
Late Merge as Lowering Movement in
Minimalist Grammars

Thomas Graf

Department of Linguistics
Stony Brook University
mail@thomasgraf.net

http://thomasgraf.net

Abstract. Minimalist grammars can be specified in terms of their deriva-
tion tree languages and a mapping from derivations to derived trees, each
of which is definable in monadic second-order logic (MSO). It has been
shown that the linguistically motivated operation Late Merge can push
either component past the threshold of MSO-definability. However, Late
Merge as used in the syntactic literature can be elegantly recast in terms
of Lowering movement within the framework of Movement-generalized
Minimalist grammars. As the latter are MSO-definable, the linguistically
relevant fragment of Late Merge is too.

Keywords: Minimalist grammars, countercyclic operations, late merge,
lowering movement, monadic second-order logic

Introduction

Minimalist grammars (MGs; [24, 25]) were conceived as a formalization of the
currently dominant framework in theoretical syntax [1], so it is hardly surprising
that they have frequently been used as a testbed for the ideas and mechanisms
entertained by linguists. In recent years, a lot of work has focused on coun-
tercyclic operations, in particular Late Merge [4, 10, 14]. Under a derivational
conception of syntax, an operation is countercyclic iff any new material it intro-
duces is not added to the top of the structure built so far but instead inserted
at a lower position.

Countercyclic operations are intriguing from the perspective of a resource-
sensitive formalism like MGs, where every lexical item has a finite number of
features that must be checked. For one thing, feature checking — i.e. Minimalist
resource consumption — is no longer linked to structure-building in a one-to-
one fashion because the feature triggering a countercyclic operation may actually
license the insertion of new structure at a very different position. More impor-
tantly, though, the material introduced by a countercyclic operation might itself
contain features that need to be checked, so that a substructure that already had
all of its features checked may suddenly be in need of feature checking again.

Both possibilities add a lot of complexity to the formalism. It is already
known that Late Merge can increase weak generative capacity [14], and even



2

when Late Merge is sufficiently constrained to preserve strong generative ca-
pacity it requires a more powerful mapping from derivations to derived trees
[4, 10, 18]. MGs can be specified in terms of their derivation tree languages and
a mapping from derivation to derived tree languages [5, 8, 15]. For standard MGs,
both components are definable in monadic second-order logic (MSO). Neither
holds for MGs with unrestricted Late Merge [10].

While the formal underpinnings of unrestricted Late Merge are certainly
interesting and provide deep insights into the inner workings of MGs, the loss
of MSO-definability and the computational advantages that come with it should
be avoided unless absolutely necessary. I argue in this paper that for the cases
discussed so far in the linguistic literature, Late Merge can be easily reduced to
the more standard operation of Lowering movement [6]. Since Lowering is MSO-
definable, so must be Late Merge. In a certain sense, the reduction provides a
normal form theorem for MGs — results on Lowering immediately carry over to
Late Merge. For example, if the MG parser in [26, 27] is enriched with inference
rules for Lowering, it will also work for grammars with Late Merge.

The paper is laid out as follows: Section 1.1 provides an intuitive introduction
to MGs, which is subsequently expanded in Sec. 1.2 to Movement-generalized
MGs, a weakly equivalent variant of MGs where grammars may have multiple
types of movement, including Lowering. Section 1.3 then discusses Late Merge
from a linguistic perspective. The reduction of Late Merge to Lowering is pre-
sented in Sec. 2. This is followed by technical observations on generative capacity
and derivational complexity (3.1), limitations of the reduction (3.2), and the in-
teraction of Late Merge and movement (3.3).

1 Preliminaries

1.1 Standard Minimalist grammars

MGs [24, 25] are a lexicalized grammar formalism where every lexical item has
an ordered list of features that must be checked in this specific order by the
operations Merge and Move, which in turn combine these lexical items into tree
structures.

