
Movement-Generalized Minimalist Grammars

Thomas Graf

Department of Linguistics
University of California, Los Angeles

tgraf@ucla.edu

http://tgraf.bol.ucla.edu

Abstract. A general framework is presented that allows for Minimalist
grammars to use arbitrary movement operations under the proviso that
they are all definable by monadic second-order formulas over derivation
trees. Lowering, sidewards movement, and clustering, among others, are
the result of instantiating the parameters of this framework in a certain
way. Even though weak generative capacity is not increased, strong gen-
erative capacity may change depending on the available movement types.
Notably, TAG-style tree adjunction can be emulated by a special type of
lowering movement.

Keywords: Minimalist Grammars, Movement, Monadic Second-Order
Logic, Tree Languages, Transductions, Tree Adjunction Grammar

Introduction

Published version appeared in
D. Béchet and A. J. Dikovsky (Eds.), LACL 2012, LNCS 7351, pp. 58–73, 2012

Page breaks are NOT identical!

Ever since Joshi’s conjecture that natural language is mildly context-sensitive
[8], a lot of research has been devoted to characterizing this class in various ways.
One of them pertains to multiple context-free languages (MCFLs; [18]) and states
that they coincide with the string yield of the class of tree languages that are
the image of regular tree languages under tree-to-tree transductions definable in
monadic second-order logic (MSO; see [14] and the literature cited there). This
result meshes well with recent approaches that decompose Minimalist grammars
(MGs) — which have the same weak generative capacity as MCFLs — into an
MSO-definable (= regular) tree language L and a transduction from L to the
intended phrase structure trees ([12, 14] and references therein).

From a linguistic perspective, an MG’s set of well-formed derivation trees
provides the most natural encoding of this underlying tree language L, and [12]
demonstrated that this is indeed a workable solution. In [4], however, it is shown
that recognizing Minimalist derivation trees does not require the full power of
MSO. In a sense, then, MGs still have some wiggle room insofar as one can in-
crease the complexity of their derivation trees and still stay inside the confines
of MSO-definability that limit the formalism to MCFLs. One way to exploit this
gap is by adding MSO-definable constraints to MGs. Even though this greatly
increases their linguistic usefulness, weak and strong generative capacity remain

2

the same [3, 11]. I explore another option in this paper: allowing for deriva-
tionally more complex variants of Move, yielding Movement-Generalized MGs
(MGMGs).

My endeavour starts with another insight of [4], namely that the distribution
of Move nodes in a derivation tree can be regulated by a few simple constraints
stated in terms of proper dominance. To create new movement types, for in-
stance sidewards movement [7, 15], one merely has to replace proper dominance
by some other binary relation R. As long as R is MSO-definable, the deriva-
tion tree language will still be regular and weak generative capacity does not
increase. Some parameters of Move, though, must be expressed directly in the
mapping from derivation trees to derived trees. Fortunately, all of them are
MSO-definable and thus pose no risk of taking us out of the class of MCFLs.
The result is a general, mildly context-sensitive framework that accommodates
almost all aspects of Move: directionality (raising, lowering, sideward), size of
the moved constituent (head, phrase, pied-piped phrase), overt versus covert,
and linearization (left or right specifier).

The paper is laid out as follows. After a few technical preliminaries, I define
standard MGs in Sec. 2, focusing foremost on the constraints that ensure the
well-formedness of Minimalist derivation trees. I then proceed with generalizing
Move; Sec. 3.2 stays at the level of derivation trees, whereas Sec. 3.3 and 3.4 are
devoted to transduction parameters. The final definition of MGMGs is given in
Sec. 3.5. In the last section, I analyze the relationship between TAGs and MGs
with lowering, conjecturing that their derived tree languages are identical given
certain assumptions.

1 Preliminaries and Notation

Let Σ and Γ be alphabets. A directed graph with labeled nodes and edges over
(Σ,Γ) is a triple G(Σ,Γ) := 〈V,E, `〉, with V a finite set of nodes, E ⊆ V ×Γ×V
the set of labeled edges, and ` : V → Σ the node labeling function. An edge
〈u, γ, v〉 is an edge from u to v with label γ; it is an outgoing edge of u and
an incoming edge of v. In this case, u is called a mother of v, or equivalently, v
is a daughter of u. A path from u to v is a (possibly empty) sequence of nodes
u0 · · ·un such that u = u0, v = un and ui is a mother of ui+1 for all 0 ≤ i ≤ n.
A path is a cycle iff u0 = un and n ≥ 1. A graph is cycle-free iff it contains no
cycles. A node with no incoming edges is a root, a node with no outgoing edges
a leaf. A graph is rooted iff it has exactly one root.

Let Σ be a ranked alphabet, i.e. every σ ∈ Σ has a unique non-negative
rank ; Σ(n) is the set of all n-ary symbols in Σ. A Σ-term graph is a cycle-
free rooted graph G(Σ,Γ) such that Σ is a ranked alphabet, Γ := {i | 1 ≤
i ≤ n and n the largest integer such that Σ(n) 6= ∅} and every node with label
σ ∈ Σ of rank i has i outgoing edges with pairwise distinct labels. The integers on
the outgoing edges of a node are interpreted as linear order. A Σ-tree is a Σ-term
graph in which every node except the root has exactly one incoming edge. Let
Πn := {�i | 0 < i ≤ n} be a set of distinguished nullary symbols called ports.

