
REG MGs Closure Properties Applications Conclusion References

Closure Properties of
Minimalist Derivation Tree Languages

Thomas Graf
tgraf@ucla.edu

tgraf.bol.ucla.edu

University of California, Los Angeles

LACL 2011
June 30, 2011

REG MGs Closure Properties Applications Conclusion References

Outline

1 Regular Tree Languages

2 Minimalist Grammars
Derived Tree Languages
Derivation Trees

3 Closure Properties of Minimalist Derivation Tree Languages
Non-Closure Under Intersection with REG
P-Closure Under Intersection with REG
Further P-Closure Properties

4 Applications

REG MGs Closure Properties Applications Conclusion References

Regular = Recognized by Bottom-Up Tree Automaton

Bottom-up tree automata generalize finite-state automata
from strings to trees.

Only significant change in the transition function: domain
extended from pairs of symbols and states to n + 1 tuples〈
q1, . . . , qn, σ

(n)
〉
, where σ(n) is a symbol of arity n ≥ 0.

Deterministic Bottom-Up Tree Automata

A deterministic bottom-up tree automaton is a 4-tuple
A := 〈Σ,Q,F , δ〉, where

Σ is a ranked alphabet,

Q is a finite set of states (i.e. of unary symbols q /∈ Σ),

F ⊆ Q is the set of final states,

δ :
(⋃

n≥0 Q
n × Σ(n)

)
→ Q is the transition function.

REG MGs Closure Properties Applications Conclusion References

ODD: A Regular Tree Language

Let ODD be the language of all (at most) binary branching trees
over alphabet Σ :=

{
a(0), a(1), a(2)

}
such that every tree has an

odd number of nodes.

Automaton for ODD

AODD :=
〈{

a(0), a(1), a(2)
}
, {O,E} , {O} , δ

〉
,

where δ is given by the following rules:

a→ O (O,O, a)→ O
(O, a)→ E (O,E , a)→ E
(E , a)→ O (E ,O, a)→ E

(E ,E , a)→ O

REG MGs Closure Properties Applications Conclusion References

ODD: A Regular Tree Language

Let ODD be the language of all (at most) binary branching trees
over alphabet Σ :=

{
a(0), a(1), a(2)

}
such that every tree has an

odd number of nodes.

Automaton for ODD

AODD :=
〈{

a(0), a(1), a(2)
}
, {O,E} , {O} , δ

〉
,

where δ is given by the following rules:

a→ O (O,O, a)→ O
(O, a)→ E (O,E , a)→ E
(E , a)→ O (E ,O, a)→ E

(E ,E , a)→ O

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

a

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

aO

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

aOO

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

aOO

E

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

aOO

EE

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

aOO

EE

O

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

aOO

EE

OO

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

aOO

EE

OO

O

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

aOO

EE

OO

O

O

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

aOO

EE

OO

O

O

E

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

aOO

EE

OO

O

O

EO

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

aOO

EE

OO

O

O

EO

E

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

aOO

EE

OO

O

O

EO

EO

REG MGs Closure Properties Applications Conclusion References

Two Runs of AODD

a

a a

a

a

a

a

a

a a

a a

aOO

EE

OO

O

O

EO

EO

E

REG MGs Closure Properties Applications Conclusion References

Regular Tree Languages/Automata for Linguistics

Just like regular string languages, regular tree languages are
very well-behaved mathematically
⇒ attractive from a computational perspective

Almost all parts of Government-and-Binding theory
can be expressed by bottom-up automata (Rogers 1998)
⇒ regular tree languages sufficiently powerful
for most syntactic generalizations/constraints

But the string yield of a regular tree language is context-free
⇒ too weak for natural language

Minimalist grammars (MGs) generate MCFLs, yet can be
fully specified by regular tree languages. But is it possible to
add regular constraints to MGs without increasing their
weak generative capacity?

