pi
t) = cor(e), where e is the closest node with an index to the left or the

right of pi
t; whether to pick the first node to the left or to the ride is determined

by the shortness of rs. The edges of the strings rs and rt are also called the corners

of the pi-rectangle. Given a string r of length l and a node wi, 0≤ i ≤ l, wi +m is

the last node of the longest substring of r that starts with wi and contains at most

m+ 1 nodes. We define wi −m as the symmetric analog in which wi marks the end

of the string. The m-neighborhood of node w is the substring spanning from w−m

to w+m. For the nodes and α-neighborhoods in and surrounding the extensions of

v in s and t, I adopt the naming conventions depicted in Fig. B.1 on page 99.

Theorem B.4. For each n ∈ N there are strings s and t as defined above such that

91

s ≡2,n t.

Proof. We have to show that the duplicator has a strategy such that for every

0 ≤ k ≤ n, the graph of the relation F defined after k rounds of the n-round

2-pebble game does not fail to be a partial isomorphism. This is trivially true for

k = 0, as no pebbles have been placed yet. For k ≥ 1, there are two cases to

distinguish. Note that I do not explicitly mention cases where the spoiler uses the

S-move strategy as described above, but is taken into account for the induction

step.

Case 1 Assume that after k− 1 rounds F is a partial isomorphism, one of p1
s

and p1
t is to be played by the spoiler, and p2

s and p2
t are in sync.

Isomorphic s to t If the spoiler plays some node from s that belongs to neither
←→
L nor

←→
R , the duplicator places p1

t on w ∈ cor(p1
s).

Isomorphic t to s In the other direction, if the spoiler places p1
t on a node that

does not belong to B t
l , At

r ,
←−
L ,
−→
L ,
←−
R or

−→
R , the duplicator matches the

spoilers move by placing p1
s on w ∈ cor(p1

t).

It is evident that after k rounds F still is a partial isomorphism, as only nodes from

the isomorphic parts of s and t were played. Moreover, the pebbles are still in sync,

so that the same strategy may apply in the next round.

Initial s to t (green) If no pebbles are placed in
←→
L ,
←−
L or

−→
L and the spoiler

places p1
s on a node in

←→
L , then the duplicator places p1

t on w ∈ cor(p1
s) in

←−
L or

−→
L such that p1

t is in
←−
L (
−→
L) if p1

s is left of (right of) as
l + (2α+ 1). If it

is neither, the duplicator may choose freely between the correspondents in
←−
L

and
−→
L .

Initial s to t (red) Analogous to the previous rule.

92

Initial t to s (green) If no pebbles are placed in
←→
L ,
←−
L or

−→
L and the spoiler

places p1
t on a node in

←−
L (
−→
L), then the duplicator puts p1

s on as
l + (2α+ 1).

Initial t to s (red) Analogous to the previous rule.

These strategies clearly preserve partial isomorphism. Note in particular that

since the pebbles were in sync in round k− 1, none of them were placed in B t
l or

At
r . Thus they were placed in the isomorphic substrings of s and t, from which

it follows immediately that whenever the spoiler is given a choice between two

correspondents, both are in fact accessible (because the remaining pebble in t is

either to the right or to the left of both correspondents). However, the pebbles are

not guaranteed to be in sync anymore. Nevertheless the remaining rules for the

game where all pebbles are in
←→
L ,
←−
L or

−→
L (
←→
R ,
←−
R and

−→
R) are listed here, as we

are dealing with a fairly limited case of being out of sync that does not bring about

any wide-ranging complications.

Moving around (green) Suppose p2
t is placed in

←−
L or

−→
L . If the spoiler places

p1
t on a node in

←−
L or

−→
L to the left (the right) of p2

t , then, if p2
s is placed

in
←→
L , the duplicator places p1

s on the node closest to p2
s such that partial

isomorphism is preserved; otherwise, he places p1
s on w ∈ cor(p2

t) such

that partial isomorphism is preserved. The same strategy holds in the other

direction.

Moving around (red) Analogous to the previous rule.

For the second configuration, preservation of partial isomorphism depends on

two assumptions (only given for one of the directions here):

• p2
s is located in a position such that the placement of p1

s does not violate

partial isomorphism, in particular the directionality of the spoiler’s move.

93

• p2
s has the same label as p2

t .

