
A Single Movement Normal Form for Minimalist
Grammars

Thomas Graf, Alëna Aksënova, and Aniello De Santo

Department of Linguistics
Stony Brook University
mail@thomasgraf.net

Abstract. Movement is the locus of power in Minimalist grammars
(MGs) but also their primary source of complexity. In order to sim-
plify future analysis of the formalism, we prove that every MG can be
converted into a strongly equivalent MG where every phrase moves at
most once. The translation procedure is implemented via a deterministic
linear tree transduction on the derivation tree language and induces at
most a linear blow-up in the size of the lexicon.

Keywords: Minimalist grammars, linear tree transductions, derivation
trees, lexical blow-up, successive cyclic movement

Introduction

Minimalist grammars (MGs; [17, 18]) can be viewed as an extension of context-
free grammars where the left-to-right order of leaves in the derivation tree does
not necessarily correspond to their linear order in the string yield. These differ-
ences in the string yield are a side-effect of the operation Move, which removes a
subtree from the derivation tree and reinserts it in a different position. Standard
MGs are defined in such a way that one and the same subtree may be moved
several times. In this case, the subtree is inserted only in the position deter-
mined by the final movement step, all previous steps have no tangible effect.
This intuitive sketch suggests that these non-final — also called intermediate —
movement steps can be omitted without altering the generated tree and string
languages, a fact we prove in this paper.

The vacuity of intermediate movement is already implicit in the MCFG-
equivalence proofs of [9, 15]. We improve on this with a fully explicit translation
in terms of a deterministic linear tree transduction over Minimalist derivation
trees that yields MGs in single movement normal form (SMNF), i.e. MGs where
every lexical item moves at most once (Sec. 2 and appendix A). By skipping
MCFGs as an intermediate step, the translation should prove easier to generalize
to non-standard MGs for which no MCFG translation has been worked out in the
literature. We also study the effects of SMNF on grammar size and demonstrate
that the induced blow-up is highly dependent on movement configurations, but
at most linear (Sec. 3.1). We furthermore discuss possible applications of SMNF

2

(Sec. 3.2) — including certain parallels between syntax and phonology — and we
explore the ramifications of our result for the Chomskyan tradition of Minimalist
syntax, which MGs are modeled after (Sec. 3.3).

1 Defining Minimalist Grammars

Due to space constraints we presume that the reader is already familiar with
MGs in general [17, 18], and their constraint-based definition in particular [5, 7].
Following [14], we decompose MGs into a regular Minimalist derivation tree
language (MDTL) and a mapping from derivation trees to phrase structure trees.

Definition 1. Let Base be a non-empty, finite set of feature names. Fur-
thermore, Op := {merge,move} and Polarity := {+,−} are the sets of
operations and polarities, respectively. A feature system is a non-empty set
Feat ⊆ Base×Op×Polarity.

Negative Merge features are called category features, positive Merge feature selec-
tor features, negative Move features licensee features, and positive Move features
licensor features. A (Σ,Feat)-lexicon Lex is a finite subset of Σ × Feat∗. Each
member of Lex is a lexical item (LI) of the form γcδ, where γ is a string of licen-
sor and selector features, c is a category feature, and δ is a string of 0 or more
licensee features. A Minimalist grammar (MG) is (Σ,Feat)-lexicon coupled with
a set F ⊆ Base of final categories.

A ranked alphabet Σ is a finite union of finite sets Σ(0), . . . , Σ(n) such that
σ ∈ Σ(i) has arity i — we also write σ(i). For every such Σ, TΣ is the language
of finite Σ-trees recursively defined by i) σ(0) ∈ TΣ , and ii) σ(t1, . . . , tn) ∈ TΣ
iff σ ∈ Σ(n) and ti ∈ TΣ , 1 ≤ i ≤ n. A free derivation tree over Lex is a tree over
alphabet

{
l(0) | l ∈ Lex

}
∪
{
◦(1), •(2)

}
. An interior node m is associated to the

i-th positive polarity feature of LI l iff it is the i-th mother of l (the i-th mother
of l is the mother of its (i− 1)-th mother, and l is its own 0-th mother). Such an
m is the slice root of l iff the mother of m is not associated to l. A free derivation
tree is correctly projected iff i) every interior node is associated to the feature
of exactly one LI, and ii) for every LI l with γ := f1 . . . fn the i-th mother of l
exists and is labeled ◦ if fi is a Move feature, and • otherwise.

A Minimalist derivation tree t is a correctly projected tree of some Lex that
obeys four ancillary conditions. We first list the two constraints regulating Merge:

Merge For every node m of t associated to selector feature f+ of LI l, one of
its daughters is the slice root of an LI l′ with category feature f−.

Final If the root of t is the slice root of LI l, then the category feature of l is a
final category.

Move is also subject to two constraints, which require ancillary terminology. Two
features f and g match iff they differ only in their polarity. An interior node m
matches a feature g iff the feature m is associated to matches g. For every free
derivation tree t and LI l of t with string f−1 · · · f−n of licensee features, n ≥ 0,
the occurrences of l in t are defined as follows:

3

– occ0(l) is the mother of the slice root of l in t (if it exists).
– occi(l) is the unique node m of t labeled ◦ such that m matches −fi, properly

dominates occi−1, and there is no node n in t that matches −fi, properly
dominates occi−1, and is properly dominated by m.