3

A (Σ,n)-context is a (Σ ∪ Πn)-tree such that all ports have pairwise distinct
indices. Given a (Σ,n)-context C and a sequence s := t1, . . . , tn of (Σ,m)-
contexts, m ∈ N, the n-fold tree concatenation of C and s replaces each �i in C
(if it exists) by ti.

My definition of MSO transductions follows [1] very closely. I assume that
the reader is already familiar with monadic second-order logic (MSO) and write
MSO(Σ,Γ) to denote the MSO language of (Σ,Γ)-graphs. A finite-copying MSO
graph transducer from (Σ1, Γ1) to (Σ2, Γ2) is a triple MSOgr := 〈C, Ψ,Θ〉, where
C is a finite set of copy names, Ψ := {ψσ,c(x) ∈ MSO(Σ1, Γ1) | σ ∈ Σ2, c ∈ C} a
set of node formulas, and Θ := {θγ,c,c′(x, y) ∈ MSO(Σ1, Γ1) | γ ∈ Γ2, c, c

′ ∈ C}
a set of edge formulas.

The graph transduction τ defined by MSOgr is as follows. For every graph
G(Σ1, Γ1), its image under τ is G′(Σ2, Γ2) such that

– VG′ := {〈c, u〉 | c ∈ C, u ∈ VG, and G, u |= ψσ,c(x) for exactly one σ ∈ Σ2},
– EG′ := {〈〈c, u〉 , γ, 〈c′, u′〉〉 | 〈c, u〉 , 〈c′, u′〉 ∈ VG′ , γ ∈ Γ2 and G, u, u′ |=
θγ,c,c′(x, y)},

– `G′ := {〈〈c, u〉 , σ〉 | 〈c, u〉 ∈ VG′ , σ ∈ Σ2, and G, u |= ψσ,c(x)}.

An MSO term graph transducer is a graph transducer from trees to term
graphs. An MSO tree transducer is a graph transducer from trees to trees. Unless
a transducer is explicitly designated to be finite-copying, C is assumed to be a
singleton and thus superfluous.

2 Minimalist Grammars

The material covered in this paper presupposes a high level of familiarity with
MGs. Unfortunately, space restrictions force me to proceed at a brisk pace, so
that readers unacquainted with the formalism must be referred to [21] for a
gentle introduction.

While MGs are usually defined in terms of the derived trees they generate
[21] or in the chain-based format of [22], it makes more sense for our purposes to
define them via Minimalist derivation tree languages (MDTLs). To this end, I
adopt the approach taken by [4], which builds on the notion of slices (introduced
in [4] and [11]). The slice of a lexical item (LI) l consists of l itself and those
interior nodes which denote an operation checking a licensor or selector feature
of l. Intuitively, then, the slice of l is the derivation tree equivalent of the phrase
projected by l in the derived tree (cf. Fig. 1). Since every node in a well-formed
derivation tree belongs to exactly one slice, MDTLs can be regarded as the
result of combining a finite number of slices in all possible ways such that all
conditions imposed by the feature calculus are obeyed. Consequently, every MG
is fully specified by some finite set of slices. Slices can be obtained from LIs via
a simple recursive procedure.

Definition 1. Let Base be a non-empty, finite set of feature names. Fur-
thermore, Op := {merge,move} and Polarity := {+,−} are the sets of

4

move

merge

move

merge

merge

John :: d − nom merge

merge

man :: n the :: = n d − top

killed :: = d = d v

ε :: = v + nom t

ε :: = t + top c
>

<

the man

<

ε >

John <

ε >

<

killed

Fig. 1. Left: derivation tree of The man, John killed, with slices indicated by color;
Right: corresponding derived tree, dashed arrows indicate movement

operations and polarities, respectively. A feature system is a non-empty set
Feat ⊆ Base×Op×Polarity.

Note that this is merely a different notation for the familiar system of category
features f := 〈f,merge,−〉, selector features = f := 〈f,merge,+〉, licensee fea-
tures −f := 〈f,move,−〉, and licensor features +f := 〈f,move,+〉. In cases
where only the name, operation, or polarity of f is of interest, ν(f), ω(f) and
π(f) will be used, respectively.

Definition 2. Given a string alphabet Σ and feature system Feat, a (Σ,Feat)-
lexicon is a finite subset of Σ × {::} × Feat∗.

Definition 3. Let Lex be a (Σ,Feat)-lexicon, Lex? := {σ :: f1 · · · fn? | σ ::
f1 · · · fn ∈ Lex}, and Ω the ranked alphabet {l(0) | l ∈ Lex}∪{move(1),merge(2)}.
Then the slice lexicon of Lex is slice(Lex) := {ζ(l) | l ∈ Lex?}, where ζ : Lex? →
TΩ is given by

ζ(σ :: f1 · · · fi ? fi+1 · · · fn) :=



σ :: f1 · · · fn
if f1 · · · fi = ε

ζ(σ :: f1 · · · fi−1 ? fi · · · fn)

if π(fi) = −
move(ζ(σ :: f1 · · · fi−1 ? fi · · · fn))

if τ(fi) = move and π(fi) = +

merge(�i, ζ(σ :: f1 · · · fi−1 ? fi · · · fn))

if τ(fi) = merge and π(fi) = +

I follow [4] in stipulating that slices are right branching, but this is merely a
matter of convenience — linear order is irrelevant in derivation trees.