REG MGs Closure Properties Applications Conclusion References

The Atoms of a Minimalist Grammar

Minimalist Grammars (MGs; Stabler 1997)

An MG is a 5-tuple G := 〈Σ,Feat,F , Lex ,Op〉, where

Σ is an alphabet,

Feat is a non-empty finite set of

category features f ,
selector features = f ,
movement licensee features −f ,
movement licensor features +f ,

F ⊆ Feat is a set of final category features,

the lexicon Lex is a finite subset of Σ∗ × Feat+,

Op := {merge,move} is the set of
structure-building operations.

For every MGs it suffices to specify Lex and F .

REG MGs Closure Properties Applications Conclusion References

Bare Phrase Structure Trees

My definition of merge and move is tree-based.

It builds on the notion of Bare Phrase Structure trees and
Headedness.

Extended Lexicon

Given a lexicon Lex , its extended lexicon Elex is the smallest set
such that, for σ ∈ Σ∗, f ∈ Feat, and δ ∈ Feat∗

l ∈ Lex → l ∈ Elex

l := 〈σ, f δ〉 ∈ Elex → l ′ := 〈σ, δ〉 ∈ Elex

Bare Phrase Structure Trees (BPS Trees)

The set of BPS trees over Elex consists of all strictly binary
branching trees over the ranked alphabet{
<(2), >(2)

}
∪
{
l (0) | l ∈ Elex

}
.

REG MGs Closure Properties Applications Conclusion References

Bare Phrase Structure Trees

My definition of merge and move is tree-based.

It builds on the notion of Bare Phrase Structure trees and
Headedness.

Extended Lexicon

Given a lexicon Lex , its extended lexicon Elex is the smallest set
such that, for σ ∈ Σ∗, f ∈ Feat, and δ ∈ Feat∗

l ∈ Lex → l ∈ Elex

l := 〈σ, f δ〉 ∈ Elex → l ′ := 〈σ, δ〉 ∈ Elex

Bare Phrase Structure Trees (BPS Trees)

The set of BPS trees over Elex consists of all strictly binary
branching trees over the ranked alphabet{
<(2), >(2)

}
∪
{
l (0) | l ∈ Elex

}
.

REG MGs Closure Properties Applications Conclusion References

Bare Phrase Structure Trees

My definition of merge and move is tree-based.

It builds on the notion of Bare Phrase Structure trees and
Headedness.

Extended Lexicon

Given a lexicon Lex , its extended lexicon Elex is the smallest set
such that, for σ ∈ Σ∗, f ∈ Feat, and δ ∈ Feat∗

l ∈ Lex → l ∈ Elex

l := 〈σ, f δ〉 ∈ Elex → l ′ := 〈σ, δ〉 ∈ Elex

Bare Phrase Structure Trees (BPS Trees)

The set of BPS trees over Elex consists of all strictly binary
branching trees over the ranked alphabet{
<(2), >(2)

}
∪
{
l (0) | l ∈ Elex

}
.

REG MGs Closure Properties Applications Conclusion References

Headedness

Headedness

Given a BPS tree t, the head of t is given by

head(t) :=


t if t ∈ Elex

head(t1) if t :=
<

t1 t2

head(t2) if t :=
>

t1 t2

Notation tδ denotes that head(t) carries feature string δ

REG MGs Closure Properties Applications Conclusion References

Defining Merge & Move

Let γ, δ ∈ Feat∗.

merge(s= f γ , t f δ) :=


<

sγ tδ
if s ∈ Elex

>

tδ sγ
otherwise

move

(
s+f γ

t−f δ

)
:=

>

tδ s
γ

ε

Shortest Move Constraint (SMC)

Every tree s+f γ in the domain of move has exactly one subtree t
such that the first feature of head(t) is −f .

Thanks to the SMC, both Merge and Move are deterministic.