For instance, the DP the boy would be built by merging the lexical item the
with boy. In order to license this application of Merge, the has a selector feature
N+ indicating that it selects a noun, and the noun boy has a matching category
feature N−. Moreover, since the entire phrase is a DP and the is the head of
the DP, the also has a category feature D−. The selector feature N+ on the
precedes the category feature D− because the must select its argument before it
can project a DP. The structure-building process can be depicted as a derivation
tree, which closely mirrors the structure of the derived tree.

Merge

boy :: N−the :: N+ D−

<

boythe



3

The main difference is the absence of features in the derived tree as well as the
new label for the interior node, which points in the direction of the projecting
head. This is always the head that had one of its positive polarity features (i.e.
a feature with superscript +) checked by the operation in question.

In the sentence the boy John likes, the object DP the boy has been topicalized,
which is analyzed as movement from the position where it was merged to a higher
landing site. A simplified derived tree and its derivation are given in Fig. 1. Here

>

>

<

<

boythe

likes

John

Move

Merge

Merge

Merge

boy :: N−the :: N+ D−

likes :: D+ D+ top+ V−

John :: D−

Fig. 1. Multi-dominance tree with movement and its corresponding derivation tree

the boy is assumed to move to a specifier of the verb likes. This is licensed by
the licensor feature top+ on likes and the licensee feature top− on the. A few
things are worth pointing out explicitly:

– Movement in the derived tree is indicated by adding branches. This yields a
directed acyclic graph, which is called a multi-dominance tree in the syntactic
literature. This format of representing movement is formally simpler than the
standard trace-based mechanism.

– Once again the derivation tree is very similar to the derived tree. The lat-
ter can be obtained from the former as before by relabeling interior nodes
and removing features, except that this time one must also add movement
branches.

– Even though the licensee feature triggering topicalization is hosted by the,
it isn’t just the determiner that undergoes movement but the entire DP it
projects.

Movement is subject to the Shortest Move Constraint (SMC), which blocks all
configurations where LIs two LIs have the same licensee feature as their first
unchecked feature. For example, if John in the derivation above actually had
the feature specification D− top−, then the derivation would be aborted after
John is merged because then both John and the would have the licensee feature
top− as their first unchecked feature.



4

The SMC grants MGs a variety of appealing properties. Their derivation tree
languages are regular tree languages and thus definable in MSO [5, 15, 17]. The
mapping from derivation trees to derived trees is also definable in MSO, which
entails that MGs generate mildly context-sensitive string languages [6, 8, 15,
18, 19]. This result can be strengthened: MGs are weakly equivalent to MCFGs
[9, 17].

1.2 Movement-Generalized Minimalist Grammars

Movement-generalized MGs (MGMGs) were introduced by Graf in [6] and allow
for new types of movement instead of just upward movement of a phrase to a c-
commanding position. Crucially, though, all movement types must be definable
in MSO, which implies via a battery of previously known theorems that MGs and
MGMGs are weakly (but not strongly) equivalent. A full definition of MGMGs
is rather laborious and unnecessary for the purposes of this paper, so I restrict
myself to an abridged version here; the interested reader is referred to [6].

MGMGs build on the insight that the MG feature calculus driving Move can
be recast in tree-geometric terms. Basically, one has to ensure that every Move
node is targeted by exactly one moving phrase, and every licensee feature on
every LI is checked by exactly one Move operation. This amounts to regulating
the distribution of Move nodes in the derivation.

The essential notion is that of occurrences. Given a lexical item l and node m
in the derivation, m is the i-th occurrence of l iff it checks l’s (i+ 1)-th negative
polarity feature. Hence the zero occurrence of a lexical item l is the Merge
node that checks its category feature and thus introduces it into the derivation.
Positive occurrences (for which i > 0) are the Move nodes that check one of l’s
licensee features. The requirements of MG feature calculus with respect to Move
can then be enforced as constraints on the distribution of occurrences. For every
derivation tree t, node m of t, and lexical item l with licensee features f−1 · · · f−n ,
n ≥ 0:

Move there exist distinct nodes m1, . . . ,mn such that mi (and no other node
of t) is the ith occurrence of l, 1 ≤ i ≤ n.

