The Price of Freedom: Why Adjuncts are Islands

Thomas Graf

tgraf@ucla.edu

tgraf.bol.ucla.edu

University of California, Los Angeles

DGfS 2013

University of Potsdam
The Talk in a Nutshell

(1)
a. Which book did John complain that he lost?
b. * Which book did John complain because he lost?
c. * Which book did John complain after losing?

Take-Home Message

Why do adjuncts constitute islands?
Because they are not as tightly integrated as arguments.
Outline

1. A Theory-Neutral Definition of Adjuncts
 - Defining Adjuncts
 - Characterizing Adjunct Languages

2. Empirical Implications
 - Deriving the AIC
 - Parasitic Gaps

3. The Big Picture: Structure & Information Flow
 - Constraints through Operations
 - Adjuncts: The Price of Freedom

4. Conclusion
Adjuncts ...
- have no special operational status (CG; Cinque 1999),
- are pair-merged (Chomsky 1995),
- are late-merged (Stepanov 2001),
- are inserted but not merged immediately (Hunter 2012),
- involve asymmetric feature checking (Frey and Gärtner 2002),

Problem
Can we abstract away from these details? Properties that hold of every conceivable implementation?
Two Surface Properties of Adjuncts

- Optionality
 Adjuncts can be omitted.

(2) (Obviously) I will (easily) ace this ((very) challenging) exam (because I (really) am that smart).

- Independence
 Independently well-formed adjuncts can be combined.

(3) a. Obviously I will ace this exam.
 b. I will easily ace this exam.
 c. Obviously I will easily ace this exam.

Definition (Adjuncts)
Phrase marker a is an Adjunct iff it is optional and independent.
Two Surface Properties of Adjuncts

- **Optionality**
 Adjuncts can be omitted.

 (2) *(Obviously)* I will *(easily)* ace this *((very) challenging)* exam *(because I (really) am that smart)*.

- **Independence**
 Independently well-formed adjuncts can be combined.

 (3) a. *(Obviously)* I will ace this exam.

 b. I will *easily* ace this exam.

 c. *(Obviously)* I will *easily* ace this exam.

Definition (Adjuncts)

Phrase marker \(a \) is an **Adjunct** iff it is optional and independent.
Adjunct Extension

What do these properties tell us about grammars with Adjuncts? What is the general shape of the generated language?

Definition (Adjunct Extensions)

Let s and t be (multi-dominance) trees. Then t is an **Adjunct extension** of s for grammar G ($s <_G t$) iff t is the result of inserting one or more Adjuncts of G in s.

Example

- *Obviously* I will ace this exam $<_G$

 Obviously I will easily ace this exam

- I will ace this exam $<_G$

 Obviously I will easily ace this exam

- *Obviously* I will ace this exam $\not<_G$

 I will easily ace this exam

- I will ace this exam $\not<_G$

 Easily I will easily ace this test

- Exam will this I ace $<_G$

 Easily exam will this I ace
Defining Adjuncts

Empirical Implications

Big Picture

Conclusion

Adjunct Extension

What do these properties tell us about grammars with Adjuncts? What is the general shape of the generated language?

Definition (Adjunct Extensions)

Let s and t be (multi-dominance) trees. Then t is an **Adjunct extension** of s for grammar G ($s <_G t$) iff t is the result of inserting one or more Adjuncts of G in s.

Example

- **Obviously** I will ace this exam $<_G$
 - Obviously I will easily ace this exam
- I will ace this exam $<_G$
- **Obviously** I will ace this exam $<_G$
- I will ace this exam $<_G$
- **Obviously** I will easily ace this exam
- I will easily ace this exam
- Exam will this I ace $<_G$ easily exam will this I ace
Defining Adjuncts

Empirical Implications

Big Picture

Conclusion

Adjunct Extension

What do these properties tell us about grammars with Adjuncts? What is the general shape of the generated language?

Definition (Adjunct Extensions)

Let \(s \) and \(t \) be (multi-dominance) trees. Then \(t \) is an **Adjunct extension** of \(s \) for grammar \(G \) (\(s <_G t \)) iff \(t \) is the result of inserting one or more Adjuncts of \(G \) in \(s \).