The latter follows immediately from our induction hypothesis, whereas the former

follows from our strategy so far. As for the first configuration, we only have to

show that the intended closest node exists. In the simplest case, where the spoiler

commits to an S-move, this is obvious. In the case of an <-move, it is the node two

S-moves away from p2
s (in the relevant direction). A special case warrants explicit

mention: if the spoiler positions p1
t to the left (the right) of p2

t for several rounds

without interruption, the duplicator puts p1
s on the same node in each round. Note

that if the target of the duplicator’s move is not in
←→
L ,
←−
L or

−→
L , then it must be in

As
l , C s, At

l , B t
l or C t . But as the duplicator did a minimal move and α was chosen to

be a sufficiently large integer, the target cannot be as
l , cs, at

l bt
l or c t , whence it is

labeled d and partial isomorphism is still preserved. The reasoning given applies

to the second rule without notable modifications. For the sake of convenience we

define a strategy for the special case where the spoiler forces the duplicator into B t
l

or At
r . All other continuations are covered by Case 2.

Avoid B t
l If Moving around (green) would lead the duplicator to place p1

t on node

w in B t
l and p1

s is to the right (the left) of p2
s , then he puts it on w+ (2α+ 1)

(w− (2α+ 1)) instead.

Given the layout of t, w+ (2α+ 1) is guaranteed to have the same label as w, so

partial isomorphism is preserved.

For the last subcase, assume that in round k the spoiler places p1
t on the node

bt
l − x , 0≤ x ≤ α. Then the duplicator proceeds as follows:

Initial B t
l If p2

s is already placed on bs
1− x or, alternatively, on a node to its right

while p2
t is left of p1

t , the duplicator places p1
s on bs

2− x . Else, the duplicator

places p1
s on bs

1− x .

94

The strategies for bt
l + x as well as at

r are symmetric and will be skipped here. We

observe that since only one position in each string can be occupied by a pebble

whenever the other one is to be placed, at least one of the two, bs
1− x or bs

2− x , is

always available. Also, given the duplicators strategy so far, if p2
t is to the left (the

right) of B t
l , p2

s is guaranteed to be to the left of Bs
2 (the right of Bs

1), whence p1
s

can be placed on a node belonging to one of the two without breaking the partial

isomorphism. But no matter which node the duplicator chooses, p1
s and p1

t are no

longer in sync, which brings us to the second case.

Case 2 Assume that after k− 1 rounds F is a partial isomorphism, one of p1
s

and p1
t is to be played by the spoiler, and p2

s and p2
t are not in sync.

Outside rectangle If the spoiler places p1
s (p1

t) outside the p2-rectangle, the dupli-

cator uses one of the strategies listed under Case 1.

If none of the corners of the p2-rectangle lie outside the domain of Isomorphic s

to t or Isomorphic t to s, then all previously introduced strategies are applicable

without further modifications and are guaranteed to preserve partial isomorphism.

Otherwise, one of the corners must lie in
←→
L or

←→
R . In this case, both Isomorphic s

to t and Isomorphic t to s will preserve partial isomorphism if they are applicable.

If this strategy isn’t applicable, then the spoiler has placed a pebble on some node

in
←→
L ,
←−
L ,
−→
L ,
←→
R ,
←−
R or

−→
R . Assume that the pebble was placed on some node

belonging to
←→
L ,
←−
L or

−→
L . Then either no node from these substrings is contained

in the rectangle, or at least one is not. The former case is fully covered by the

strategies given for Case 1. So consider the latter case. Assume w is the node not

contained in the rectangle. Then it follows from the definition of a pi-rectangle that

some w′ ∈ cor(w) is not contained in the rectangle either. Hence Moving around

(green) can be applied, and from the definition of pi-rectangles it follows that p2
s

95

and p2
t are either to the left or to the right of p1

s and p1
t , respectively. Hence partial

isomorphism is preserved.

Inside rectangle Suppose the spoiler places p1
s inside the p2-rectangle to the left

of p2
s (hence w ∈ cor(p2

t) is left of p2
s , too). Then the duplicator puts p1

t on a

node to the left of p2
t such that for σ ∈ {a, b, c}

1. if p1
s is placed on σ+ x or σ− x , x ≤ α, then p1

t is placed on σ+ x or

σ− x , respectively, for the closest σ to the left of p2
t .

2. else, p1
t is put on the closest d-labeled node to the left of p2

t that is at

least α+ 1 steps away from any σ-labeled node.

The strategy with reversed directions and the strategies for when spoiler picks

p1
t are analogous.