REG MGs Closure Properties Applications Conclusion References

Defining Merge & Move

Let γ, δ ∈ Feat∗.

merge(s= f γ , t f δ) :=


<

sγ tδ
if s ∈ Elex

>

tδ sγ
otherwise

move

(
s+f γ

t−f δ

)
:=

>

tδ s
γ

ε

Shortest Move Constraint (SMC)

Every tree s+f γ in the domain of move has exactly one subtree t
such that the first feature of head(t) is −f .

Thanks to the SMC, both Merge and Move are deterministic.

REG MGs Closure Properties Applications Conclusion References

Derived Tree Language & Expressivity

Derived Tree Language

The tree language L(G) derived by MG G with lexicon LexG is
the largest set of BPS trees such that

L(G) ⊆ closure(LexG , {merge,move}),

for every t ∈ L(G), there is some f ∈ FG such that
the feature component of head(t) consists only of f ,

all other leaves have an empty feature component.

Generated String Language

The string language generated by MG G is the string yield of L(G).

Theorem (Harkema 2001; Michaelis 1998, 2001)

MCFGs and MGs are weakly equivalent.

REG MGs Closure Properties Applications Conclusion References

Derived Tree Language & Expressivity

Derived Tree Language

The tree language L(G) derived by MG G with lexicon LexG is
the largest set of BPS trees such that

L(G) ⊆ closure(LexG , {merge,move}),

for every t ∈ L(G), there is some f ∈ FG such that
the feature component of head(t) consists only of f ,

all other leaves have an empty feature component.

Generated String Language

The string language generated by MG G is the string yield of L(G).

Theorem (Harkema 2001; Michaelis 1998, 2001)

MCFGs and MGs are weakly equivalent.

REG MGs Closure Properties Applications Conclusion References

Derived Tree Language & Expressivity

Derived Tree Language

The tree language L(G) derived by MG G with lexicon LexG is
the largest set of BPS trees such that

L(G) ⊆ closure(LexG , {merge,move}),

for every t ∈ L(G), there is some f ∈ FG such that
the feature component of head(t) consists only of f ,

all other leaves have an empty feature component.

Generated String Language

The string language generated by MG G is the string yield of L(G).

Theorem (Harkema 2001; Michaelis 1998, 2001)

MCFGs and MGs are weakly equivalent.

REG MGs Closure Properties Applications Conclusion References

A Toy Example (Without Recursion)

MG with F = {C}

men :: N like :: =D =D V
the :: =N D ε :: =V C
what :: D − wh do :: =V + wh C

REG MGs Closure Properties Applications Conclusion References

A Toy Example (Without Recursion)

MG with F = {C}

men :: N like :: =D =D V
the :: =N D ε :: =V C
what :: D − wh do :: =V + wh C

the

=N D

men

N

like

=D =D V

what

D −wh

REG MGs Closure Properties Applications Conclusion References

A Toy Example (Without Recursion)

MG with F = {C}

men :: N like :: =D =D V
the :: =N D ε :: =V C
what :: D − wh do :: =V + wh C

the

=N D

men

N

like

=D =D V

what

D −wh

<

REG MGs Closure Properties Applications Conclusion References

A Toy Example (Without Recursion)

MG with F = {C}

men :: N like :: =D =D V
the :: =N D ε :: =V C
what :: D − wh do :: =V + wh C

the

=N D

men

N

like

=D =D V

what

D −wh

< <

REG MGs Closure Properties Applications Conclusion References

A Toy Example (Without Recursion)

MG with F = {C}

men :: N like :: =D =D V
the :: =N D ε :: =V C
what :: D − wh do :: =V + wh C

the

=N D

men

N

like

=D =D V

what

D −wh

< <

>

REG MGs Closure Properties Applications Conclusion References

A Toy Example (Without Recursion)

MG with F = {C}

men :: N like :: =D =D V
the :: =N D ε :: =V C
what :: D − wh do :: =V + wh C

the

=N D

men

N

like

=D =D V

what

D −wh

do

=V +wh C

< <

>

REG MGs Closure Properties Applications Conclusion References

A Toy Example (Without Recursion)