The occurrence of l with the largest index is its final occurrence. For t and l as
before, and every node m of t:

Move There exist distinct nodes m1, . . . ,mn such that mi (and no other node
of t) is the ith occurrence of l, 1 ≤ i ≤ n.

SMC If m is labeled ◦, there is exactly one LI for which m is an occurrence.

Given an MG G with lexicon Lex , the MDTL of G is the largest set of correctly
projected derivation trees over Lex such that every tree in L satisfies the four
constraints above. Note that each constraint defines a regular tree language,
wherefore all MDTLs are regular [5, 14, 15].

MDTLs are easily mapped to phrase structure trees (see [7, 14]). First we
relinearize all siblings m and n such that m precedes n iff m is an LI with a
selector feature or otherwise m is the slice root of some LI. Then we project
phrases such that a given node is relabeled < only if its label is • and it is the
mother of an LI with at least one selector feature. All other interior nodes are
labeled >. The purpose of < and > is to indicate which branch (left or right,
respectively) contains the head of the phrase. The result is a phrase structure
tree where the first argument of a head is always linearized to its right, whereas
all other arguments are linearized to the left.

For movement, assume l is an LI with at least one licensee feature and slice
root r in the derivation tree. Add a branch from r to the final occurrence of l,
and replace the subtree rooted by r with a trace. Every unary branching interior
node furthermore receives a trace as a left daughter. At the very end, every LI
σ :: f1f2 · · · fn is replaced by σ to ensure that no features are present in the
phrase structure trees. The combination of these steps can be carried out by a
tree-to-tree transduction φ that is definable in monadic second-order logic. The
tree language generated by MG G is the image of its MDTL under φ.

2 Single Movement Normal Form

This section establishes the core result of our paper: every MG G can be con-
verted into a strongly equivalent MG that is in SMNF. Section 2.1 defines a linear
tree transduction to rewrite MG derivation trees such that no LI moves more
than once (a corresponding transducer is defined in the appendix). Section 2.2
then shows that these derivations still generate the same derived trees, which in
combination with some auxiliary lemmata establishes the strong equivalence of
standard MGs and MGs in SMNF.

2.1 A Linear Tree Transduction for Single Movement

In principle, single movement could mean that at most one movement step takes
place in the whole derivation. But MGs satisfying such a strong constraint only

4

generate context-free languages [cf. 12] and thus aren’t even weakly equivalent
to standard MGs. Instead, SMNF enforces the weaker condition that each LI
undergoes at most one movement step. In other words, there is no intermediate
movement; if an LI moves at all, it moves directly to its final landing site.

Definition 2 (SMNF). An MG G with lexicon Lex is in single movement
normal form iff every l ∈ Lex has at most one licensee feature.

The general idea for bringing an MG G into SMNF is very simple. Starting out
with G’s MDTL, one deletes from each derivation tree all those Move nodes that
aren’t a final occurrence for some LI. The removal of movement steps must be
matched by i) the removal of all non-final licensee features on the moving LIs
and, ii) the removal of the licensor feature that each intermediate Move node
was associated to.

It is this feature modification step that takes some finesse. Without further
precautions, the resulting derivation may violate SMC, as is shown in Fig. 1
(here and in all following examples, Merge features are written in upper case
and Move features in lower case). In the original derivation, LI b is the first to
move, which is followed by two movement steps of LI a. Note that both undergo
movement triggered by a licensee feature f−. But the feature g− triggering in-
termediate movement of a prevents f− from becoming active on a until b has
checked its feature f−. Deleting g− does away with this safeguard — both in-
stances of f− are active at the same time and receive the same occurrence, which
is prohibited by SMC. The solution is to carefully rename features to avoid such
conflicts while keeping the number of features finite.

◦
◦
◦
•

c :: D+f+g+f+C− •
b :: B−f− •

d :: A+B+D− a :: A−g−f−

◦
◦
•

c :: D+f+f+C− •
b :: B−f− •
d :: A+B+D− a :: A−f−

Fig. 1. Removal of intermediate movement steps may result in SMC violations

All three steps — intermediate Move node deletion, intermediate feature
deletion, and final feature renaming — can be carried out by a non-deterministic,
linear bottom-up tree transducer τ , wherefore the regularity of the MDTL is
preserved [3]. The definition of this transducer is rather unwieldy, so we opt for
a high-level exposition at this point and relegate the detailed treatment to the
appendix. Let l be an LI such that its final occurrence o is associated to feature
f and the path from o to l contains Move nodes m1, . . . , mn (0 ≤ n). Then the
following steps are carried out in a bottom-up fashion:

5

– Deletion
• remove all intermediate occurrences of l, and
• for every removed intermediate occurrence, delete the licensor feature on

the LI that said occurrence was associated to, and
– Renaming
• replace l’s string of licensee features by f−j , and

• replace the feature on LI l′ that o is associated to by f+j , where
• j ∈ N is the smallest natural number distinct from every k ∈ N such

that some mi is associated to f+k , 1 ≤ i ≤ n.

An instance of the mapping computed by τ is given in Fig. 2.