SMC if m is a Move node, there is exactly one lexical item that m is an occur-
rence of.

But how does one determine whether a Move node is an occurrence for a
lexical item? In the case of standard MGs, there is a simple algorithm that
depends only on proper dominance.

occurrence A Move node m is the i-th occurrence of a lexical item l with
licensee features f−1 · · · f−n iff

– m is associated to the matching licensor feature f+i , and
– m properly dominates the (i− 1)-th occurrence of l, and
– there is no Move node z such that m properly dominates z and z satisfies

the previous two clauses.



5

Intuitively, the i-th occurrence of l is found by searching upwards from the
(i− 1)-th occurrence until one encounters a Move node that can check f−i on l.

Graf notes that new movement types can be created by replacing proper
dominance by a different relation over trees. For example, the inverse of proper
dominance gives rise to downward movement since now the i-th occurrence is
dominated by the (i− 1)-th occurrence rather than the other way round. Since
the constraints Move and SMC make no assumptions as to which nodes may
count as occurrences, they restrict this kind of movement in the same fashion
as standard movement. Thus new types of movement can be introduced without
altering the spirit of movement regarding the MG feature calculus.

As long as the relation connecting occurrences is MSO-definable, Move and
SMC will be, too, which implies that MGMGs still have regular — that is,
MSO-definable — derivation tree languages. The mapping from derivations to
derived trees is also built over the notion of occurrences, so it need not be altered
either. Graf allows for every feature to specify whether the moving phrase should
be linearized to the left or to the right of the landing site, but this is a technically
innocent change without negative repercussions. The weak generative capacity
of MGMGs therefore does not exceed that of standard MGs, yet they provide
a simple mechanism for adding new movement types that can generate more
complex tree languages.

Building on the MGMG system, I will use two types of movement in this
paper. Raising is the standard kind of MG movement. That is to say, the phrase
targets a c-commanding position in the derived tree, which corresponds to using
proper dominance for determining occurrences. Lowering is the inverse of raising:
a phrase moves to a c-commanded position, and occurrences are determined by
the inverse of proper dominance. Raising and Lowering will be indicated by the
prefixed subscripts ↑ and ↓, respectively. Moreover, the prefixed superscripts λ
and ρ indicate whether a mover is linearized to the left or the right. So ρ

↓f
−,

for instance, is a licensee feature triggering rightward Lowering. A (linguistically
implausible) example is given in Fig. 2.

1.3 Late Merge

In the Minimalist literature, Late Merge refers to cases where a tree s is merged
with a tree t at some point after t has already been merged with another tree u.
The best known instance of this is in Lebeaux’s analysis of Principle C exceptions
[16].

(1) a. * Hei believed the argument that Johni made.

b. Which argument that Johni made did hei believe?

In the ungrammatical (1a) the R-expression John is c-commanded by the co-
indexed DP he, which constitutes a Principle C violation. This part is expected;
the puzzle is why (1b) is grammatical. Since which argument that Johni made
started out as the object of believe, John was c-commanded by a co-indexed
DP at some point during this derivation, too, so a Principle C violation should



6

Merge

Movej1

Movei1

Movej2

Merge

Merge

Johnj :: D− ρ
↑g
− λ
↓h
−likes :: D+ V−

ε :: V+ D+ λ
↓h

+ ρ
↓f

+ ρ
↑g

+

Merge

boy :: N−thei :: N+ D− ρ
↓f
−

>

<

<

>

<

<

Johnlikes

ε

<

boythe

Fig. 2. An implausible derivation of John likes the boy with Raising and Lowering;
occurrences are distinguished by superscripts i and j and numbered with subscripts



7

obtain as before. Lebeaux contends that the violation can be avoided because the
relative clause that John made does not have to merge with which argument until
the latter has moved out of the c-command domain of he. Lebeaux’s derivation
can be roughly sketched as follows:

did hei believe [which argument] (1)

[which argument] did hei believe (2)

[which argument [that Johni made]] did hei believe (3)

No derivation resembling the one above is compatible with standard MGs.
Combining the relative clause with which argument must involve a feature on
which or argument. But after which argument undergoes movement, all its fea-
tures have been discharged, it has become completely opaque as far as the for-
malism is concerned. Any implementation of Late Merge thus has to modify
the way resources are handled in MGs, and the modification has to work for a
variety of cases.