In case (1), the spoiler places a pebble so close to an a, b or c that he could

potentially reach it with S-moves before the game is over. The duplicator reacts

by putting a pebble at the same distance from the closest a, b or c, mirroring

the spoiler’s move and thus preserving isomorphism. Crucially, such a symbol is

guaranteed to exist: Pebbles may get out of sync only in B t
l −βk and At

r−βk or at the

edges of
←→
L ,
←−
L ,
−→
L ,
←→
R ,
←−
R ,
−→
R (as usual, I discuss only one of the configurations

as they are all very similar). Considering the duplicator’s strategy developed in

Case 1, there are two worst-case scenarios: First, the spoiler may play bt
l ± x in

the first round (where 0≤ x ≤ α), which the duplicator matches by playing bs
1± x .

Then the only interesting move for the spoiler is to play a node from As
l , At

l or B t
l .

By taking the shortest possible <-moves from a to a (alternatively, from b to b),

the spoiler may hope to reach the end of the string so that the duplicator is faced

with a losing position in which the spoiler pebbles an a or a b in one string and

there are no such symbols left in the other. However, the spoiler must not skip a

96

possible target site in his <-moves, otherwise he will jump so far that the duplicator

can sync the pebbles. In n rounds, then, he can only move n symbols of one kind

in either direction. For each kind, though, there are at least n symbols to the left

as well as to the right of both B t
l and Bs

1, so this strategy cannot come to fruition

before the game is over. In the second worst-case scenario, the spoiler first blocks

bs
1 ± x by a pebble before putting another on bt

l ± x in the next round, which is

followed by the duplicator moving a pebble onto bs
2 ± x . Now the distance with

respect to b-symbols is bigger between the pebbles, but at the same time there are

only n− 2 rounds left to play, whence there are still enough symbols left at either

side. In sum, then, (1) also preserves the partial isomorphism and does not open

up an opportunity for the spoiler to checkmate the duplicator in n rounds or less.

Substrategy (2) just tells the duplicator that if the spoiler picks a node labeled by

d that is sufficiently far away from all as, bs and cs so that they cannot be reached

by S-moves in the remaining rounds of the game, then take the shortest <-move to

a d-labeled node that is similarly far away from the other symbols. Evidently this

move also preserves partial isomorphism (and emphasizes that placing a pebble on

such d-nodes is always a waste for the spoiler).

In closing, I want to point out that the proof generalizes to any alphabet

Σ ⊆ {a, b, c, d}, as s and t would still be strings over this alphabet. However, the

reliance on long spans of identical symbols seems out of place for a proof on natural

language phonology, where constraints are conjectured to exist that proactively

penalize too much repetition. This is commonly referred to as OCP effects in

the literature. However, the assumption of the proof is less about actual symbol

distributions in the string but rather that whatever other symbols the alphabet may

contain, their distribution has no implications for the distribution of a, b and c.

This seems plausible for nati, where the only conditions are those mentioned in the

97

constraints. Readers that are unhappy with this situation, though, are invited to

come up with a proof for richer alphabets. All that is necessary is to construct the

strings such that whatever clues about the current position in a string one might

be able to derive from some specific symbol is rendered useless by the form of the

string itself. In practical terms, this would mean that every neighborhood and every

string between the neighborhoods has to appear sufficiently often in all possible

combinations so that the duplicator can navigate around the strings unharmed for

at least n rounds.

98

At r

As 1
As 2

B
t l

B
s 1

B
s 2

As l

At 1
At 2

At l
B

t r

B
s r

B
t 1

B
t 2

C
s

C
t

←→ L
←→ R

←− L
−→ L

←− R
−→ R

cs
as l

bs r

s
as 1

bs 1
bs 2

as 2

ct
at l

bt r
bt l

at r

t
at 1

bt 1
bt 2

as 2

2α
+

1

α

2α+ 1

2α
+

1

Fi
gu

re
B

.1
:

N
am

in
g

co
nv

en
ti

on
s

us
ed

fo
r

pa
rt

s
of

th
e

st
ri

ng
s

s
an

d
t

99

BIBLIOGRAPHY

Albro, Dan. 2005. Studies in computational optimality theory, with special reference

to the phonological system of Malagasy. Doctoral Dissertation, University of

California, Los Angeles.

Blackburn, Patrick, Maarten de Rijke, and Yde Venema. 2002. Modal logic. Cam-

bridge: Cambridge University Press.

Brody, Michael. 1995. Lexico-logical form: A radically Minimalist theory. Cambridge,

Mass.: MIT Press.