5

Despite its totality, ζ yields the intended result only for LIs of the form γcδ,
where γ is a (possibly empty) string of selector and licensor features, c a category
feature, and δ a (possibly empty) string of licensee features. As was shown in both
[3] and [11], all LIs occurring in a well-formed derivation satisfy this condition.
In anticipation of subsequent modifications of the formalism, though, I explicitly
require this feature order.

F-Order Every LI is an element of Σ × {::} × {f | π(f) = +}∗ × {c | ω(f) =
merge, π(f) = −} × {f | ω(f) = move, π(f) = −}∗.

Given a slice lexicon slice(Lex), let |γ| be the maximum of positive polarity
features on a single LI. The closure of slice(Lex) under |γ|-fold tree concatenation
is the free slice language FSL(slice(Lex)). Obviously this is not a well-formed
MDTL (for instance, some trees still contain ports). Hence certain constraints
must be enforced, which in turn requires additional terminology.

The slice root of LI l := σ :: f1 · · · fn is the unique node of ζ(l) reflexively
dominating every node in ζ(l). An interior node of ζ(l) is associated to feature fi
on l iff it is the root of ζ(σ :: f1 · · · fi ? fi+1 · · · fn). Two features f and g match
iff they have identical names and operations but opposite feature polarities. An
interior node m matches a feature g iff the feature m is associated to matches g.
For every t ∈ FSL(slice(Lex)) and LI l in t with string −f1 · · · − fn of licensee
features, the occurrences of l in t are defined as follows:

– occ0(l) is the mother of the slice root of l in t (if it exists).
– occi(l) is the unique node m of t labeled move such that m matches −fi,

properly dominates occi−1, and there is no node n in t that matches −fi,
properly dominates occi−1, and is properly dominated by m.

I also refer to occ0(l) as the zero occurrence of l, while all other occurrences of l
are positive occurrences. The ith positive occurrence of l is simply the first Move
node m one encounters when moving upwards through the derivation tree such
that m is capable of checking the ith licensee feature fi of l after all preceding
licensee features have already been checked. Given a well-formed derivation, m
will always coincide with the node that actually checks fi. In other words, the
notion of occurrences provides a tree-geometric encoding of some parts of the
Minimalist feature calculus pertaining to Move.

The remainder of the feature calculus can also be expressed tree-geometrically.
For every t ∈ FSL(slice(Lex)), node m of t, and LI l with licensee features
−f1 · · · − fn, n ≥ 0:

Final For F ⊆ Base a distinguished set of final categories, if the slice root of
l is the root of t, then the category feature c of l is a final category, i.e.
ν(c) ∈ F .

Merge If m is associated to selector feature = f , then its left daughter is the
slice root of an LI with category feature f .

Move There exist distinct nodes m1, . . . ,mn such that mi (and no other node
of t) is the ith positive occurrence of l, 1 ≤ i ≤ n.

6

SMC If m is labeled move, there is exactly one LI for which m is a positive
occurrence.

As expressed in Lemma 1 of [4], L is an MDTL iff it is the biggest subset
of FSL(slice(Lex)) satisfying the four constraints above. Let us step back for a
second and reflect on why this is the case. The first two constraints are easy
to fathom. MGs require that the head of a derived tree must belong to some
final category (usually c), and Final expresses this requirement in derivational
parlance. Similarly, Merge ensures that an LI only selects LIs with matching
category features. Move captures one half of MG’s resource sensitivity with
respect to Move: every licensee feature must be checked. For if an LI l has fewer
occurrences than licensee features, some feature must remain unchecked because
no Move node can check more than one of l’s features. The other half of resource
sensitivity is enforced by SMC: every Move node is responsible for checking
exactly one licensee feature in the entire derivation. On the one hand, this rules
out derivations with more licensor features than licensee features. On the other
hand, it makes Move deterministic and rules out SMC violations. In a standard
MG, the SMC guarantees for every step of a derivation that if −fi is the first
licensee feature of an LI that still needs to be checked, it is not the first currently
unchecked licensee feature of any other LI. If the SMC is violated, then the
corresponding derivation tree must contain some node m properly dominating
two LIs l and l′ that both have −fi as their first unchecked feature. But then
the lowest matching Move node reflexively dominating m will be an occurrence
for both l and l′, which is ruled out by SMC.

As all the constraints above can be stated in first-order logic with predicates
for equality, proper dominance and right sister [4], we can view them as regular
tree languages (i.e. as the sets of trees satisfying the respective constraints) and
enforce them using regular control as described in [3]. The result is the desired
MDTL — a regular set of derivation trees, each of which can be converted into
the corresponding derived tree using the multi bottom-up transducer (mbutt)
described in [12]. As is well-known, the string yield of an MG’s derived tree
language is an MCFL; in fact, MGs and MCFG are weakly equivalent [6, 13].

Definition 4. A Minimalist Grammar is a 5-tuple G := 〈Σ,Feat ,Lex ,F ,R〉
such that

– Lex is a (Σ,Feat)-lexicon, and

– F ⊆ Base is the set of final features, and

– R is a finite set of regular tree languages containing F-Order, Final, Merge,
Move, SMC, and nothing else.

The MDTL of G is FSL(slice(Lex))∩
⋂
R∈RR. The tree language L(G) generated

by G is the image of its MDTL under the mbutt of [12]. Its string language is
the string yield of L(G).