Lebeaux’s account is just one of many where Late Merge is used to factor
some subtree out of a domain where its presence would cause problems. Ochi
[22] posits that VP-adjuncts undergo Late Merge because they would otherwise
act as an intervener between a verb and the inflectional head T, which would
incorrectly predict under his proposal that John quickly left is always realized
as John did quickly leave. Nissenbaum [21] also has to assume that VP-adjuncts
are merged late in order to avoid a type conflict which can only arise before the
subject undergoes movement. And Stepanov [28] proposes that the phrase to
Mary in Johni seems to Mary [ti to be smart] must be merged countercyclically
in order to avoid a subjacency violation.

In all the cases above, only adjuncts undergo Late Merge, which is why
the operation is also called Late Adjoin or Late Adjunction. However, there are
accounts that extend Late Merge to arguments, too [29]. For instance, the LF-
derivation for every spy sneezed could proceed along the following lines:

[every]i sneezed (1)

[every]i ti sneezed (2)

[every spy] ti sneezed (3)

Late Merger of the NP spy in this toy example serves little linguistic purpose. The
real motivation for Late Merger of arguments stems from Principle C exceptions
that are similar to the ones noted by Lebeaux for adjuncts, except that they
now arise with NP-arguments of quantified DPs.

(2) a. * Which argument that Johni is a genius seems to himi to be true?

b. Every argument that Johni is a genius seems to himi to be true

Takahashi and Hulsey [29] argue that (2b) is well-formed because the presence
of quantifier allows for the argument to be late-merged. The derivation proceeds



8

roughly as follows:

[every]i true (1)

[every]i seems to himi [ti to be [ti true]] (2)

[[every] [argument that Johni is a genius ]] seems to himi [ti to be [ti true]] (3)

Since this example involves a lot of structure and intermediate movement steps,
the toy example every spy sneezed will be used in the next section for the sake
of simplicity.

Even though we omitted many technical details, it should be clear that none
of the cases above require something like Late Merge. In each case, it would be
sufficient to modify the mechanism that conflicts with the subtree, rather than
have the subtree be merged in a countercyclic fashion. Principle C could ignore
adjuncts of a moving DP, Ochi’s account of English inflection could stipulate that
adjuncts do not count as interveners, and so on. Readers familiar with model-
theoretic approaches such as the formalization of Government-and-Binding the-
ory in terms of MSO [23] will also realize that making such modifications is easier
than adding a completely new operation and restricting its application domain.
So from a purely formal perspective, there is no compelling argument for Late
Merge. Both weak and strong generative capacity of the standard formalisms
are already sufficient for the phenomena above, and bringing in Late Merge in a
controlled fashion such that the computational properties of the formalism are
preserved just means extra work.

Crucially, though, weak and strong generation of natural languages is but
one of many duties of a grammar formalism. The formalism also has to be
capable of stating structural generalizations. This isn’t just a matter of scientific
methodology — the fewer generalizations the formalism makes, the greater the
number of stipulations it requires, which implies a bigger grammar size. Small
grammars show better parsing performance and are easier to maintain; so even
if one only cares about the engineering aspects of a formalism, a mechanism that
unifies a range of empirical phenomena is worth studying regardless of whether
it is vacuous with respect to generative capacity.

2 Late Merge as Lowering

2.1 Late Merger of Arguments

A maximally faithful implementation of how linguists think about Late Merge
in sentences like every spy sneezed would arguably involve an MG derivation like
the one in Fig. 3. This derivation is ill-formed in three respects: every cannot be
merged directly with sneezed given its feature make-up, spy cannot be merged
with the empty C-head, and no Merge operation combines every and spy.