Example

- **Obviously** I will ace this exam \(<_G\)

 Obviously I will *easily* ace this exam

- I will ace this exam \(<_G\)

 Obviously I will *easily* ace this exam

- **Obviously** I will ace this exam \(\nRightarrow_{_G}\)

 Obviously I will *easily* ace this exam

- I will ace this exam \(\nRightarrow_{_G}\)

 easily ace this test

- exam will this I ace \(<_G\)

 easily exam will this I ace
Adjunct Extension

What do these properties tell us about grammars with Adjuncts? What is the general shape of the generated language?

Definition (Adjunct Extensions)

Let s and t be (multi-dominance) trees. Then t is an **Adjunct extension** of s for grammar G ($s \prec_G t$) iff t is the result of inserting one or more Adjuncts of G in s.

Example

- **Obviously** I will ace this exam \prec_G

 Obviously I will easily ace this exam

- I will ace this exam \prec_G **Obviously** I will easily ace this exam

- **Obviously** I will ace this exam $\not\prec_G$ I will easily ace this exam

- I will ace this exam $\not\prec_G$ I will **easily** ace this exam

- **easily** exam will this I ace \prec_G **easily** exam will this I ace
Adjunct Extension

What do these properties tell us about grammars with Adjuncts? What is the general shape of the generated language?

Definition (Adjunct Extensions)

Let s and t be (multi-dominance) trees. Then t is an **Adjunct extension** of s for grammar G ($s \prec_G t$) iff t is the result of inserting one or more Adjuncts of G in s.

Example

- *Obviously* I will ace this exam \prec_G

 - I will easily ace this exam
- I will ace this exam \prec_G *Obviously* I will easily ace this exam
- *Obviously* I will ace this exam $\not\prec_G$ I will easily ace this exam
- I will ace this exam $\not\prec_G$ I will easily ace this test
- exam will this I ace \prec_G easily exam will this I ace
Defining Adjuncts

Empirical Implications

Big Picture

Conclusion

Adjunct Extension

What do these properties tell us about grammars with Adjuncts? What is the general shape of the generated language?

Definition (Adjunct Extensions)

Let s and t be (multi-dominance) trees. Then t is an Adjunct extension of s for grammar G ($s <_G t$) iff t is the result of inserting one or more Adjuncts of G in s.

Example

- **Obviously** I will ace this exam $<_G$

 Obviously I will easily ace this exam

- I will ace this exam $<_G$ **Obviously** I will easily ace this exam

- **Obviously** I will ace this exam $\not<_G$ I will easily ace this exam

- I will ace this exam $\not<_G$ I will **easily** ace this exam

- I will ace this exam $\not<_G$ I will easily ace this test

- exam will this I ace $<_G$ **easily** exam will this I ace
Adjunct Extension

What do these properties tell us about grammars with Adjuncts? What is the general shape of the generated language?

Definition (Adjunct Extensions)

Let s and t be (multi-dominance) trees. Then t is an **Adjunct extension** of s for grammar G ($s <_G t$) iff t is the result of inserting one or more Adjuncts of G in s.

Example

- **Obviously** I will ace this exam $<_G$

 Obviously I will easily ace this exam

- I will ace this exam $<_G$

 Obviously I will easily ace this exam

- **Obviously** I will ace this exam $\not<_G$

 I will easily ace this exam

- I will ace this exam $\not<_G$

 I will easily ace this test

- Exam will this I ace $<_G$

 Easily exam will this I ace
Theorem (Optionality Closure)

If \(t \) is an Adjunct extension of \(s \) for \(G \) and \(G \) generates \(t \), then \(G \) generates \(s \).

Example

I will \textcolor{orange}{easily} ace this \textcolor{blue}{really} exam

I will easily ace this exam \quad I will ace this really exam

I will ace this exam
Characterizing Adjunct Languages

Theorem (Optionality Closure)

If \(t \) *is an Adjunct extension of* \(s \) *for* \(G \) *and* \(G \) *generates* \(t \), *then* \(G \) *generates* \(s \).*

Example

I will *easily* ace this *really* exam

I will *easily* ace this exam
I will ace this *really* exam

I will ace this exam
Theorem (Optionality Closure)

If \(t \) is an Adjunct extension of \(s \) for \(G \) and \(G \) generates \(t \), then \(G \) generates \(s \).