7

3 New Movement Types

3.1 General Strategy

By regulating Move purely via structural conditions on the distribution of occur-
rences, we have successfully decoupled the SMC and the resource-sensitivity of
MGs from the specifics of Move. Crucially, both Move and SMC hold indepen-
dently of how occurrences are defined. In the previous section, proper dominance
was used to capture raising, i.e. phrasal movement to a c-commanding position
(not to be confused with raising constructions in the syntactic literature). How-
ever, if proper dominance was replaced by its inverse, the result would be lower-
ing instead, which moves a phrase to a position it c-commands. As Move and
SMC are unaffected by this change, the MDTL of an MG with lowering rather
than raising would still be regular. In fact, regularity is preserved as long as the
relation replacing proper dominance in the definition of occurrences is rational.

The mapping from derivation trees to derived trees, however, increases in
complexity as the number of Move operations proliferates. Even if the mbutt of
[12] were powerful enough to compute the mapping for any given rational re-
lation, it would quickly become prohibitively complex. A better transduction
model is provided by MSO-transductions. First, limiting ourselves to MSO-
transductions guarantees that the string yield of the derived tree language is an
MCFL (see [14] and references therein). Second, the MSO-transduction makes it
very easy to capture other parameters of Move such as the size of the moved sub-
tree. With respect to both expressivity and elegance, then, MSO-transductions
are the ideal choice.

In order to avoid the complexities brought about by finite-copying MSO-
transductions (which are necessary for the insertion of traces), I opt to decom-
pose the transduction into two simpler steps. The derivation tree is first mapped
to a term graph, also known as a multi-dominance tree in the syntactic litera-
ture. This first step handles differences in linearization and the size of the moved
constituent. The term graph is then unfolded into a tree. Depending on how this
unfolding is specified, one can allow for copying and covert movement.

Working with MSO-transductions obviously requires the introduction of some
logical machinery. Due to space restrictions — and because it has already been
accomplished in [4] — I refrain from giving a full model-theoretic formaliza-
tion of MDTLs. I am also confident that the reader is sufficiently familiar with
MSO to see that all constraints and definitions presented in the following sec-
tions are MSO-definable (keep in mind that a Minimalist lexicon is finite, so
disjunctions, conjunctions and the recursive definitions given here are always
finitely bounded). Where MSO-formulas are used, I follow the syntax of L2

K,P

[16], writing / for immediate dominance.

3.2 Step 1: Derivations and Occurrences

Generalizing the MG formalism at the level of derivation trees is quite simple.
First the feature system is extended by another set M-Type of movement types,

8

which represent various kinds of movement, for instance raising, lowering and
sidewards movement; the movement type of a feature will usually be indicated
as a superscript to avoid confusion. Each 4 ∈ M-Type in turn is associated
with a pair

〈
R40 , R

4〉 of rational relations. The first one determines the zero
occurrence of an LI (e.g. the mother of its slice root for raising), while the second
one assumes the role previously played by proper dominance in determining the
LI’s positive occurrences. These pairs are called movement specifications, and I
will often refer to them by the movement type they specify.

New movement types do not always behave as expected, though. With rais-
ing movement, competition between potential occurrences is eliminated by stip-
ulating that only the closest (i.e lowest dominating) movement node counts as
an occurrence. No such safeguard exists for lowering, though, and as a result
many configurations are ambiguous and thus blocked by Move and SMC, which
jointly ensure that Move is deterministic.

Consider the configuration in Fig. 2. From a linguistic perspective, the in-

merge

d :: d − f lo merge

merge

move

c :: +f lo c

merge

b :: b − f lo merge

move

a :: +f lo a

y :: = a = b = c y

z :: = y = d z

Fig. 2. The move node of LI b is a potential occurrence for both c and e, and e has
two occurrences, the move nodes of b and d

tended result is clear: b and d should lower into the specifiers of a and c, respec-
tively. Given the current conception of occurrences, however, this configuration
is in fact illicit. The LI d has not one but two occurrences, namely the Move
nodes of c and a. Neither properly dominates the other, so neither blocks the
other, either. Furthermore, the Move node of a is an occurrence for both b and d.
So both Move and SMC are violated. Note, however, that the zero occurrence
of b is the Merge node immediately dominating it and that this Merge node
intervenes between the zero occurrence of d and the Move node of a. It seems,
then, that the derivation can be salvaged by stipulating that LIs and their oc-
currences may act as interveners, too. To this end, movement specifications are

9

modified to comprise another rational relation P4, and occurrences are defined
in two steps.

– For all i ≥ 1 and 4 ∈M-Type, node m is a potential i-occurrence pocci(l)
of l iff

• m matches −f4i , and
•
〈
m, pocci−1(l)

〉
∈ R4, and

• there is no node z distinct from m such that
∗ z matches −f4i , and
∗
〈
z, pocci−1(l)

〉
∈ R4, and

∗ 〈m, z〉 ∈ R4.

– For all i ≥ 1 and 4 ∈M-Type, node m is an i-occurrence occi(l) of l iff

• m is a potential i-occurrence of l, and
• there is no node l′ distinct from l such that m is a potential j-occurrence

of l′, j ≥ 1, and 〈occj−1(l′), occi−1(l)〉 ∈ P4.

– Both occ0(l) and pocc0(l) hold of node m iff 〈m, l〉 ∈ R40 .