Brody, Michael. 2002. On the status of representations and derivations. In Derivation

and explanation in the minimalist program, ed. Samuel D. Epstein and Daniel T.

Seely, 19–41. Oxford: Blackwell.

Browning, Marguerite. 1989. ECP 6= CED. Linguistic Inquiry 20:481–491.

Büchi, J. Richard. 1960. Weak second-order arithmetic and finite automata.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6:66–92.

Charette, Monik. 1990. Licence to govern. Phonology 7:233–253.

Charette, Monik, and Asli Göksel. 1994. Switching and vowel harmony in Turkic

languages. SOAS Working Papers In Linguistics and Phonetics 4:31–52.

Charette, Monik, and Asli Göksel. 1996. Licensing constraints and vowel harmony

in Turkic languages. SOAS Working Papers In Linguistics and Phonetics 6:1–25.

Chomsky, Noam. 1957. Syntactic structures. The Hague: Mouton.

Chomsky, Noam. 1965. Aspects of the theory of syntax. Cambridge, Mass.: MIT

Press.

100

Chomsky, Noam. 1981. Lectures on government and binding: The Pisa lectures.

Dordrecht: Foris.

Chomsky, Noam. 1986. Barriers. Cambridge, Mass.: MIT Press.

Chomsky, Noam, and Morris Halle. 1968. The sound pattern of English. New York:

Evanston.

Cohen, Joelle. 1991. On the expressive power of temporal logic for infinite words.

Theoretical Computer Science 83:301–312.

Cohen, Joelle, Dominique Perrin, and Jean-Eric Pin. 1993. On the expressive power

of temporal logic. Journal of Computer and System Sciences 46:271–294.

Etessami, Kousha, Moshe Y. Vardi, and Thomas Wilke. 1997. First-order logic with

two variables and unary temporal logic. In Proceedings of the 12th Annual IEEE

Symposium on Logic in Computer Science, 228–235.

Frank, Robert, and Giorgio Satta. 1998. Optimality theory and the generative

complexity of constraint violability. Computational Linguistics 24:307–315.

Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. 1985. Generalized

phrase structure grammar. Oxford: Blackwell.

Goldsmith, John. 1976. Autosegmental phonology. Doctoral Dissertation, MIT.

Graf, Thomas. 2010a. Comparing incomparable frameworks: A model theoretic

approach to phonology. University of Pennsylvania Working Papers in Linguistics

16:Article 10. Available at: http://repository.upenn.edu/pwpl/vol16/

iss1/10.

Graf, Thomas. 2010b. Formal parameters of phonology: From government phonol-

ogy to SPE. In Interfaces: Explorations in logic, language and computation, ed.

101

http://repository.upenn.edu/pwpl/vol16/iss1/10
http://repository.upenn.edu/pwpl/vol16/iss1/10

Thomas Icard and Reinhard Muskens, volume 6211 of Lectures Notes in Artifical

Intelligence, 72–86. Berlin: Springer.

Grohe, Martin, and Nicole Schweikardt. 2005. The succinctness of first-order logic

on linear orders. Logical Methods in Computer Science 1:Paper 6.

Haas, Mary R. 1977. Tonal accent in Creek. In Southern California occasional papers

in linguistics, ed. Larry M. Hyman, volume 4, 195–208. Los Angeles: University

of Southern California. Reprinted in Sturtevant (1987).

Halpern, Joseph Y. 1995. The effect of bounding the number of primitive propo-

sitions and the depth of nesting on the complexity of modal logic. Artificial

Intelligence 75:361–372.

Hansson, Gunnar Ólafur. 2001. Theoretical and typological issues in consonant

harmony. Doctoral Dissertation, University of California, Berkeley.

Harris, John, and Geoff Lindsey. 1995. The elements of phonological representation.

In Frontiers of phonology, ed. Jacques Durand and Francis Katamba, 34–79.

Harlow, Essex: Longman.

Hayes, Bruce. 1995. Metrical stress theory. Chicago: Chicago University Press.

Immerman, Neil, and Dexter C. Kozen. 1989. Definability with bounded number of

bound variables. Information and Computation 83:121–139.

Infante-Lopez, Gabriel G., Carlos Areces, and Maarten de Rijke. 2003. Controlled

model exploration. Advances in Modal Logic 4:1–16.

Jensen, Sean. 1994. Is P an element? Towards a non-segmental phonology. SOAS

Working Papers In Linguistics and Phonetics 4:71–78.

102

Johnson, C. Douglas. 1972. Formal aspects of phonological description. The Hague:

Mouton.