◦
◦
◦
•

◦
•

◦
◦
•

•
◦
•

d :: D−h−f− •
a :: A−f− w :: A+D+f+W−

•
◦
•

d :: D−g−h−f− •
a :: A−f− w :: A+D+f+W−

x :: W+W+X−

y :: X+h+f+Y−

z :: Y+g+Z−f−

c :: Z+f+h+f+C−

◦
◦
•

•
◦
•

•
◦
•

d :: D−f−1 •
a :: A−f−0 w :: A+D+f+0 W−

•
◦
•

d :: D−f−2 •
a :: A−f−0 w :: A+D+f+0 W−

x :: W+W+X−

y :: X+f+1 Y−

z :: Y+Z−f−0

c :: Z+f+0 f+2 C−

Fig. 2. Derivation tree (top) and its image under τ (bottom)

Subscripting is essential for the success of the translation. Intuitively, it may
seem more pleasing to contract strings of licensee features into a single licensee

6

feature, as suggested by one reviewer. So the LI σ :: γcf−1 · · · f−n would become
σ :: γc[f1 · · · fn]−. But this does not avoid all SMC violations. Well-formed MG
derivations can contain configurations where two LIs l and l′ have the same
string δ of licensee features, the final occurrence o of l dominates l′, and the
final occurrence of l′ dominates o. In this case, atomizing δ into a single licensee
feature δ− would incorrectly make o a final occurrence of l′, too.

It is also worth mentioning that even though the transducer τ as defined in
the appendix is non-deterministic, the transduction itself is deterministic.

Lemma 1. The transduction computed by τ is a function.

Proof. Let t be some arbitrary Minimalist derivation tree and suppose that t
has two distinct images t1 and t2 under τ . Inspection of τ reveals that t1 and t2
must be isomorphic and thus can only differ in the choice of indices for licensor
and licensee features. We show by induction that these indices are always the
same. Consider some arbitrary move node m of t1 and t2 that is associated to f+i
and f+j in these derivations, respectively. If m does not properly dominate any

other move nodes associated to some f+k , then i = j = 0. Otherwise, m properly
dominates a sequence of move nodes m0, . . . ,mn with each one associated to
some subscripted version of f+. By our induction hypothesis, each move node
is associated to the same licensor feature f+k in t1 and t2. But then there is a
unique choice for the smallest natural number distinct from each one of these k,
wherefore m is associated to the same licensor feature in t1 and t2. Consequently,
t1 = t2 after all. ut

The lemma shows that the non-determinism of τ is merely due to the restricted
locality domain of linear transducers, which forces τ to make educated guesses
about the shape of the derivation tree. A transducer with more elaborate lookup
mechanism can compute the same transduction in a deterministic fashion. In
particular, τ computes a deterministic, regularity preserving, first-order definable
tree-to-tree transduction. In the remainder of this paper we take τ to directly
refer to the transduction rather than any specific implementation thereof. We
also write τ(t) for the image of t under τ .

2.2 Proof of Strong Equivalence

We now show that the conversion carried out by τ does indeed result in an
MG that generates the same set of phrase structure trees. To this end, we
first establish an important restriction on movement. For every MG G, µ :=
|{f | 〈f,move〉 ×Polarity ∈ Feat}|. That is to say, µ indicates the number of
distinct movement features. Given a derivation tree t of G and node n in t, the
traffic of n, traf(n), is a measure of the number of LIs l in t that cross n during
the derivation. More precisely, traf(n) denotes the number of LIs that are prop-
erly dominated by n in t and that have at least one occurrence that reflexively
dominates n.

Lemma 2. For every MG G, derivation tree t of G, and node n in t, 0 ≤
traf(n) ≤ µ.

7

Proof. The lower bound is trivial, while the upper bound follows from SMC
and the definition of occurrence: there can be no two distinct LIs l and l′ that
are properly dominated by n and whose respective lowest occurrences reflexively
dominating n are also associated to instances of the same licensor feature. Since
there are only µ distinct licensor features, traf(n) cannot exceed µ. ut

Lemma 3. It always holds for τ as defined above that 0 ≤ j < µ.

Proof. Consider an arbitrary Move node m. Since traf(m) ≤ µ, there cannot be
more than µ LIs that are properly dominated by m and whose final (and only)
occurrence reflexively dominates m. In order to distinguish the final occurrences
of these LIs, then, one needs at most µ distinct indices. ut

Lemma 3 guarantees both that τ is indeed a linear tree transduction and
that the set of LIs occurring in the image of an MDTL under τ is still finite. As
each one of these LIs has a well-formed feature string of the form γcδ, the set
of LIs in the derivations produced by τ is an MG. It still remains to be shown,
though, that the actual derivation trees produced by τ are well-formed.

Lemma 4. It holds for every MDTL L and derivation tree t ∈ L that τ(t) is a
well-formed derivation tree.

Proof. We have to show that τ(t) is correctly projected and satisfies Merge,
Final, Move and SMC. The former holds because Move nodes are deleted iff
their licensor features are removed. Furthermore, τ does not remove any Merge
nodes or change any category or selector features, so Merge and Final hold
because the domain of τ is an MDTL. Hence we only have to worry about
Move and SMC.

Move. Move node m is an occurrence of some LI l in τ(t) (and thus its final
occurrence) iff m is the lowest node in τ(t) that properly dominates l and is
associated to a licensor feature matching l’s single licensee feature. It is easy to
see that τ furnishes at least one such m for every LI with a licensee feature.