MG with F = {C}

men :: N like :: =D =D V
the :: =N D ε :: =V C
what :: D − wh do :: =V + wh C

the

=N D

men

N

like

=D =D V

what

D −wh

do

=V +wh C

< <

>

<

REG MGs Closure Properties Applications Conclusion References

A Toy Example (Without Recursion)

MG with F = {C}

men :: N like :: =D =D V
the :: =N D ε :: =V C
what :: D − wh do :: =V + wh C

the

=N D

men

N

like

=D =D V

do

=V +wh C

what

D −wh

< <

>

<

>

REG MGs Closure Properties Applications Conclusion References

Derivation Trees

Useful Fact

Every MG is fully specified
by its set of derivation
trees, which is regular
(Kobele et al. 2007).

the

= N D

men

N

like

= D = D V

do

= V + wh C

what

D − wh

< <

>

<

>

the

=N D

men

N

like

=D =D V

what

D − wh

do

=V + wh C

M M

M

M

O

REG MGs Closure Properties Applications Conclusion References

Defining Derivation Trees: The Intuition

Defining well-formed derivation trees of MG G
only requires keeping track of the feature calculus
⇒ deterministic bottom-up automaton with sequences of
feature strings as states (and FA := {〈f 〉 | f ∈ FG})
Due to the SMC, the number of feature strings per state is
bounded ⇒ finite number of states

the

=N D

men

N

like

=D =D V

what

D − wh

do

=V + wh C

M M

M

M

O

REG MGs Closure Properties Applications Conclusion References

Defining Derivation Trees: The Intuition

Defining well-formed derivation trees of MG G
only requires keeping track of the feature calculus
⇒ deterministic bottom-up automaton with sequences of
feature strings as states (and FA := {〈f 〉 | f ∈ FG})
Due to the SMC, the number of feature strings per state is
bounded ⇒ finite number of states

the

=N D

men

N

like

=D =D V

what

D − wh

do

=V + wh C

M M

M

M

O

=N D N

D

=D =D V D − wh

=D V, −wh

V, −wh=V + wh C

+wh C, −wh

C

REG MGs Closure Properties Applications Conclusion References

Non-Closure Under Intersection with REG

Theorem

The class of MDTLs is not closed under intersection with regular
tree languages.

Proof.

Let ODD contain all trees with an odd number of nodes.

Let G be the MG given by FG = {c} and LexG :
a :: a b :: = a = a + k a c :: = a c
a :: a − k

Then there are derivation trees s and t in the closure of LexG

under {merge,move} that both end in a final category and
contain the same lexical items. It is easy to see that
s ∈ mder(G ′) iff t ∈ mder(G ′) for any MG G ′, yet
s /∈ mder(G) ∩ ODD 3 t.

REG MGs Closure Properties Applications Conclusion References

Non-Closure Under Intersection with REG

Theorem

The class of MDTLs is not closed under intersection with regular
tree languages.

Proof.

Let ODD contain all trees with an odd number of nodes.

Let G be the MG given by FG = {c} and LexG :
a :: a b :: = a = a + k a c :: = a c
a :: a − k

Then there are derivation trees s and t in the closure of LexG

under {merge,move} that both end in a final category and
contain the same lexical items. It is easy to see that
s ∈ mder(G ′) iff t ∈ mder(G ′) for any MG G ′, yet
s /∈ mder(G) ∩ ODD 3 t.

REG MGs Closure Properties Applications Conclusion References

Choice of s and t

M

c
= a c O

M

a
a M

b
= a = a + k a

a
a − k

O

M

a
a − k

M

b
= a = a + k a

�

u:

v :

s = u /∈ ODD
t = u + v ∈ ODD

REG MGs Closure Properties Applications Conclusion References

Defining P-Closure

Projection

Let λ : Σ→ Ω be a many-to-one map between alphabets,
and π its extension from alphabets to trees.
Tree t is a projection of s iff there is a π such that t = π(s).
The notion extends to tree languages in the natural way.