However, if one uses MGMGs as defined in [6], then the minimally different
derivation in Fig. 4 is well-formed and produces the intended string every spy
sneezed. The selector feature N+ on every has been replaced by a rightward
lowering licensor feature ρ

↓1
+, and a corresponding Move node has been added



9

Merge

Merge

Move

Merge

Merge

sneezed :: D+ V−every :: N+ D− nom−

ε :: V+ nom+ T−

ε :: T+ C−

spy :: N−

Fig. 3. A faithful candidate for a Late Merge derivation

Merge

Merge

Merge

Move

Merge

Merge

sneezed :: D+ V−Move

every :: ρ↓1
+ D− λ

↑nom−

ε :: V+ λ
↑nom+ T−

ε :: T+ C−

ε :: C+ N+ C−

spy :: N− ρ
↓1
−

Fig. 4. A Lowering derivation for Late Merge



10

in the derivation. The matching licensee feature ρ↓1
− occurs on spy. Hence spy will

lower down to every, where it is linearized to its right. The other minor change is
the presence of a second empty C-head, with the first C-head as its complement
and spy as a specifier. This head only serves as a means for introducing spy into
the derivation — there are many viable alternatives, for instance adjunction of
spy to the first C-head using one of the many MG implementations of adjunction
[2, 3]. The important point is that the countercyclic behavior of Late Merge is
emulated by countercyclic movement, i.e. Lowering.

However, Lowering does not produce the intended structure under the stan-
dard MSO-transduction from derivation to multi-dominance trees given in [6, 8],
as is evidenced by Fig. 5. Since movement is invariably linked to the introduc-
tion of movement branches in the standard transduction, Lowering gives rise to
a structure where spy originates in a high position. This is at odds with lin-
guists’ intuitions, according to which spy has not been part of the structure
at all before being merged in its surface position. An easy solution is at hand,
though: a return to the original MG conception of movement in which one does
not keep track of where a mover originated from. It is a simple task to modify

>

<

>

<

>

sneezed<

spyevery

ε

ε

>

<

>

<

>

sneezed<

spyevery

ε

ε

Fig. 5. Lowering with the standard transduction yields the wrong structure (left), but
the original MG treatment of movement is adequate (right)

the MSO transduction such that Lowering does not introduce branches or leave
behind traces. As a matter of fact, once could even delete the empty head that
introduced the late-merged phrase into the derivation via a simple modification
of the transduction defined in Sec. B.4.6 of [8].

Another point where the Lowering implementation differs slightly from lin-
guistic intuition is that spy lowers before every moves into subject position. This
is due to an explicit ban against licensee features preceeding licensor features in
[6], wherefore every cannot move on its own to check one of its licensee features
before furnishing a landing site for spy via one of its licensor features. One could
lift this ban for the relevant cases here, but this isn’t needed from an MG per-
spective. Since the derived tree structures have ancillary status at best in MGs
and most work is done directly over derivations [8, 12, 13, 15], what matters



11

is that spy starts out at a higher position in the derivation. Its location in the
derived tree is of interest only for computing the output string of the derivation.

2.2 Late Merger of Adjuncts

The strategy of emulating Late Merge via Lowering can be extended to adjuncts
without much trouble. If only one adjunct is being late-merged, the correspond-
ing derivation perfectly matches the one outlined in the previous section.

In principle, however, a phrase p may have an unbounded number of adjuncts,
so one would expect that an unbounded number of adjuncts can be late-merged
with p. But due to the SMC, the number of moving elements at any given step
of the derivation is finitely bounded, so it seems that only a bounded number of
adjuncts can be late-merged with p.