As multiple movement types may be realized in the same grammar, I will some-
times say that m is a4-occurrence of l to express that m is a positive occurrence
of l and matches some −f4i .

The reader is encouraged to verify for himself that this new definition yields
the same result as the previous one on page 5 if R4 = P4 is taken to be proper
dominance (as far as I can tell, the equivalence of R4 and P4 holds for all
movement operations in the syntactic literature). Restricting proper dominance
to paths containing at most k+ 1 left branches, on the other hand, gives rise to
k-local movement in the sense of [4]. And as expected, lowering can be captured
by using inverse proper dominance.

Sidewards movement [15, 20] is another prominent kind of movement. It
does away with the c-command requirement on raising so that, for instance,
complements and specifiers of specifiers are viable landing sites. For this reason,
sidewards movement is heavily relied on in movement-based analyses of control
and various extraction phenomena [cf. 7]. One conceivable formalization of side-
wards movement is (inverse) slice containment: x slice contains y iff the slice
containing a node immediately dominating x contains a node properly dominat-
ing y. If the zero occurrence of LI l is fixed to be the mother of the slice root of
l, slice containment allows for locally restricted sidewards movement. The choice
of slice might be freely altered to increase the locality domain, e.g. to the low-
est slice of an LI of category c that properly dominates x. Minor modifications
of this kind allow for sidewards movement to subsume previously implemented
variants of Move such as Across-the-Board extraction [10] and clustering [2].

One peculiarity brought about by non-standard movement types is that the
linguistic conception of derivation trees as a temporally ordered record of how
derived trees are assembled in a step-wise fashion loses most of its intuitiveness.
Going back to Fig. 2, for example, we see that b enters the derivation later than
its last occurrence, the move node licensed by a (and similarly for d). Under
the standard construal of derivation trees, this would entail that before b was

10

inserted into the derived tree it had already lowered into the specifier of a. This
apparent contradiction can be resolved by viewing derivation trees as a relative of
proof nets (see [17, 19] and references therein): they are merely a graph-theoretic
representation of the Minimalist feature calculus and its checking requirement,
with movement types corresponding to specific rules of inference in this calculus.

3.3 Step 2: Mapping to Term Graphs

The next step is the mapping from derivation trees to the derived structures
posited by linguists. Recent Minimalist reasoning maintains that derived trees
are actually multi-dominance trees — tree-like structures in which a node may
have multiple mothers. Movement of a phrase XP to YP no longer involves
displacement of XP into the (newly created) specifier of YP, with a trace or copy
of XP being left behind in the original position. Instead, only a new dominance
branch is added between YP and XP, making the latter a specifier of the former.
The derived tree in Fig. 1, for instance, may be converted into this new format by
interpreting the movement arrows as dominance branches. More importantly, the
multi-dominance tree can also be obtained from the derivation tree by adding
branches from the slice root of an LI to all its positive occurrences (ignoring
linearity and labels, for now).

The mathematical analog of converting derivation trees into multi-dominance
trees is transducing trees into term graphs. For the simple mapping required for
MGs, MSO term graph transductions [1] are more than sufficient. Recall that
such a transduction is specified by a pair 〈Ψ,Θ〉. The first component, Ψ , is a set
of formulas determining which nodes of the input tree are present in the term
graph and what their label is, while Θ consists of formulas defining the relations
that hold between the nodes of the term graph. Crucially, those formulas may
only use predicates from the MSO-language used to define the input tree.

In our case, all nodes of the input tree are present in the term graph, so
we only need to worry about changing the label and defining precedence ≺ and
immediate dominance J. The latter is readily stated in terms of occurrences
and immediate dominance in the derivation tree (occi(x, l) holds iff x is the ith

occurrence of l, and |δ| is the maximum of licensee features occurring on a single
LI in the grammar’s lexicon).

x J y ↔ x / y ∨ ∃l
[∨
1≤i≤|δ|

occi(x, l) ∧ sliceroot(y, l)
]

The predicate sliceroot ensures that the dominance branch is added between
the occurrence and the root of the slice whose LI is undergoing movement. In
other words, it enforces phrasal movement. But we can of course replace sliceroot
by a different predicate to yield other kinds of movement. For instance, if y and
l are identical, the result is head movement. For pied-piping, y is the slice root
of some slice containing the slice of l. Wee see, then, that sliceroot can be freely
exchanged for other MSO-definable predicates to alter the size of the moved
subtree.

11

More precisely, movement specifications are extended to
〈
R40 , R

4, P4, root4
〉
,

where root4 is an MSO formula with two free variables that picks out a unique
node to serve as the root of the subtree carried along by 4-movement. Then J
is defined as follows (occ4i (x, l) holds iff both occi(x, l) and x is a 4-occurrence):

x J y ↔ x / y ∨ ∃l
[∨

1≤i≤|δ|
4∈M-Type

(
occ4i (x, l) ∧ root4(y, l)

)]

Certain restrictions must be put in place, though, to ensure that the output
of the transduction is indeed a term graph and in line with certain Minimalist
intuitions. For all t ∈ FSL(slice(Lex)), nodes x, y, l of t, 4, ◦ ∈ M-Type, and
string δ of licensee features:

Containment If −f4 precedes −f◦ in δ and both root4(x, l) and root◦(y, l)
hold, then x reflexively dominates y.