Example

I will \textit{easily} ace this \textit{really} exam

✓ I will \textit{easily} ace this exam
I will ace this \textit{really} exam

I will ace this exam
Theorem (Optionality Closure)

If t is an Adjunct extension of s for G and G generates t, then G generates s.

Example

I will easily ace this really exam

✓ I will easily ace this exam

I will ace this really exam

I will ace this exam
Theorem (Optionality Closure)

If \(t \) *is an Adjunct extension of* \(s \) *for* \(G \) *and* \(G \) *generates* \(t \), *then* \(G \) *generates* \(s \).*

Example

I will *easily* ace this *really* exam

✓ I will *easily* ace this exam I will ace this *really* exam

✓ I will ace this exam
Theorem (Optionality Closure)

If t *is an Adjunct extension of* s *for* G *and* G *generates* t, *then* G *generates* s.

Example

I will *easily* ace this *really* exam

- I will *easily* ace this exam
- I will ace this *really* exam
Theorem (Optionality Closure)

If t is an Adjunct extension of s for G and G generates t, then G generates s.

Example

I will **easily** ace this **really** exam

✓ I will **easily** ace this exam

 ✓ I will ace this exam

 ✓ I will ace this exam

* I will ace this **really** exam
Theorem (Optionality Closure)

If \(t \) is an Adjunct extension of \(s \) for \(G \) and \(G \) generates \(t \), then \(G \) generates \(s \).

Example

* I will easily ace this really exam

✓ I will easily ace this exam

✓ I will ace this really exam

✓ I will ace this exam
Characterizing Adjunct Languages

Theorem (Independence Closure)

For \(s \) and \(t \) adjunct extensions of some tree, \(G \) generates the “fusion” of \(s \) and \(t \) (\(s \lor t \)) if it generates both \(s \) and \(t \).

Example

I *really* will *easily* ace this exam *now*

I will *easily* ace this exam
I *really* will ace this exam *now*

I will ace this exam
Characterizing Adjunct Languages

Theorem (Independence Closure)

For s and t adjunct extensions of some tree, G generates the “fusion” of s and t (s ∨ t) if it generates both s and t.

Example

I really will easily ace this exam now

✓ I will easily ace this exam
✓ I really will ace this exam now
✓ I will ace this exam
Characterizing Adjunct Languages

Theorem (Independence Closure)

For s and t adjunct extensions of some tree, G generates the “fusion” of s and t ($s \lor t$) if it generates both s and t.

Example

I really will easily ace this exam now

✓ I will easily ace this exam ✓ I really will ace this exam now
✓ I will ace this exam
Characterizing Adjunct Languages

Theorem (Independence Closure)

For s and t adjunct extensions of some tree, G generates the “fusion” of s and t ($s \vee t$) if it generates both s and t.

Example

✓ I really will easily ace this exam now

✓ I will easily ace this exam

✓ I really will ace this exam now

✓ I will ace this exam
Any implementation of Adjunction that captures Optionality and Independence yields a grammar formalism where

- \(\downarrow \) grammaticality is downward entailing with respect to \(<_G\),
- \(\uparrow \) ungrammaticality is upward entailing with respect to \(<_G\),
- \(\lor \) grammaticality is preserved under “fusion”.
Deriving the AIC

The AIC follows from **optionality closure and feature checking**.

\[
\begin{array}{c}
\text{CP} \\
\downarrow \\
\text{C'} \\
\downarrow \\
\text{TP} \\
\downarrow \\
\text{John} \\
\downarrow \\
\text{V'} \\
\downarrow \\
\text{VP} \\
\downarrow \\
\text{VP} \\
\downarrow \\
\text{fall asleep} \\
\downarrow \\
\text{before} \\
\downarrow \\
\text{VP} \\
\downarrow \\
\text{reading}
\end{array}
\]

\text{did [+]wh} \\
\text{which book [-]wh}
The AIC follows from **optionality closure and feature checking**.