This issue has some linguistic relevance for if one follows Ochi and Nis-
senbaum [21, 22], then all VP adjuncts — of which there can be unboundedly
many — are introduced by Late Merge. Crucially, though, VP adjuncts fall into
two major categories determined by whether they are linearized to the left or to
the right of the phrase they adjoin to. Suppose, then, that there are two empty
heads hl and hr with Lowering licensee features λ↓1

− and ρ
↓1

+, respectively. Left
adjuncts adjoin to hl, whereas right adjuncts adjoin to hr (this can be enforced
with an MSO-constraint). Then hl and hr both lower to positions furnished by
the phrase the adjuncts are supposed to late-merge with; an example with Frey
and Gärnter adjunction [3] is given in Fig. 6.

The kind of “piggybacking” proposal advocated here captures the spirit of
Late Merge while producing the right surface string. The derived tree it produces
deviates from standard assumptions in that the adjuncts no longer c-command
the phrase they are late-merged with. However, there are few cases where c-
command matters for adjuncts. If for some reason adjunct a must c-command
the phrase it adjoins to, a minor variant of Lowering may be added to the
grammar that allows the adjunct to move to the landing site on its own even
though the former does not c-command the latter. Alternatively, one could also
switch the adjunction feature of a to a category feature and have the empty
head select a directly. In this case lowering of a would proceed exactly as for
late-merged arguments.

3 Technical Remarks

3.1 Generative Capacity and Derivational Complexity

The reduction of Late Merge to Lowering immediately entails the definability
of the former in MSO and, by extension, that Late Merge does not increase the
weak generative capacity of standard MGs. Their strong generative capacity is
not increased, either, even though MGs with raising and lowering movement are
more powerful than standard MGs in this respect (a corollary of [7]).

Generative capacity is preserved because Lowering movement by itself only
generates regular tree languages, which is due to the impossibility of remnant



12

Merge

Merge

Merge

Merge

ε :: V− ρ
↓1
−yesterday :: ≈ V

in a hurry :: ≈ V

Merge

ε :: V− λ
↓2
−quickly :: ≈ V

Merge

Merge

Move

Merge

Move

Move

Merge

disappeared :: D+ ρ
↓1

+ λ
↓2

+ V−John :: D− λ
↑nom−

ε :: V+ λ
↑nom+ T−

ε :: T+ C−

ε :: C+ V+ V+ C−

Fig. 6. Derivation (left) and derived tree (right) for Late Merge of multiple adjuncts

lowering (cf. [11]). Remnant movement refers to cases where a phrase X moves
out of a containing phrase Y, which subsequently undergoes movement, too. This
can never happen with Lowering because if X is contained in Y and undergoes
Lowering, it is still contained in Y. Only if Lowering interacts with the standard
raising movement is it possible to create such patterns. But no such interaction
is required for Late Merge, and hence the dependencies it creates in the derived
tree are all regular (in a certain sense, Late Merge corresponds to the simplest
kind of Lowering a grammar may possess). With respect to generative capacity,
then, Late Merge adds nothing to the standard formalism.

The complexity of the mapping from derivations to derived trees shows an
increase, though, as was already noted in [4]. For standard MGs, this mapping is
a direction preserving MSO transduction [18, 19]. That is to say, if x immediately
dominates y in the derived tree, then x properly dominates y in the derivation
tree. For grammars with Lowering instead of Raising, the opposite holds instead:
if x immediately dominates y in the derivation tree, then x properly dominates
y in the derived tree (this is different from inverse direction preserving MSO
transductions, for which it holds that if x immediately dominates y in the derived
tree, then y properly dominates x in the derivation tree [18, 20]). The addition of
Lowering clearly entails that the mapping to derived trees is no longer direction
preserving.



13

3.2 Formal Limitations and Linguistic Adequacy

It is important to keep in mind that only a subpart of Late Merge is emulated
by Lowering. A completely unrestricted version of Late Merge is capable of
increasing the weak generative capacity of MGs [14]. The strategy provided
here inherits the major limitation of movement in MGs: only a finitely bounded
number of items can undergo Late Merge at the same time.