SMC. We give an indirect proof that every Move node m is an occurrence for
at most one LI in derivation tree t. This implies that m is an occurrence for
exactly one LI thanks to Move and the fact that the images under τ contain as
many Move nodes as LIs with licensee features.

Suppose that m in τ(t) is an occurrence for two distinct LIs l and l′. Then
both l and l′ have the same licensee feature f−i , for some arbitrary choice of f
and i. Hence it must hold in t that

1. τ−1(m) properly dominates τ−1(l) and τ−1(l′), and
2. τ−1(m) is a final occurrence o for either τ−1(l) or τ−1(l′), and
3. τ−1(m) is properly dominated by the final occurrence o′ of the other.

Here τ−1(n) denotes the node in t that corresponds to n. Now assume w.l.o.g.
that o and o′ are the final occurrences of τ−1(l) and τ−1(l′), respectively. Then
the path from τ−1(l′) to o′ includes o, whence τ(o) and τ(o′) must be associated
to licensor features with distinct indices given the definition of τ . But then l and
l′ do not have the same licensee feature, either. Contradiction. ut

8

We now know that τ produces a non-empty set of well-formed Minimalist
derivation trees. This still does not imply, however, that the image of an MDTL
under τ is itself an MDTL. The complicating factor is that MDTLs must be
maximal sets of well-formed derivation trees — the LIs created by τ may allow
for completely new derivations that are not part of the set produced by τ .

As a concrete example, consider the MG with the following lexicon:

u :: B+C− v :: A−f−g− w :: B+g+B− x :: B+f+B− y :: A+B−

This grammar allows for only one derivation, depicted in Fig. 3 (left), which
yields the string uvwxy . The image of this derivation tree under τ (see Fig. 3
right) contains almost exactly the same LIs. The only difference is the absence
of f+ on x and f− on v.

u :: B+C− v :: A−g− w :: B+g+B− x :: B+B− y :: A+B−

Minor as this change may be, it has a major effect in that the MDTL is no
longer singleton but actually infinite. Without the regulating effect of the licensee
features of v, the LI x can be merged an arbitrary number of times. As a result,
the generated string language is now uvwx∗y instead of uvwxy .

•
u :: B+C− ◦

•
w :: B+g+B− ◦

•
x :: B+f+B− •

y :: A+B− v :: A−f−g−

•
u :: B+C− ◦

•
w :: B+g+0 B

− •
x :: B+B− •
y :: A+B− v :: A−g−0

Fig. 3. Only possible derivation of example MG (left) and its image under τ (right)

Fortunately this issue is easy to avoid. It is always the case that the range R of
τ is a subset of the unique MDTL over the set of LIs that occur in the derivation
trees of R. Furthermore, R is guaranteed to be regular because MDTLs are
regular and τ preserves regularity. Finally, the intersection of an MDTL and a
regular tree language is the MDTL of some MG, modulo relabeling of selector
and category features [4, 7, 13]. So to ensure that τ yields an MDTL, we only
have to intersect its range with the MDTL over the set of all LIs that occur in at
least one derivation tree produced by τ . A full algorithm for the intersection step
is given in Sec. 3.2.3 of [7]. The algorithm operates directly on the MG lexicon,
which allows it to be efficiently combined with the transducer in the appendix.
The result is an MG Gsmnf in SMNF.

It only remains for us to prove that Gsmnf generates exactly the same derived
trees as the original MG G, ignoring intermediate landing sites. To this end we
first establish the weaker result that τ preserves the derived trees (again ignoring

9

intermediate landing sites). Let φ be the standard mapping from derivation trees
to phrase structure trees and h a function that removes all intermediate landing
sites from the phrase structure trees of an MG.

Theorem 1. For every MG G with MDTL L, h(φ(L)) = φ(τ(L)).

Proof. Pick some arbitrary t ∈ L. Suppose h(φ(t)) 6= φ(τ(t)). There must be
some LI l with final occurrence o in t such that τ(o) is not the final occurrence
of τ(l). But then either τ(l) has no final occurrence, the same final occurrence
as some other LI, or the final occurrences of some LIs, including τ(l), have
been switched. The former two are impossible as τ only generates well-formed
derivation trees (Lemma 4). The latter is precluded by τ ’s choice of unique
indices. Hence h(φ(t)) = φ(τ(t)) after all and we have h(φ(L)) ⊆ φ(τ(L)). The
same arguments can be used in the other direction to show that for every t ∈ τ(L)
and t′ ∈ τ−1(t) we have h(φ(t′)) = φ(t). This establishes h(φ(L)) ⊇ φ(τ(L)),
concluding the proof. ut

Corollary 1. For every MG G there is a strongly equivalent MG Gsmnf in
SMNF.