Johnson, David, and Shalom Lappin. 1997. A critique of the minimalist program.

Linguistics and Philosophy 20:273–333.

Jäger, Gerhard. 2002. Gradient constraints in finite state OT: The unidirectional

and the bidirectional case. In More than words. A festschrift for Dieter Wunderlich,

ed. I. Kaufmann and B. Stiebels, 299–325. Berlin: Akademie Verlag.

Kaplan, Ronald M., and Martin Kay. 1994. Regular models of phonological rule

systems. Computational Linguistics 20:331–378.

Karttunen, Lauri. 1998. The proper treatment of optimality in computational

phonology. Manuscript, Xerox Research Center Europe.

Kaye, Jonathan. 1992. Do you believe in magic? The story of s+C sequences.

Working Papers in Linguistics and Phonetics 2:293–313.

Kaye, Jonathan. 1995. Derivations and interfaces. In Frontiers of phonology, ed.

Jacques Durand and Francis Katamba, 289–332. London: Longman.

Kaye, Jonathan. 2000. A user’s guide to government phonology. URL http://134.

59.31.7/~scheer/scan/Kaye00guideGP.pdf, unpublished manuscript.

Kaye, Jonathan. 2001. Working with licensing constraints. Ms., Guangdong Univer-

sity of Foreign Studies.

Kaye, Jonathan, Jean Lowenstamm, and Jean-Roger Vergnaud. 1985. The internal

structure of phonological representations: a theory of charm and government.

Phonology Yearbook 2:305–328.

103

http://134.59.31.7/~scheer/scan/Kaye00guideGP.pdf
http://134.59.31.7/~scheer/scan/Kaye00guideGP.pdf

Kaye, Jonathan, Jean Lowenstamm, and Jean-Roger Vergnaud. 1990. Constituent

structure and government in phonology. Phonology Yearbook 7:193–231.

Keenan, Edward. 2008. Mathematical structures in language. Ms., University of

California, Los Angeles.

Kisseberth, Charles. 1970. On the functional unity of phonological rules. Linguistc

Inquiry 1:291–306.

Kobayashi, Masato. 2004. Historical phonology of old Indo-Aryan consonants. Tokyo:

ILCAA.

Kobele, Gregory M. 2006. Generating copies: An investigation into structural identity

in language and grammar. Doctoral Dissertation, UCLA.

Kornai, Andras. 2009. The complexity of phonology. Linguistic Inquiry 40:701–711.

Kornai, Andras, and Geoffrey K. Pullum. 1990. The X-bar theory of phrase structure.

Language 66:24–50.

Koskenniemi, Kimmo. 1983. Two-level morphology: A general computational model

for word-form recognition and production. Publication 11, University of Helsinki,

Department of General Linguistics, Helsinki.

Kracht, Marcus. 2003. Features in phonological theory. In Foundations of the formal

sciences II, applications of mathematical logic in philosophy and linguistics, ed.

Benedikt Löwe, Wolfgang Malzkorn, and Thomas Räsch, number 17 in Trends

in Logic, 123–149. Dordrecht: Kluwer. Papers of a conference held in Bonn,

November 11–13, 2000.

Krohn, Kenneth, and John Rhodes. 1965. Algebraic theory of machines. I. Prime

104

decomposition theorem for finite semigroups. Transactions of the American

Mathematical Society 116:450–464.

Kröger, Fred, and Stephan Merz. 2008. Temporal logic and state systems. Berlin:

Springer.

Leben, William. 1973. Suprasegmental phonology. Doctoral Dissertation, MIT.

Leucker, Martin, and César Sánchez. 2005. Regular linear temporal logic. In Pro-

ceedings of The 4th International Colloquium on Theoretical Aspects of Computing

(ICTAC’07), number 4711 in Lecture Notes in Computer Science, 291–305.

Libkin, Leonid. 2004. Elements of finite model theory. Berlin: Springer.

Lowenstamm, Jean. 1996. CV as the only syllable type. In Current Trends in

Phonology: Models and Methods, ed. Jacques Durand and Bernard Laks, 419–421.

European Studies Research Institute, University of Salford.

Macdonell, Arthur. 1910. Vedic grammar. Strassburg: Trübner.

McCarthy, John J. 1979. On stress and syllabification. Linguistic Inquiry 10:443–465.

McNaughton, Robert, and Seymour Pappert. 1971. Counter-free automata. Cam-

bridge, Mass.: MIT Press.