Yet the limitation to a bounded number of Late Mergers does not seem to
be problematic for linguistic applications. Late Merge is not delayed indefinitely
but usually takes place within the smallest domain that properly subsumes the
application domain of the constraint that the late-merged material has to es-
cape, usually a CP. Given this assumption the only scenarios where one could
possibly have an unbounded number of Late Merge operations involve adjuncts
or recursion inside an argument, e.g. a DP whose NP selects a DP. But we have
already seen that adjuncts can be limited to two instances of Late Merge, and
there are no cases in the literature where, say, every NP of a recursive DP has
some late-merged adjunct such that all of them originate outside the DP. As a
matter of fact, there aren’t even any cases of Late Merger with a late-merged
phrase. Overall, then, linguists use only a fraction of the power a maximally
general version of Late Merge could provide, and this fragment is easily recast
in terms of Lowering.

3.3 Movement of Late-Merged Phrases

An unrestricted version of Late Merge increases the generative capacity of MGs
as it makes it possible to introduce new licensee features into the derivation
without violating the SMC. For example, if both a and b have a licensee feature
f− and they both are merged before the first f+ occurs, the derivation is aborted
due to the SMC. But if a is late-merged after f− on b has been checked, then
no SMC violation obtains and a can undergo movement once another f+ has
been introduced. Among other things, this grants MGs the power to generate
tree languages with context-free path languages.

I have not said anything about the interaction of Late Merge with move-
ment, for two reasons: i) the syntactic literature discusses no such cases, and ii)
once Late Merge is reduced to Lowering, movement of a late-merged phrase is
regulated by the constraints MGMGs impose on Move [cf. 6]. In particular, the
SMC holds for all movement types in MGMGs, so any configuration like the one
above will always be blocked.

Conclusion

Emulating Late Merge via Lowering movement reduces an operation that is still
not particularly well understood to the familiar MG mechanism of movement.
Lowering is not powerful enough to handle everything that Late Merge is in
principle capable of, but it is more than sufficient for the cases discussed in



14

the syntactic literature. So even though a lot of work remains to be done on
Late Merge from a technical perspective, the reduction to Lowering shows that
Late Merge as used by syntacticians is easily accommodated by MGs. There-
fore a linguistically adequate treatment of Late Merge can be reconciled with
MSO-definability in a straightforward fashion. Moreover, as we learn more about
Lowering and its effects on MGs, our grasp of the linguistically relevant fragment
of Late Merge will improve, too.

Bibliography

[1] Chomsky, N.: The Minimalist Program. MIT Press, Cambridge, Mass.
(1995)

[2] Fowlie, M.: Order and optionality: Minimalist grammars with adjunction.
In: Proceedings of MOL 2013 (2013), to appear

[3] Frey, W., Gärtner, H.M.: On the treatment of scrambling and adjunction in
minimalist grammars. In: Proceedings of the Conference on Formal Gram-
mar (FGTrento). pp. 41–52. Trento (2002)

[4] Gärtner, H.M., Michaelis, J.: A note on countercyclicity and minimalist
grammars. In: Penn, G. (ed.) Proceedings of Formal Grammar 2003. pp.
95–109. CSLI-Online, Stanford (2008)

[5] Graf, T.: Locality and the complexity of minimalist derivation tree lan-
guages. In: de Groot, P., Nederhof, M.J. (eds.) Formal Grammar 2010/
2011. Lecture Notes in Computer Science, vol. 7395, pp. 208–227. Springer,
Heidelberg (2012)

[6] Graf, T.: Movement-generalized minimalist grammars. In: Béchet, D.,
Dikovsky, A.J. (eds.) LACL 2012. Lecture Notes in Computer Science, vol.
7351, pp. 58–73 (2012)

[7] Graf, T.: Tree adjunction as minimalist lowering. In: Proceedings of the
11th International Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+11). pp. 19–27 (2012)

[8] Graf, T.: Local and Transderivational Constraints in Syntax and Semantics.
Ph.D. thesis, UCLA (2013)