Proof. The only addition to the previous proof is that Gsmnf is obtained from
the image of G’s MDTL via the category refinement algorithm of [7]. Therefore G
and G′ may use different category and selector features. But since these features
are all removed by φ, they are immaterial for the generated set of phrase structure
trees. ut

3 Evaluation

We now know that every MG has a strongly equivalent counterpart in SMNF.
The relevance of such a normal form theorem, however, depends on the properties
of the normal form and its overall usefulness. SMNF simplifies movement in MGs
while preserving strong generative capacity, but does so at the expense of a larger
number of movement features. As we discuss next in Sec. 3.1, the actual blow-up
in the size of the lexicon is hard to predict because it depends on how strictly
movers are tied to specific positions. The blow-up is still guaranteed to be at
most linear, though. Sections 3.2 and 3.3 subsequently discuss applications and
linguistic implications of SMNF.

3.1 Effects on Succinctness and Grammar Size

The conversion to SMNF has two sources of lexical blow-up. The first one is τ ,
which may replace a single LI of the form a :: · · · h+ · · ·A−g− · · · f− by multiple
variants a :: · · · h+

i · · ·A−f−j that only differ in the value of i and j (0 ≤ i, j < µ)
and which licensor features have been removed. Given an MG G, the lexicon size
of its SMNF counterpart is thus linearly bounded by

∑
l∈Lex µ

γ(l)+δ(l), where γ(l)
is the number of licensor features of l, and δ(l) is 1 if l contains a licensee feature

10

and 0 otherwise. The second blow-up is due to the regular intersection step that
turns the range of τ into an MDTL. This step is known to be linear in the size of
the original lexicon and polynomial in the size of the smallest (non-deterministic)
automaton that recognizes the regular tree language [7]. Crucially, though, the
size increase induced by τ depends greatly on the shape of the grammar.

In the optimal case, τ does not cause any lexical blow-up and thus defines a
bijection between lexical items.1 Intuitively, this is the case whenever the position
of an f -mover is fixed with respect to other f -movers, such as in the MG for
anbndn below that uses massive remnant movement:

ε :: A−a−f− a :: D+a+f+A−a−f− ε :: D+a+f+A′−

ε :: B−b−f− b :: A+b+f+B−b−f− ε :: A′+b+f+B′−

ε :: D−d−f− d :: B+d+f+D−d−f− ε :: B′+d+f+C−

After applying τ , this yields a notational variant of the standard MG for this
language. Crucially, both grammars have exactly the same number of LIs.

ε :: A−f−0 a :: D+f+0 A−f−0 ε :: D+f+0 A′−

ε :: B−f−1 b :: A+f+1 B−f−1 ε :: A′+f+1 B′−

ε :: D−f−2 d :: B+f+2 D−f−2 ε :: B′+f+2 C−

Without this restriction to fixed relative positions, blow-up can occur even if
the grammar does not allow for remnant movement and only generates a finite
language. In the following grammar, the three lexical items a, b, and d can be
selected by a in arbitrary order, and their target sites are similarly free in their
relative ordering.

ε :: T+C− a :: M−a−f− ε :: C+a+f+C−

ε :: M+M+M+T− b :: M−b−f− ε :: C+b+f+C−

d :: M−d−f− ε :: C+d+f+C−

Conversion into SMNF increases the size from 8 to 20 since each instance of f−

and f+ must be replaced by f−i and f+i , 0 ≤ i ≤ 2. The size increase of SMNF thus
correlates with the number of combinatorial options furnished by the interaction
of Merge and Move. Future work will hopefully be able to characterize this
correlation in greater detail.

1 Strictly speaking the optimal case is for τ to reduce the size of the lexicon. But as
far as we can tell this only happens with needlessly redundant MGs such as the one
below, where the SMNF lexicon contains only 5 instead of 7 entries.

c :: M+C− m :: M−g−f− b :: C+g+B−

c :: B+f+M+C− m :: M−h−f− b :: C+h+B−

c :: B+f+C−

A minor change to the grammar immediately undoes the size benefits of SMNF. All
it takes is to replace c :: B+f+M+C− by c :: B+M+f+C−. The SMNF lexicon then
has 8 entries instead of 7 (1 for b, 2 for m and 5 for c).

11

3.2 Usefulness and Applications

A normal form can serve a multitude of purposes. Our main motivation for
SMNF is to simplify proofs and rigorous analysis. The availability of interme-
diate movement in MGs creates special cases that are hardly ever insightful.
For example, the top-down parser in [19] includes two movement rules, one for
final and one for intermediate movement, yet the latter does nothing of interest
except eliminate a pair of licensor and licensee features. Similarly, the proof in
[12] that MGs cannot generate mildly context-sensitive string languages with-
out remnant movement has to cover intermediate movement as a special case
that does not add anything of value. Quite generally, intermediate movement is
hardly ever relevant but frequently introduces complications that distract from
the core ideas of proofs and theorems.

In fact, SMNF has already proven indispensable in ongoing projects. In the
wake of our theorem, Graf and Heinz [8] show that SMNF reduces the complexity
of MDTLs and renders them very similar to dependencies found in phonology. It
has been known for quite a while that MDTLs are subregular [5], and it has been
conjectured that segmental phonology is tier-based strictly local [10]. These two
insights are combined by [8]: an MDTL is a tier-based strictly local tree language
iff its grammar is in SMNF. This suggests that syntax and phonology are very
much alike at a sufficient level of formal abstraction.