Meyer, Albert R. 1975. Weak monadic second-order theory of successor is not

elementary recursive. In Logic colloquium: Symposium on logic 1972–1973, ed.

R. Parikh, volume 453 of Lecture Notes in Mathematics, 132–154. Berlin: Springer.

Michaelis, Jens. 2001. Transforming linear context-free rewriting systems into

minimalist grammars. Lecture Notes in Artificial Intelligence 2099:228–244.

Mitchell, Terence F. 1960. Prominence and syllabification in Arabic. Bulletin of the

School of Oriental and African Studies 23:369–389.

105

Mohri, Mehryar, and Richard Sproat. 1996. An efficient compiler for weighted

rewrite rules. In In 34th Annual Meeting of the Association for Computational

Linguistics, 231–238.

Pöchtrager, Markus A. 2006. The structure of length. Doctoral Dissertation, University

of Vienna.

Potts, Christopher, and Geoffrey K. Pullum. 2002. Model theory and the content of

OT constraints. Phonology 19:361–393.

Pullum, Geoffrey K. 2007. The evolution of model-theoretic frameworks in lin-

guistics. In Model-Theoretic Syntax @ 10, ed. James Rogers and Stephan Kepser,

1–10.

Pullum, Geoffrey K., and James Rogers. 2006. Animal pattern-learning experiments:

Some mathematical background. Ms., Radcliffe Institute for Advanced Study,

Harvard University.

Rizzi, Luigi. 1990. Relativized minimality. Cambridge, Mass.: MIT Press.

Rogers, James. 1996. A model-theoretic framework for theories of syntax. In

Proceedings of the 34th Annual Meeting of the ACL, 10–16. Santa Cruz, USA.

Rogers, James. 1998. A descriptive approach to language-theoretic complexity. Stan-

ford: CSLI.

Scheer, Tobias. 2004. A lateral theory of phonology: What is CVCV and why should it

be?. Berlin: Mouton de Gruyter.

Schein, Barry, and Donca Steriade. 1986. On geminates. Linguitic Inquiry 17:691–

744.

106

Sommerstein, Alan. 1974. On phonotactically motivated rules. Journal of Linguistics

10:71–94.

Stabler, Edward P. 1992. The logical approach to syntax: Foundations, specifications

and implementations of theories of government and binding. Cambridge, Mass.:

MIT Press.

Sternefeld, Wolfgang. 1996. Comparing reference-sets. In The role of economy

principles in linguistic theory, ed. Chris Wilder, Hans-Martin Gärtner, and Manfred

Bierwisch, 81–114. Berlin: Akademie Verlag.

Sturtevant, William C., ed. 1987. A Creek source book. New York: Garland.

Thatcher, James W. 1967. Characterizing derivation trees for context-free grammars

through a generalization of finite automata theory. Journal of Computer and

System Sciences 1:317–322.

Thomas, Wolfgang. 1979. Star-free regular sets of ω-sequences. Information and

Control 42:148–156.

Vaillette, Nathan. 2003. Logical specification of regular relations for NLP. Natural

Language Engineering 9:65–85.

Vardi, Moshe Y. 1988. A temporal fixpoint calculus. In Proceedings of the 15th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 250–259.

Weil, Pascal. 2004. Algebraic recognizability of languages. In Mathematical founda-

tions of computer science 2004, ed. Jiri Fiala, Václav Koubek, and Jan Kratochvíl,

volume 3153 of Lecture Notes in Computer Science, 149–175. Berlin: Springer.

Whitney, William D. 1889. Sanskrit grammar. London: Oxford University Press.

107

	Introduction
	SPE & Government Phonology
	Overview
	SPE
	Government Phonology
	Feature System
	Phonological Structure
	Melodic Licensing
	Empty Categories and p-Licensing
	Spreading

	Logical Formalization
	Overview
	The Virtues of a Formal Approach
	Why Logic?
	Why not Automata Theory?

	Logic — A Mathematical Primer
	Formalization
	Reinterpreting GP-Structures as Strings
	Logical Formalization

	Formal Comparison of Theories
	Overview
	The Phonological Hierarchy
	How Much Expressivity is Needed?
	Caveat: The Power of Feature Coding
	Beyond GPtleft — Sanskrit n-Retroflexion
	Beyond GPu — Primary Stress Assignment in Creek and Cairene Arabic

	Further Parameters
	Feature Systems
	Syllable Template

	Evaluation

	Conclusion
	Mathematical Preliminaries
	Proof of Theorem 3.2
	Bibliography