Dominance If root4(x, l) holds, then x reflexively dominates l.
Exocentricity If m is a positive occurrence of l, m is not associated to a feature

of l.
No Cycle If x J+ y holds, then y J+ x does not.

The first three conditions are linguistically motivated. They prevent LIs from
triggering displacement of unrelated subtrees, stop moved subtrees from seem-
ingly recombining with material that had previously been left behind, and pro-
hibit LIs from licensing their own movement. The last one ensures that no cycles
are present in the output graph. Keep in mind that the transitive closure of J
is MSO-definable, so No Cycle is indeed an MSO formula.

Besides dominance, one must also take care of precedence and the output
labels. This offers another opportunity to reign in a variant of Move, namely
rightward movement (also known as extraposition). The feature system is en-
riched by yet another component, Headedness := {left , right}. Headedness
information simplifies the task of defining predicates for left daughter J1, right
daughter J2, and precedence ≺ (which isn’t necessarily a strict order in term
graphs). Only the headedness of positive polarity features is taken into account.
This is formally expressed by restricting the predicates left(x) and right(x) to
interior nodes associated to features of the respective headedness. Furthermore
x ∼ y iff x and y are nodes of the same slice.

x J1 y ↔ x J y ∧
(
(x ∼ y ∧ left(x)) ∨ (x 6∼ y ∧ right(x))

)
x J2 y ↔ x J y ∧

(
(x ∼ y ∧ right(x)) ∨ (x 6∼ y ∧ left(x))

)
x ≺ y ↔ ∃x′∃y′∃z

[
(x′ ≈ x∨x′ J+ x)∧ (y′ ≈ y∨ y′ J+ y)∧ z J1 x

′ ∧ z J2 y
′]

Relabeling the interior nodes based on headedness is just as simple.

< (x)↔ (merge(x) ∨move(x)) ∧ left(x)

> (x)↔ (merge(x) ∨move(x)) ∧ right(x)

12

Finally, LIs must lose all their features but keep their string exponents. In
principle one would have to ensure that the LI of the highest slice keeps its
category feature, but this requirement needlessly complicates the transduction
and is itself merely an artefact of the original MG formalism.∧

σ∈Σ

(
σ(x)↔

∨
l:=σ::f1···fn∈Lex

l(x)
)

3.4 Step 3: Unfolding into Derived Trees

The usual way to unfold a term graph into a tree requires unbounded copying:
given a subtree t whose root has n mothers m1, . . . ,mn, create n copies ti of t
such that mi is the mother of ti. While this is a feasible strategy to accommodate
MGs with copying [9], it increases weak generative capacity. I therefore restrict
my attention to unfoldings without unlimited copying.

Let us first consider the case of standard MGs. Suppose LI l has n occur-
rences, so that the nodes m1 := occ1(l), . . . ,mn = occn(l),mn+1 all dominate
the slice root of l; mn=1 is the unique Merge node that introduced l into the
derivation. Then the unfolding just has to create n − 1 traces and replace the
dominance branches between the slice root of l and each mi, i < n, by a dom-
inance branch between a trace and mi. As a result, only the last occurrence of
l immediately dominates its slice root, which is tantamount to saying that the
constituent headed by l moved into the specifier immediately dominated by mn.

In the syntactic literature, a distinction is made between overt and covert
movement, however, and only the former is visible. For the purposes of unfolding
this means that the branch to l’s slice root should not be preserved for the
last occurrence of l, but the occurrence with the highest index that licensed
overt movement. To this end, the feature system is once again modified so as to
indicate overtness via the diacritics o and c. The matching relation also needs to
be extended accordingly to ensure that licensor and licensee features agree on
(c)overtness.

This system is still unsatisfactory, though, as MGMGs allow for the size of
the moved constituent to vary with feature type. This entails that more than just
one occurrence of an LI l may dominate parts of the material that was displaced
by moving l. The challenge is to find the last occurrence for each of these parts.
Given LI l, derivation tree t and 4, ◦ ∈M-Type, 4 ∼= ◦ iff t contains a node x
such that root4(x, l) = root◦(x, l) = 1. Now for every LI l, 4, ◦ ∈M-Type, and

j > i ≥ 1, occ4i (l) is a landing site iff occ4i is associated to an overt feature and
there is no occ◦j (l) such that 4 ∼= ◦. The unfolding then turns the term graph

into a tree such that if occ4i (l) is a landing site, it immediately dominates the
4-root of l. All branches originating from a Merge node immediately dominating
the root of a displaced subtree or from an occurrence of l that is not a landing
site are replaced by branches immediately dominating a trace.

Clearly the number of traces per term graph cannot exceed the total number
of nodes in the graph, wherefore the unfolding is of linear size increase. It follows
immediately that the composition of our MSO term transduction and unfolding

13

is an MSO-definable tree transduction (with finite copying). Let τ be this tree
transduction. As MDTLs are still regular, it must be the case for every single
one of them that the string yield of its image under τ is an MCFL.

3.5 Defining Movement-Generalized Minimalist Grammars

Now we are finally in a position to define MGMGs.

Definition 5. Let Base and M-Type be disjoint, non-empty, finite sets of fea-
ture names and movement types, respectively. Furthermore, Op := {merge,move},
Polarity := {+,−}, Headedness := {left , right}, and Overt := {o, c}, are
the sets of operations, polarities, headedness parameters, and overtness mark-
ers, respectively. A feature system is a non-empty set Feat ⊆ Base × Op ×
Polarity ×M-Type × Headedness × Overt. Two features match iff they
agree on their name, operation, movement type, and overtness but have opposite
polarities.