P[rojection]-Closure

Given a class of languages L and an operation O,
L is p-closed under O iff the result of applying O to some L ∈ L
is a projection of some L′ ∈ L.

REG MGs Closure Properties Applications Conclusion References

P-Closure Under Intersection with REG

Theorem (REG Intersection P-Closure)

The class of MDTLs over alphabet Σ and features Feat is
p-closed under intersection with regular tree languages.

Outline of Proof

Inspired by Thatcher’s theorem (translate recognizable sets
into local ones by incorporating states into alphabet)

Crux: Internal node labels of a derivation tree cannot be
refined ⇒ slices as a way of relating interior nodes to features
on lexical items

Procedure for refining category and selector features so that
they incorporate states of the deterministic bottom-up
automaton recognizing regular language

REG MGs Closure Properties Applications Conclusion References

Slices

Intuitively, slices are the derivation tree equivalent of phrasal
projection: Each slice marks the subpart of the derivation that
a lexical item has control over by virtue of its selector and
licensor features.

Slices

Given a derivation tree t and lexical item l occurring in t,
slice(l) is defined as follows:

l ∈ slice(l),

if node n of t immediately dominates a node s ∈ slice(l), then
n ∈ slice(l) iff the operation denoted by the label of n erased
a selector or licensor feature of l .

The unique n ∈ slice(l) that isn’t (properly) dominated by
any n′ ∈ slice(l) is called the slice root of l .

REG MGs Closure Properties Applications Conclusion References

Example of Slices

the

=N D

men

N

like

=D =D V

what

D − wh

do

=V + wh C

M M

M

M

O

Simple Facts About Slices

Every node of a derivation tree belongs to some slice.

Slices are continuous.

Moving from slice(l) to slice(l ′) such that l ′ was selected by l ,
one eventually reaches a slice of size 1.

REG MGs Closure Properties Applications Conclusion References

Category Refinement Strategy

Assume we are given an MG G and deterministic bottom-up
automaton A.

Subscript interior node labels with state of automaton,
following Thatcher’s strategy.

Move subscript from slice root of lexical item to
its category feature.

Refine selection features accordingly.

The set of final categories of the new MG G ′ is
{cq | c ∈ FG , q ∈ FA}.
Note that only finitely many combinations of slices and states
need to be considered, so the procedure can be carried out
efficiently.