With other formalisms, normal forms have also been useful for parsing and
the construction of automata. Chomsky Normal Form, for instance, is indis-
pensable to guarantee cubic time complexity for CKY parsing of context-free
grammars. Greibach Normal Form, on the other hand, simplifies the construc-
tion of equivalent, real-time pushdown automata for these grammars. At this
point it remains an open question whether SMNF offers comparable advantages
in these areas. On the one hand SMNF simplifies movement dependencies, on
the other hand any tangible parsing benefits may be so minor that they are
vastly outweighed by the lexical blow-up of the SMNF conversion. One conceiv-
able scenario is that SMNF offers a parsing advantage only for those grammars
where lexical blow-up is minimal due to movement being more restricted. It
would be interesting to see whether this subclass is sufficiently powerful from
a linguistic perspective. If so, it might indicate that natural languages restrict
how movement dependencies interact in order to aid parsing.

3.3 Linguistic Implications

The unexpected parallels between phonology and MGs in SMNF, as well as our
speculations above regarding parsing optimization, show that the existence of
SMNF is not of purely technical interest but also raises deep linguistic questions.
Yet there are certain linguistic concerns one might raise regarding SMNF.

In the syntactic literature, direct movement to the final landing site without
intermediate movement steps is called one fell swoop movement. This kind of
movement has been argued against on conceptual and empirical grounds (cf.
Chapter 1 of [1]). However, the arguments against one fell swoop movement do

12

not carry over to SMNF. The reason for this is that the linguistic arguments
are about derived trees, whereas SMNF is a property of derivation trees. In
principle, nothing prevents us from modifying the mapping from derivation trees
to derived trees so that landing sites are inserted where syntacticians want them
to occur, e.g. at phase edges. Something along these lines was already proposed
in [11, Sec. 2.1.1] for successive cyclic wh-movement. The strategy can easily
be extended to other intermediate movement steps because most of them are
readily predictable from the rest of the structure.

To take but one example, consider the movement steps of a subject wh-phrase
as in Who does John think kissed Mary?, to which Minimalists would ascribe
the structure [CP who C does John think [CP t C [TP t T t kissed Mary]]]. The
subject starts out in Spec,VP of the embedded clause, moves to the embedded
subject position in Spec,TP, then to the embedded Spec,CP, and from there
finally to matrix Spec,CP. But all these intermediate movement steps are readily
predictable from the fact that who moves to matrix Spec,CP. A phrase that starts
out in Spec,VP and moves to a position above Spec,TP must land there by virtue
of being a subject. A phrase that moves to some higher Spec,CP must land in
every CP-specifier that occurs between the two. There is no requirement for
intermediate movement steps to be linked to feature checking in the derivation
because they can be inferred indirectly.

Cases where this indirect inference of intermediate movement steps is impos-
sible are hard to come by. They mostly involve configurations where movement
serves the sole purpose of modifying word order, such as scrambling or lin-
earization of siblings to account for the head-initial/head-final contrast between
languages. But it is far from evident that intermediate movement matters for
scrambling, and the headedness parameter can be captured more directly by en-
coding the linearization of arguments in the selector features of MGs [cf. 6, 18].
Given our current linguistic understanding, then, there is no sound argument or
conclusive evidence against SMNF, a point that was already made over 25 years
ago in [16, Sec. 3.4.1] (we are indebted to an anonymous reviewer for bringing
this to our attention). The only major issue is the lexical blow-up, but this is
as much a detriment as an opportunity: a hierarchy that ranks movement de-
pendencies with respect to the SMNF blow-up they induce might furnish novel
generalizations with rich typological implications.

Conclusion

Every MG can be efficiently transformed into a strongly equivalent MG in SMNF
such that every LI moves at most once. The translation procedure in this paper is
specified as a linear transduction over MDTLs, but is easily extended to a map-
ping between Minimalist lexicons: given an MG lexicon, one can immediately
construct a deterministic bottom-up tree automaton that recognizes its MDTL
[14], from which one obtains an automaton for the corresponding SMNF tree lan-
guage via the usual transducer composition algorithm [2]. The nullary symbols
of the automaton constitute the new lexicon. A Python implementation of this

13

extended translation is hosted at https://github.com/CompLab-StonyBrook. In
future work, we hope to generalize SMNF from standard MGs to movement-
generalized MGs [6]. We also intend to further explore how movement can be re-
stricted to avoid lexical blow-up and whether these restrictions are linguistically
feasible. It will also be interesting to see if some of these findings are applicable in
the reverse direction to obtain algorithms that minimize (movement-generalized)
MGs by adding intermediate movement steps.

Bibliography

[1] Abels, K.: Successive Cyclicity, Anti-locality, and Adposition Stranding.
Ph.D. thesis, University of Conneticut (2003)

[2] Baker, B.S.: Composition of top-down and bottom-up tree transductions.
Information and Control 41, 186–213 (1979)

[3] Engelfriet, J.: Bottom-up and top-down tree transformations — a compar-
ison. Mathematical Systems Theory 9, 198–231 (1975)

[4] Graf, T.: Closure properties of minimalist derivation tree languages. In:
Pogodalla, S., Prost, J.P. (eds.) LACL 2011. Lecture Notes in Artificial
Intelligence, vol. 6736, pp. 96–111. Springer, Heidelberg (2011)

[5] Graf, T.: Locality and the complexity of minimalist derivation tree lan-
guages. In: de Groot, P., Nederhof, M.J. (eds.) Formal Grammar 2010/
2011. Lecture Notes in Computer Science, vol. 7395, pp. 208–227. Springer,
Heidelberg (2012)

[6] Graf, T.: Movement-generalized minimalist grammars. In: Béchet, D.,
Dikovsky, A.J. (eds.) LACL 2012. Lecture Notes in Computer Science, vol.
7351, pp. 58–73 (2012)

[7] Graf, T.: Local and Transderivational Constraints in Syntax and Semantics.
Ph.D. thesis, UCLA (2013)

[8] Graf, T., Heinz, J.: Commonality in disparity: The computational view of
syntax and phonology (2015), slides of a talk given at GLOW 2015, April
18, Paris, France.