AIC Violation

1) Tree is an Adjunct extension
The AIC follows from **optionality closure and feature checking**.

AIC Violation

1) Tree is an Adjunct extension
2) Tree without Adjunct violates feature calculus
The AIC follows from **optionality closure and feature checking**.

AIC Violation
1) Tree is an Adjunct extension
2) Tree without Adjunct violates feature calculus
3) Ungrammaticality is upward entailing
PGs piggyback on a mandatory feature checker.
Why Parasitic Gaps are Different

PGs piggyback on a mandatory feature checker.

AIC Exemption
1) Tree is an Adjunct extension
Why Parasitic Gaps are Different

PGs piggyback on a mandatory feature checker.

AIC Exemption
1) Tree is an Adjunct extension
2) Tree without Adjunct satisfies feature calculus
Why Parasitic Gaps are Different

PGs piggyback on a **mandatory feature checker**.

AIC Exemption

1) Tree is an Adjunct extension
2) Tree without Adjunct satisfies feature calculus
3) Grammaticality isn’t upward entailing ⇒ nothing follows

Which book [-wh]

Did [+wh]

Did before sell reading

VP

PP

CP

C′

TP

John

T′

VP

VP

which book [-wh]
Why Parasitic Gaps are Idempotent

Multiple PGs may piggyback on a single mover.

(4) Which movie did John *whilst mocking* throw in the trash *after watching*?

Follows from *independence closure*

(5) a. Which movie did John *whilst mocking* throw in the trash?

b. Which movie did John throw in the trash *after watching*?
Constraints through Operations

Constraints and operations are **closely connected**.

Theorem (Graf 2011; Kobele 2011)

A constraint can be expressed via Merge iff it can be computed using only a finitely bounded amount of working memory.

- **Intuition**: Use feature calculus to emulate how information flows through the tree during computation
- Doable for almost all constraints from the syntactic literature
- Relies on symmetry of c-selection
 (category features & selection features)

head-argument relation ≡ information pipeline
Constraints and operations are closely connected.

Theorem (Graf 2011; Kobele 2011)

A constraint can be expressed via Merge iff it can be computed using only a finitely bounded amount of working memory.

- **Intuition**: Use feature calculus to emulate how information flows through the tree during computation
- Doable for almost all constraints from the syntactic literature
- Relies on symmetry of c-selection
 (category features & selection features)

head-argument relation \equiv information pipeline
Example: Keeping Track of Movers

```
CP
  C
   [+wh]
  C'
   TP
      T'
         T
         VP
             V'
               V
               DP
                   which man [−wh]
```

<table>
<thead>
<tr>
<th>Category</th>
<th>Selects</th>
<th>Selected by</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>N</td>
<td>V</td>
</tr>
<tr>
<td>V</td>
<td>D</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>V</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>T</td>
<td>V,N</td>
</tr>
</tbody>
</table>
Example: Keeping Track of Movers

Category	Selects	Selected by
D | N | V
V | D | T
T | V | C
C | T | V,N
D–wh | N |

which man [–wh]
Example: Keeping Track of Movers

```
\[
\begin{array}{c}
\text{CP} \\
\downarrow \\
C' \\
\downarrow \\
C \quad TP \quad [+\text{wh}] \\
\downarrow \\
T' \\
\downarrow \\
T \quad VP_{-\text{wh}} \\
\downarrow \\
V'_{-\text{wh}} \\
\downarrow \\
V_{-\text{wh}} \quad DP_{-\text{wh}} \\
\downarrow \\
\text{which man } [-\text{wh}] \\
\end{array}
\]
```

Table:

<table>
<thead>
<tr>
<th>Category</th>
<th>Selects</th>
<th>Selected by</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>N</td>
<td>V</td>
</tr>
<tr>
<td>V</td>
<td>D</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>V</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>T</td>
<td>V,N</td>
</tr>
<tr>
<td>D_{-\text{wh}}</td>
<td>N</td>
<td>V_{-\text{wh}}</td>
</tr>
<tr>
<td>V_{-\text{wh}}</td>
<td>D_{-\text{wh}}</td>
<td></td>
</tr>
</tbody>
</table>
Example: Keeping Track of Movers

```
<table>
<thead>
<tr>
<th>Category</th>
<th>Selects</th>
<th>Selected by</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>N</td>
<td>V</td>
</tr>
<tr>
<td>V</td>
<td>D</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>V</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>T</td>
<td>V, N</td>
</tr>
<tr>
<td>D_{wh}</td>
<td>N</td>
<td>V_{wh}</td>
</tr>
<tr>
<td>V_{wh}</td>
<td>D_{wh}</td>
<td>T_{wh}</td>
</tr>
<tr>
<td>T_{wh}</td>
<td>V_{wh}</td>
<td></td>
</tr>
</tbody>
</table>
```

Example: Keeping Track of Movers

```
CP
 |
C
[+wh]
 |
C'

C
 TP_{wh}
 |
 T'_{wh}
 |
 T_{wh}
 |
 VP_{wh}
 |
 V'_{wh}
 |
 V_{wh}
 |
 DP_{wh}
 |
 which man [−wh]
```
Example: Keeping Track of Movers

Defining Adjuncts

Empirical Implications

Big Picture

Conclusion

Category	Selects	Selected by
D | N | V
V | D | T
T | V | C
C | T | V,N

which man [−wh]
Example: Keeping Track of Movers

\[
\begin{align*}
\text{CP}_{-\text{wh}} & \checkmark \\
\mid & \\
\text{C'}_{-\text{wh}} & \checkmark \\
\mid & \\
\text{CP}_{-\text{wh}} & \checkmark \\
\mid & \\
\text{TP}_{-\text{wh}} & \\
\mid & \\
[+\text{wh}] & \\
\mid & \\
\text{T'}_{-\text{wh}} & \\
\mid & \\
\text{T}_{-\text{wh}} & \\
\mid & \\
\text{VP}_{-\text{wh}} & \\
\mid & \\
\text{V'}_{-\text{wh}} & \\
\mid & \\
\text{V}_{-\text{wh}} & \\
\mid & \\
\text{DP}_{-\text{wh}} & \checkmark \\
\mid & \\
\text{which man } [\text{--wh}] & \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Category</th>
<th>Selects</th>
<th>Selected by</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>N</td>
<td>V</td>
</tr>
<tr>
<td>V</td>
<td>D</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>V</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>T</td>
<td>V,N</td>
</tr>
<tr>
<td>D_{-\text{wh}}</td>
<td>N</td>
<td>V_{-\text{wh}}</td>
</tr>
<tr>
<td>V_{-\text{wh}}</td>
<td>D_{-\text{wh}}</td>
<td>T_{-\text{wh}}</td>
</tr>
<tr>
<td>T_{-\text{wh}}</td>
<td>V_{-\text{wh}}</td>
<td>C_{-\text{wh}}</td>
</tr>
<tr>
<td>C_{-\text{wh}}</td>
<td>T_{-\text{wh}}</td>
<td>V,N</td>
</tr>
<tr>
<td>C_{-\text{wh}}</td>
<td>T_{-\text{wh}}</td>
<td>V_{-\text{wh}},N_{-\text{wh}}</td>
</tr>
</tbody>
</table>
Adjuncts: The Price of Freedom

- Adjuncts very free due to Optionality and Independence
- Freedom reflected in feature calculus, limits information flow
 ⇒ feature calculus cannot emulate all constraints correctly

Semi-Permeability

- Information flow into Adjuncts reliable
 ⇒ Adjuncts can put restrictions on shape of tree
 (cf. parasitic gaps)
- Information flow out of Adjuncts unreliable
 ⇒ Adjuncts cannot be depended on

Adjunct ≡ black hole
Example: Adjunction a la Frey and Gärtner (2002)

Adjunction as Asymmetric Selection

Adjuncts select XP they adjoin to, but are not themselves selected.