REG MGs Closure Properties Applications Conclusion References

Two Examples of Category Refinement

the

=N

b

D

e

men

N

b

like

=D

d

=D

e

V

h

what

D

d

− wh

do

=V

h

+ wh C

j

M M

M

M

O

MG G ′ for G ∩ ODD

a :: ao b :: = ao = ao + k ae c :: = ao co
a :: ao − k b :: = ao = ae + k ao

b :: = ae = ao + k ao
b :: = ae = ae + k ae

REG MGs Closure Properties Applications Conclusion References

Two Examples of Category Refinement

the

=N

b

D

e

men

N

b

like

=D

d

=D

e

V

h

what

D

d

− wh

do

=V

h

+ wh C

j

M M

M

M

O
j

i

h

fe

b dca

g

MG G ′ for G ∩ ODD

a :: ao b :: = ao = ao + k ae c :: = ao co
a :: ao − k b :: = ao = ae + k ao

b :: = ae = ao + k ao
b :: = ae = ae + k ae

REG MGs Closure Properties Applications Conclusion References

Two Examples of Category Refinement

the

=N

b

De

men

Nb

like

=D

d

=D

e

Vh

what

Dd − wh

do

=V

h

+ wh Cj

M M

M

M

O
j

i

h

fe

b dca

g

MG G ′ for G ∩ ODD

a :: ao b :: = ao = ao + k ae c :: = ao co
a :: ao − k b :: = ao = ae + k ao

b :: = ae = ao + k ao
b :: = ae = ae + k ae

REG MGs Closure Properties Applications Conclusion References

Two Examples of Category Refinement

the

=Nb De

men

Nb

like

=Dd =De Vh

what

Dd − wh

do

=Vh + wh Cj

M M

M

M

O
j

i

h

fe

b dca

g

MG G ′ for G ∩ ODD

a :: ao b :: = ao = ao + k ae c :: = ao co
a :: ao − k b :: = ao = ae + k ao

b :: = ae = ao + k ao
b :: = ae = ae + k ae

REG MGs Closure Properties Applications Conclusion References

Two Examples of Category Refinement

the

=Nb De

men

Nb

like

=Dd =De Vh

what

Dd − wh

do

=Vh + wh Cj

M M

M

M

O
j

i

h

fe

b dca

g

MG G ′ for G ∩ ODD

a :: ao b :: = ao = ao + k ae c :: = ao co
a :: ao − k b :: = ao = ae + k ao

b :: = ae = ao + k ao
b :: = ae = ae + k ae

REG MGs Closure Properties Applications Conclusion References

Correctness of Procedure

Suppose that mder(G ′) 6= mder(G) ∩ L(A).

Then there must be some tree t such that t ∈ mder(G ′) iff
π(t) /∈ mder(G) ∩ L(A). So head(t) has a category feature
cq, but A does not assign state q to the root of π(t).

Since A is deterministic, such a situation may arise only if
A entered the slice in a state that differs from the subscripts
on the corresponding selector feature of head(t).

By induction on slices, we eventually reach a slice of size 1 to
which A assigned a state that differs from the subscript of
the category feature of its lexical item. But A is deterministic.
Contradiction.

REG MGs Closure Properties Applications Conclusion References

Further P-Closure Properties

P-Closure Corollaries

The class of MDTLs over Σ, Feat is p-closed under

intersection,
relative complement.

Given lexicon Lex , the class of MDTLs over subsets of Lex
is p-closed under

complement,
union.

For every regular tree language L and linear transduction τ
with an MDTL as its co-domain, it holds that τ(L) is a
projection of some MDTL.

REG MGs Closure Properties Applications Conclusion References

Minimalist Grammars with Regular Control

Minimalist Grammars with Regular Control (MGRCs)

An MG is a 6-tuple G := 〈Σ,Feat,F , Lex ,Op,R〉, where

Σ, Feat , F , Lex , and Op are defined as usual, and

R is a finite collection of regular tree languages.

Its controlled derivation tree language is cder(G) := mder(G) ∩R.
The derived tree language of G (and its string yield) are obtained
from cder(G) via the mbutt of Kobele et al. (2007).

MGRCs are more succinct than their refined equivalent.

Given a lexicon Lex and n ≥ 0, let Lex (n) := {l ∈ Lex | l has
exactly n selector features}. In the worst case

|LexG ′ | =
∑
i≥0

(
|Lex (i)

G | · |Q|
i+1
)

REG MGs Closure Properties Applications Conclusion References

Minimalist Grammars with Regular Control

Minimalist Grammars with Regular Control (MGRCs)

An MG is a 6-tuple G := 〈Σ,Feat,F , Lex ,Op,R〉, where

Σ, Feat , F , Lex , and Op are defined as usual, and

R is a finite collection of regular tree languages.

Its controlled derivation tree language is cder(G) := mder(G) ∩R.
The derived tree language of G (and its string yield) are obtained
from cder(G) via the mbutt of Kobele et al. (2007).

MGRCs are more succinct than their refined equivalent.

Given a lexicon Lex and n ≥ 0, let Lex (n) := {l ∈ Lex | l has
exactly n selector features}. In the worst case

|LexG ′ | =
∑
i≥0

(
|Lex (i)

G | · |Q|
i+1
)

REG MGs Closure Properties Applications Conclusion References

Application 1: Reference-Set Computation

Reference-set constraints are economy conditions similar to
OT: Given some input tree t

compute the set of competing output candidates,
rank them according to some economy metric,
discard all sub-optimal candidates.