Definition 6. Given 4 ∈ M-Type, the movement specification of 4 is given
by a 4-tuple

〈
R40 , R

4, P4, root4
〉

of binary rational relations.

Definition 7. A Movement-Generalized Minimalist grammar G over alphabet
Σ and feature system Feat is a 6-tuple G := 〈Σ,Feat ,Lex ,F ,R,M〉, where

– Lex is a (Σ,Feat)-lexicon, and
– F ⊆ Base is a set of final categories, and
– R is a finite set of regular tree languages containing at least Containment,

Dominance, Exocentricity, F-Order, Final, Merge, Move, No Cycle,
SMC, and

– M is an M-Type-indexed family of movement types.

Its MDTL is FSL(slice(Lex))∩
⋂
R∈RR. The tree language L(G) generated by G

is the image of its MDTL under the MSO transduction τ , and its string language
is the string yield of L(G).

Theorem 1. MGs and MGMGs have the same weak generative capacity.

4 Tree Adjunction ≡ Reset Lowering

Even though MGs properly subsume TAGs with respect to weak generative ca-
pacity [13, 18], the two formalisms are incomparable at the level of tree languages
[12, 14]. This result does not hold for MGMGs. In fact, TAGs with strictly bi-
nary branching and X′-like projection are equivalent to MGs with a limited kind
of lowering, as I will briefly sketch now (for a full proof see [5]).

Consider the following scenario. The tree α consists of subtrees t(op) and
b(ottom), with b rooted in the node V′ of t, which is a projection of LI lα in
b. The auxiliary tree β, whose foot node is V′ and whose root is a projection
of LI lβ , adjoins into α at V′, yielding γ. It should be easy to see that γ can

14

be approximated via lowering. First, β is selected by lα immediately after the
subtree immediately dominated by V′ in b. After that, the foot node of β is
replaced by an empty category with licensor feature +f4, and −f4 is inserted
after the category feature of lα. The 4-root of lα is the sister of the root of β.
The derived tree corresponding to this lowering step only differs from γ in the
presence of two superfluous interior nodes immediately above the 4-root of b
and the root of β, respectively; both can easily be detected and removed.

The procedure carries over to the general case without major problems, but
it hinges on a particular definition of lowering. For example, if another auxiliary
tree β′ was to adjoin immediately above V′ in t, the algorithm would add the
requisite nodes and features as intended (now using a new movement type ◦ to
pick out the correct root). But since the Move nodes in β and β′ are not related by
inverse proper dominance, defining lowering in these terms is insufficient — only
the first occurrence could ever be reached. Note, though, that each u ∈ {β, β′}
contains exactly one 4-occurrence of lα, where the 4-root of lα is the sister of
the root of u. In a sense then, we do not want occurrences to be computed in
sequence, but rather independently of each other using inverse proper dominance
and picking the 4-root of l as the zero-occurrence for computing 4-occurrences.
Emulating this behavior in the MGMG system is slightly cumbersome: for all
4 6= ◦ ∈M-Type, 〈x, y〉 ∈ R4 iff either y is a4-root c-commanding x or there is
a4-root x′ and a ◦-root y′ such that y′ properly dominates x, no ◦-root properly
dominated by y′ properly dominates x′, y′ c-commands y, and x′ c-commands
x. In conjunction with Containment, this always yields a well-defined relation
that exhibits the desired behavior. I call this relation reset lowering.

Although many technical details are missing, it should nonetheless be clear
that the translation described above can be carried out by a linear tree trans-
ducer. Since TAG derivation tree languages are regular, the output language L
of the transducer is too. In order to convert L into an MDTL, one only needs
to employ the label refinement algorithm given in [3]. The end result is an MG
with reset lowering that generates the same tree language as the original TAG
(under a simple homomorphism that removes the redundant interior nodes).

As for the translation in the other direction, I presuppose that all licensee
features are built from the same feature name f , that is to say, there are no
two distinct features −f4, −g4 for any 4 ∈ M-Type. The reader may verify
for himself that the MGs created by the algorithm above satisfy this condition.
From Containment and the definition of reset lowering it further follows that
no LI has more than one feature of a specific movement type. Now we only have
to apply the spirit of the previous translation in reverse. Suppose we are given
subtrees t, b, β and a node u that is immediately dominated by a leaf v of t and
immediately dominates the roots of b and β. Let α be the composition of t and
b such that v immediately dominates the root of b. Then lowering of b into β
corresponds to adjunction of β into α at the root of b.

Hopefully the reader can appreciate now why L is a tree adjoining language
iff it is the derived tree language of some MGMG with reset lowering and only
one feature name per movement type. For MGMGs with normal lowering, the

15

translation must fail because for every i > 1 there is such an MGMG G with
Base = {f} that generates the language an1 · · · ani . The lexicon of G contains

– aj :: aj for all j < i,
– ai :: = a1 · · ·= aj ai (−fa1 · · · − fai),
– ai :: = ai + fa1 = a1 · · ·+ fai ai (−fa1 · · · − fai),

where the aj-root of an LI is either the Merge node immediately dominating aj
or the Move node immediately above that (if it exists).