[9] Harkema, H.: A characterization of minimalist languages. In: de Groote, P.,
Morrill, G., Retoré, C. (eds.) Logical Aspects of Computational Linguistics
(LACL’01), Lecture Notes in Artificial Intelligence, vol. 2099, pp. 193–211.
Springer, Berlin (2001)

[10] Heinz, J., Rawal, C., Tanner, H.G.: Tier-based strictly local constraints in
phonology. In: Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics. pp. 58–64 (2011)

[11] Kobele, G.M.: Generating Copies: An Investigation into Structural Identity
in Language and Grammar. Ph.D. thesis, UCLA (2006)

[12] Kobele, G.M.: Without remnant movement, MGs are context-free. In:
Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 10/11. Lecture Notes in
Computer Science, vol. 6149, pp. 160–173 (2010)

[13] Kobele, G.M.: Minimalist tree languages are closed under intersection with
recognizable tree languages. In: Pogodalla, S., Prost, J.P. (eds.) LACL 2011.
Lecture Notes in Artificial Intelligence, vol. 6736, pp. 129–144 (2011)

14

[14] Kobele, G.M., Retoré, C., Salvati, S.: An automata-theoretic approach to
minimalism. In: Rogers, J., Kepser, S. (eds.) Model Theoretic Syntax at 10.
pp. 71–80 (2007)

[15] Michaelis, J.: Transforming linear context-free rewriting systems into min-
imalist grammars. Lecture Notes in Artificial Intelligence 2099, 228–244
(2001)

[16] Ristad, E.S.: Computational Structure of Human Languages. Ph.D. thesis,
MIT (1990)

[17] Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) Logical Aspects
of Computational Linguistics, Lecture Notes in Computer Science, vol. 1328,
pp. 68–95. Springer, Berlin (1997)

[18] Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C.
(ed.) Oxford Handbook of Linguistic Minimalism, pp. 617–643. Oxford Uni-
versity Press, Oxford (2011)

[19] Stabler, E.P.: Bayesian, minimalist, incremental syntactic analysis. Topics
in Cognitive Science 5, 611–633 (2013)

A Specification of SMNF Transducer

A bottom-up tree transducer is a 5-tuple τ := 〈Σ,Ω,Q, F,∆〉, where Σ and Ω
are ranked alphabets, Q is a finite set of states, F ⊆ Q is the set of final states,
and ∆ is a finite set of transduction rules. Each transduction rule is of the form
f(q1(x1), . . . , qn(xn)) → q(t) such that f is an n-ary symbol in Σ (n ≥ 0),
q, q1, . . . , qn ∈ Q, and t is a tree with node labels drawn from Ω and the nullary
symbols x1, . . . , xn. The transducer is linear iff each xi may occur at most once
in t. It is non-deleting iff each xi occurs at least once in t. It is non-deterministic
iff at least two transduction rules have the same left-hand side.

A (Σ1, . . . , Σn)-tree is a tree whose nodes are labeled with symbols from⋃
1≤i≤nΣi. Given (Σ,Q)-tree u and (Ω,Q)-tree v, τ immediately derives v

from u (u ⇒τ v) iff there is a transduction rule such that u has the shape
f(q1(u1), . . . , qn(un)) — where each ui is the subtree of u immediately domi-
nated by qi — and v is the result of substituting ui for xi in t. We use ⇒+

τ

to denote the transitive closure of ⇒τ . The transduction computed by τ is the
set τ := {〈u, v〉 | u ⇒+

τ qf (v), u a Σ-tree, and qf ∈ F}. We furthermore let
τ(s) := {〈s, t〉 ∈ τ}, and τ(L) :=

⋃
s∈L τ(s) for L a tree language.

We now define a non-deterministic linear bottom-up tree transducer that
brings Minimalist derivation trees into SMNF. The transducer is almost non-
deleting as it only deletes intermediate Move nodes. Consequently, it can be
regarded as the composition of a non-deterministic relabeling and a deterministic
transducer that deletes Move nodes marked for removal. Before moving on, we
introduce an additional piece of MG notation. In a standard MG, every useful
LI must be of the form γcδ, where γ is a string of licensor and selector feature,
c is a category feature, and δ is a string of 0 or more licensee features. Given a
feature component s, m(s) is obtained from s by removing all Merge features.
We overload m such that for every LI l := σ :: s, m(l) := m(s).