Graf (2010a,b): Most reference-set constraints in the syntactic
literature can be modelled by linear tree transductions. In
particular, those constraints act as filters, so the
transductions have MDTLs as their domain and co-domain.

From the previous corollary for linear transductions it follows
that the expressivity of MGs is not increased.

REG MGs Closure Properties Applications Conclusion References

Application 2: Non-Local Dependencies without Movement

Expletive constructions in English show subject-verb
agreement even though no movement seems to be involved.

(1) a. There seems to be a man in the garden.

b. There seem to be three men in the garden.

The subject position is filled by the expletive
⇒ arguably no movement

Proposal

Regular constraint operating on “pseudo-features” (not part of the
MG itself) ⇒ enforce non-local dependencies without movement

Quite generally, this allows us to enrich MGs with AGREE
(Chomsky 2000).

REG MGs Closure Properties Applications Conclusion References

Application 3: Relativized Minimality

In Minimalist syntax, the contrast below is explained by
Relativized Minimality: If a movement licensor feature can be
checked by two different phrases, the closer one moves.

(2) Who/what bought t who/what?

(3) * Who/What bought who/what t?

Relativized Minimality relies on both who and what carrying a
−wh feature. This idea conflicts with the SMC, and in order
to derive (2), we must allow who/what to appear without a
−wh-feature. But then nothing in the MG blocks (3).

Proposal

Moving phrase XP with feature −f to ZP is banned if there is
a closer YP with pseudo feature −f .

REG MGs Closure Properties Applications Conclusion References

Further Applications

Island constraints

Phases

that-trace filter

L-marking

Limited feature percolation/Pied-Piping

Control/Binding(?)

REG MGs Closure Properties Applications Conclusion References

Conclusion

MDTLs are not closed under intersection with regular tree
languages.

However, they enjoy p-closure properties akin to regular
languages:

intersection,
intersection with regular tree languages,
union,
(relative) complement,
certain linear transductions.

Hence, enriching MGs with regular control over their
derivations does not increase their generative capacity.

Numerous applications; in particular, ideas from
model-theoretic syntax can be easily incorporated

REG MGs Closure Properties Applications Conclusion References

References

Chomsky, Noam. 2000. Minimalist inquiries: The framework. In Step by step: Essays
on minimalist syntax in honor of Howard Lasnik, ed. Roger Martin, David Michaels,
and Juan Uriagereka, 89–156. Cambridge, Mass.: MIT Press.

Graf, Thomas. 2010a. Reference-set constraints as linear tree transductions via
controlled optimality systems. In Proceedings of the 15th Conference on Formal
Grammar . To appear.

Graf, Thomas. 2010b. A tree transducer model of reference-set computation. UCLA
Working Papers in Linguistics 15:1–53.

Harkema, Henk. 2001. A characterization of minimalist languages. In Logical aspects
of computational linguistics (lacl’01), ed. Philippe de Groote, Glyn Morrill, and
Christian Retoré, volume 2099 of Lecture Notes in Artificial Intelligence, 193–211.
Berlin: Springer.

Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An
automata-theoretic approach to minimalism. In Model Theoretic Syntax at 10 , ed.
James Rogers and Stephan Kepser, 71–80.

Michaelis, Jens. 1998. Derivational minimalism is mildly context-sensitive. Lecture
Notes in Artificial Intelligence 2014:179–198.

Michaelis, Jens. 2001. Transforming linear context-free rewriting systems into
minimalist grammars. Lecture Notes in Artificial Intelligence 2099:228–244.

Rogers, James. 1998. A descriptive approach to language-theoretic complexity .
Stanford: CSLI.

Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of
computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in
Computer Science, 68–95. Berlin: Springer.

	Regular Tree Languages
	Minimalist Grammars
	Derived Tree Languages
	Derivation Trees

	Closure Properties of Minimalist Derivation Tree Languages
	Non-Closure Under Intersection with REG
	P-Closure Under Intersection with REG
	Further P-Closure Properties

	Applications