Conclusion

MGs can easily be generalized to MGMGs once we view them in terms of their
derivation trees. The notion of occurrence, which is used to regulate the distribu-
tion of Move nodes, can be redefined to allow for variants of Move with different
directionality (lowering, sidewards movement etc.). The mapping from deriva-
tion trees to derived trees, on the other hand, furnishes parameters to determine
linearization, the size of the moved subtree, and the overt/covert distinction.
As all these modifications are required to be MSO-definable, MGMGs have the
same weak generative capacity as MGs despite their greatly increased strong
generative capacity.

Acknowledgments I would like to thank the LACL reviewers, Ed Stabler,
and all the members of the UCLA MathLing Circle; without their questions and
suggestions, this paper would have been even less approachable. Furthermore,
several discussions with Michael Freedman during ESSLLI 2011 on an earlier
version of the TAG-to-MG translation improved my understanding of the TAG
formalism in various ways.

Bibliography

[1] Bloem, R., Engelfriet, J.: A comparison of tree transductions defined by
monadic second-order logic and attribute grammars. Journal of Computa-
tional System Science 61, 1–50 (2000)

[2] Gärtner, H.M., Michaelis, J.: On the treatment of multiple-wh-
interrogatives in minimalist grammars. In: Hanneforth, T., Fanselow, G.
(eds.) Language and Logos, pp. 339–366. Akademie Verlag, Berlin (2010)

[3] Graf, T.: Closure properties of minimalist derivation tree languages. In:
Pogodalla, S., Prost, J.P. (eds.) LACL 2011. Lecture Notes in Artificial
Intelligence, vol. 6736, pp. 96–111 (2011)

[4] Graf, T.: Locality and the complexity of minimalist derivation tree lan-
guages. In: Proceedings of the 16th Conference on Formal Grammar (2011),
to appear

[5] Graf, T.: Tree adjunction as lowering in minimalist grammars (2012), ms.,
UCLA

16

[6] Harkema, H.: A characterization of minimalist languages. In: de Groote, P.,
Morrill, G., Retoré, C. (eds.) Logical Aspects of Computational Linguistics
(LACL’01), Lecture Notes in Artificial Intelligence, vol. 2099, pp. 193–211.
Springer, Berlin (2001)

[7] Hornstein, N.: Movement and control. Linguistic Inquiry 30, 69–96 (1999)
[8] Joshi, A.: Tree-adjoining grammars: How much context sensitivity is re-

quired to provide reasonable structural descriptions? In: Dowty, D., Kart-
tunen, L., Zwicky, A. (eds.) Natural Language Parsing, pp. 206–250. Cam-
bridge University Press, Cambridge (1985)

[9] Kobele, G.M.: Generating Copies: An Investigation into Structural Identity
in Language and Grammar. Ph.D. thesis, UCLA (2006)

[10] Kobele, G.M.: Across-the-board extraction and minimalist grammars. In:
Proceedings of the Ninth International Workshop on Tree Adjoining Gram-
mars and Related Frameworks (2008)

[11] Kobele, G.M.: Minimalist tree languages are closed under intersection with
recognizable tree languages. In: Pogodalla, S., Prost, J.P. (eds.) LACL 2011.
Lecture Notes in Artificial Intelligence, vol. 6736, pp. 129–144 (2011)

[12] Kobele, G.M., Retoré, C., Salvati, S.: An automata-theoretic approach to
minimalism. In: Rogers, J., Kepser, S. (eds.) Model Theoretic Syntax at 10.
pp. 71–80 (2007)

[13] Michaelis, J.: Transforming linear context-free rewriting systems into min-
imalist grammars. Lecture Notes in Artificial Intelligence 2099, 228–244
(2001)

[14] Mönnich, U.: Grammar morphisms (2006), ms. University of Tübingen
[15] Nunes, J.: The Copy Theory of Movement and Linearization of Chains in

the Minimalist Program. Ph.D. thesis, University of Maryland, College Park
(1995)

[16] Rogers, J.: A Descriptive Approach to Language-Theoretic Complexity.
CSLI, Stanford (1998)

[17] Salvati, S.: Minimalist grammars in the light of logic. In: Pogodalla, S.,
Quatrini, M., Retoré, C. (eds.) Logic and Grammar — Essays Dedicated to
Alain Lecomte on the Occasion of His 60th Birthday, pp. 81–117. No. 6700
in Lecture Notes in Computer Science, Springer, Berlin (2011)

[18] Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free
grammars. Theoretical Computer Science 88, 191–229 (1991)

[19] Stabler, E.P.: Remnant movement and complexity. In: Bouma, G., Krui-
jff, G.J.M., Hinrichs, E., Oehrle, R.T. (eds.) Constraints and Resources in
Natural Language Syntax and Semantics, pp. 299–326. CSLI Publications,
Stanford, CA (1999)

[20] Stabler, E.P.: Sidewards without copying. In: Penn, G., Satta, G., Wintner,
S. (eds.) Formal Grammar ’06, Proceedings of the Conference. pp. 133–146.
CSLI Publications, Stanford (2006)

[21] Stabler, E.P.: Computational perspectives on minimalism. In: Boeckx, C.
(ed.) Oxford Handbook of Linguistic Minimalism, pp. 617–643. Oxford Uni-
versity Press, Oxford (2011)

[22] Stabler, E.P., Keenan, E.: Structural similarity. Theoretical Computer Sci-
ence 293, 345–363 (2003)