[9] Harkema, H.: A characterization of minimalist languages. In: de Groote, P.,
Morrill, G., Retoré, C. (eds.) Logical Aspects of Computational Linguistics
(LACL’01), Lecture Notes in Artificial Intelligence, vol. 2099, pp. 193–211.
Springer, Berlin (2001)

[10] Kobele, G.M.: On late adjunction in minimalist grammars (2010), slides for
a talk given at MCFG+ 2010

[11] Kobele, G.M.: Without remnant movement, MGs are context-free. In:
Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 10/11. Lecture Notes in
Computer Science, vol. 6149, pp. 160–173 (2010)

[12] Kobele, G.M.: Idioms and extended transducers. In: Proceedings of the
11th International Workshop on Tree Adjoining Grammars and Related
Formalisms (TAG+11). pp. 153–161. Paris, France (September 2012),
http://www.aclweb.org/anthology-new/W/W12/W12-4618



15

[13] Kobele, G.M.: Importing montagovian dynamics into minimalism. In:
Béchet, D., Dikovsky, A. (eds.) LACL 2012. Lecture Notes in Computer
Science, vol. 7351, pp. 103–118 (2012)

[14] Kobele, G.M., Michaelis, J.: Disentangling notions of specifier impenetra-
bility. In: Kanazawa, M., Kornia, A., Kracht, M., Seki, H. (eds.) The Math-
ematics of Language. Lecture Notes in Artificial Intelligence, vol. 6878, pp.
126–142 (2011)

[15] Kobele, G.M., Retoré, C., Salvati, S.: An automata-theoretic approach to
minimalism. In: Rogers, J., Kepser, S. (eds.) Model Theoretic Syntax at 10.
pp. 71–80 (2007)

[16] Lebeaux, D.: Language Acquisition and the Form of the Grammar. Ph.D.
thesis, University of Massachusetts, Amherst (1988)

[17] Michaelis, J.: Transforming linear context-free rewriting systems into min-
imalist grammars. Lecture Notes in Artificial Intelligence 2099, 228–244
(2001)

[18] Mönnich, U.: Grammar morphisms (2006), ms. University of Tübingen
[19] Mönnich, U.: Minimalist syntax, multiple regular tree grammars and direc-

tion preserving tree transductions. In: Rogers, J., Kepser, S. (eds.) Model
Theoretic Syntax at 10. pp. 83–87 (2007)

[20] Mönnich, U.: A logical characterization of extended TAGs. In: Proceedings
of the 11th International Workshop on Tree Adjoining Grammars and Re-
lated Formalisms (TAG+11). pp. 37–45. Paris, France (September 2012),
http://www.aclweb.org/anthology-new/W/W12/W12-4605

[21] Nissenbaum, J.: Covert movement and parasitic gaps. In: Proceedings of
North Eastern Linguistic Society. vol. 30 (2000)

[22] Ochi, M.: Multiple spell-out and PF adjacency. In: Proceedings of the North
Eastern Linguistic Society. vol. 29 (1999)

[23] Rogers, J.: A Descriptive Approach to Language-Theoretic Complexity.
CSLI, Stanford (1998)

[24] Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) Logical Aspects
of Computational Linguistics, Lecture Notes in Computer Science, vol. 1328,
pp. 68–95. Springer, Berlin (1997)

[25] Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C.
(ed.) Oxford Handbook of Linguistic Minimalism, pp. 617–643. Oxford Uni-
versity Press, Oxford (2011)

[26] Stabler, E.P.: Top-down recognizers for MCFGs and MGs. In: Proceedings
of the 2011 Workshop on Cognitive Modeling and Computational Linguis-
tics (2011), to appear

[27] Stabler, E.P.: Bayesian, minimalist, incremental syntactic analysis. Topics
in Cognitive Science 5, 611–633 (2012)

[28] Stepanov, A.: Late adjunction and minimalist phrase structure. Syntax 4,
94–125 (2001)

[29] Takahashi, S., Hulsey, S.: Wholesale Late Merger: Beyond the A/A distinc-
tion. Linguistc Inquiry 40, 387–426 (2009)