Category	Selects	Selected by
Adjunct | V | —
V | D | T

Example: after punching which man [−wh]
Example: Adjunction a la Frey and Gärtner (2002)

Adjunction as Asymmetric Selection

Adjuncts select XP they adjoin to, but are not themselves selected.

```
VP
   |
   VP
   |  Adjunct-\text{wh}
V   DP  
       
after punching which man [−wh]
```

<table>
<thead>
<tr>
<th>Category</th>
<th>Selects</th>
<th>Selected by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjunct</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>V</td>
<td>D</td>
<td>T</td>
</tr>
<tr>
<td>Adjunct-\text{wh}</td>
<td>V</td>
<td>—</td>
</tr>
</tbody>
</table>
Example: Adjunction a la Frey and Gärtner (2002)

Adjunction as Asymmetric Selection

Adjuncts select XP they adjoin to, but are not themselves selected.

```
Category        Selects    Selected by
------------------------
Adjunct           V         —
                   D         T
Adjunct−wh        V−wh      —
                   D         T−wh
```

Example: Adjunction a la Frey and Gärtner (2002)

Adjunction as Asymmetric Selection

Adjuncts select XP they adjoin to, but are not themselves selected.

```
               VP_{wh}
              /       \
VP_{wh}       Adjunct_{wh}
            /     \
V_{wh}     after punching which man [−wh]
  DP
```

<table>
<thead>
<tr>
<th>Category</th>
<th>Selects</th>
<th>Selected by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjunct</td>
<td>V</td>
<td>—</td>
</tr>
<tr>
<td>V</td>
<td>D</td>
<td>T</td>
</tr>
<tr>
<td>Adjunct_{wh}</td>
<td>V_{wh}</td>
<td>—</td>
</tr>
<tr>
<td>V_{wh}</td>
<td>D</td>
<td>T_{wh}</td>
</tr>
</tbody>
</table>

Example sentence: after punching which man [−wh]
Summary

- Adjuncts characterized by Optionality and Independence
- enforces certain grammatical inferences
 - ↓ grammaticality is preserved under Adjunct removal
 - ↑ ungrammaticality is preserved under Adjunct insertion
 - V grammaticality is preserved under Adjunct combination

⇒ AIC falls out naturally, yet allow for parasitic gaps

- Information flow metaphor: Adjuncts ⇔ black holes
Not all adjuncts are Adjuncts
Some adjuncts can be extracted from (Truswell 2007):

(6) Which car did John drive Mary crazy trying to fix?

Truswell’s event-based generalization ≈

some adjuncts more tightly integrated semantically

<table>
<thead>
<tr>
<th>syn-adjunct</th>
<th>sem-argument</th>
<th>Truswell adjuncts</th>
<th>arguments</th>
</tr>
</thead>
</table>

Extension to Other Cases
DP-conjuncts are also optional and independent
⇒ CSC ≡ AIC & ATB extraction ≡ PGs

Caveat: agreement, binding, NPI-licensing
Work in Progress

- **Not all adjuncts are Adjuncts**
 Some adjuncts can be extracted from (Truswell 2007):

 \[(6) \text{ Which car did John drive Mary crazy trying to fix?} \]

 Truswell’s event-based generalization ≈
 some adjuncts more tightly integrated semantically

<table>
<thead>
<tr>
<th>syn-adjunct</th>
<th>sem-argument</th>
<th>sem-adjunct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truswell adjuncts</td>
<td>arguments</td>
<td>???</td>
</tr>
<tr>
<td>Adjuncts</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Extension to Other Cases**
 DP-conjuncts are also optional and independent
 ⇒ **CSC ≡ AIC & ATB extraction ≡ PGs**

 Caveat: agreement, binding, NPI-licensing
Work in Progress

● **Not all adjuncts are Adjuncts**
 Some adjuncts can be extracted from (Truswell 2007):

 (6) Which car did John drive Mary crazy trying to fix?

 Truswell’s event-based generalization ≈
 some adjuncts more tightly integrated semantically

<table>
<thead>
<tr>
<th>syn-adjunct</th>
<th>Truswell adjuncts</th>
<th>Adjuncts</th>
</tr>
</thead>
<tbody>
<tr>
<td>syn-argument</td>
<td>arguments</td>
<td>???</td>
</tr>
</tbody>
</table>

● **Extension to Other Cases**
 DP-conjuncts are also optional and independent
 ⇒ **CSC ≡ AIC & ATB extraction ≡ PGs**

 Caveat: agreement, binding, NPI-licensing