15

The SMNF transducer has to handle three tasks in parallel: i) detect and
delete intermediate Move nodes, ii) modify the feature components of LIs, and
iii) ensure that each licensee feature is subscripted with the smallest possible
natural number. Consequently, each state has a tripartite structure〈

u1, . . . , un
m1, . . . ,mn

I1, . . . , In

〉

such that n ≤ µ (the upper bound on the grammar’s traffic), ui keeps track of the
unchecked Move features of some LI l, mi records how m(l) was modified, and
Ii stores which required indices have not been encountered yet. More precisely:
for each ui there is some LI l with ui a suffix of m(l); mi is a string of indexed
Move features and the distinguished symbol � such that removal of indices and
� yields a subsequence of m(l) including the final licensee feature; and Ii is some
subset of the closed interval [0, µ−1] of natural numbers. Among all these states,
the only final state is the empty state 〈〉.

While the transducer has a large number of rules, they can easily be com-
pressed into a few templates using algebraic operations. First, we define a non-
deterministic relabeling ` operating on MG feature strings that preserves all
Merge features and either deletes Move features or relabels them:

`(f1 · · · fn) :=

f1`(f2 · · · fn) if f1 is a Merge feature

f1,i`(f2 · · · fn) or if f1 is a licensor feature, 0 ≤ i < µ

�`(f2 · · · fn)

f1,i`(f2 · · · fn) if f1 is a licensee feature, 0 ≤ i < µ

ε if f1 · · · fn = ε

We extend ` to LIs: if l := σ :: γcf1 · · · fn, then `(l) is σ :: `(γc) if n = 0
and σ :: `(γcfn) otherwise. In addition, h is a homomorphism that replaces the
distinguished symbol � by ε in every string. The transduction rules for leaf nodes
now follow a simple template:

LIs. l :: s→

〈 m(l)

m(l′)

ε

〉
(h(l′)) for l′ = `(l) if l′ does not end in

a licensee feature〈 m(l)

m(l′)

[0, k − 1]

〉
(h(l′)) for l′ = `(l) if the licensee fea-

ture of l′ is subscripted with k

For Merge we use a binary operator ⊗ that combines all the components of
the states.〈 u1, . . . , uj

m1, . . . ,mj

I1, . . . , Ij

〉
⊗

〈 uj+1, . . . , uk
mj+1, . . . ,mk

Ij+1, . . . , Ik

〉
:=

〈 u1, . . . , uj , uj+1, . . . , uk
m1, . . . ,mj ,mj+1, . . . ,mk

I1, . . . , Ij , Ij+1, . . . , Ik

〉

16

Merge. • (q(x), q′(y))⇒ q ⊗ q′(•(x, y))

The Move rules have to handle most of the work in the transducer. First, they
have to delete movement features in the top component and use this information
to decide whether the Move node is final or intermediate. Licensor features in the
second component must also be removed, and the same goes for licensee features
if the Move node is final. In the latter case, the index of the checked licensee
feature is removed from all other index sets. Checking of a licensee feature, in
turn, is only possible if its index set is empty.

As before, we simplify our presentation by using an algebraic operator 	,
which takes care of updating index sets. Given a state q with index set Ij at
position j, Ij 	f k = Ij − {k} if mj ends in some subscripted version of f−.
In all other cases, Ij 	f k = Ij . The transition rules for intermediate and final
movement are now captured by four distinct cases. We only give two here, the
other two are their mirror image with the order of f+δj and f−δk switched.

Move. ◦

〈u1, . . . , f+δj , . . . , f−δk, . . . , unm1, . . . ,mj , . . . ,mk, . . . ,mn

I1, . . . , Ij , . . . , Ik, . . . , In

〉
(x)

 :=

〈 u1, . . . , δj , . . . , δk, . . . , un

m1, . . . ,m
′
j , . . . ,mk, . . . ,mn

I1, . . . , Ij , . . . , Ik, . . . , In

〉
(x) if δk 6= ε and mj = �m′j

〈 u1, . . . , δj , . . . , . . . , un

m1, . . . ,m
′
j , . . . , . . . ,mn

I1 	f i, . . . , Ij , . . . , . . . , In 	f i

〉
(◦(x)) if δk = ε, mj = f+i m

′
j ,

mk = f−i , Ik = ∅, and
only mk starts with f−i

Note that since the transducer is restricted to well-formed derivation trees, at
most one component of a state can contain licensor features. Similarly, the SMC
prevents any two ui from starting with the same licensee feature, so the indices
j and k in the template are always uniquely identified.

A few clarifying remarks may be in order. First, note that the transducer
always halts if it finds a case of intermediate movement but did not delete the
corresponding licensor feature earlier on. This is enforced by mj starting with
�. Second, the index set Ij is not updated for final movement. That is because
the corresponding LI has not started to move yet, so its index set is not active
yet. If Ij were updated, then an LI that licenses f2 movement would be allowed
to undergo f3 movement even if f2 movement is possible, too.

To sum up, given an MG with lexicon Lex , the SMNF transducer τ has input
alphabet Σ := Lex (0)∪

{
◦(1), •(2)

}
and output alphabet Ω :=

⋃
l∈Lex h(`(l))(0)∪{

◦(1), •(2)
}

. Its state set Q consists of all possible tripartite tuples as defined at
the beginning of this section. While this set is large, it is guaranteed to be finite.
The empty state 〈〉 is the only final state, and the set ∆ of transduction rules
contains all possible instantiations of the templates above given Q.

