Of Tops and Bottoms:
The Algebra of Person Case Constraints

Thomas Graf
 tgraf@ucla.edu
 tgraf.bol.ucla.edu

University of California, Los Angeles

SCSiL 2013
January 18, 2013
What is the PCC?

Person Case Constraint (PCC)

Whether the direct object (DO) and the indirect object (IO) of a clause can both be cliticized is contingent on the person specification of DO and IO.

(1) Roger *me/le leur a présentié.
Roger 1SG/3SG.ACC 3PL.DAT has shown
‘Roger has shown me/him to them.’

The Problem & The Solution

- Existence of something like the PCC is not surprising. (Graf 2011; Kobele 2011)
- But why do we only find certain types of PCCs?
- Algebraic unification in terms of presemilattices
What is the PCC?

Person Case Constraint (PCC)

Whether the direct object (DO) and the indirect object (IO) of a clause can both be cliticized is contingent on the person specification of DO and IO.

(1) Roger *me/le leur a présénéré.
Roger 1SG/3SG.ACC 3PL.DAT has shown
‘Roger has shown me/him to them.’

The Problem & The Solution

- Existence of something like the PCC is not surprising. (Graf 2011; Kobele 2011)
- But why do we only find certain types of PCCs?
- Algebraic unification in terms of presemilattices
Outline

1. PCC Typology
2. Characterizing the Class of PCCs
 - The Generalized PCC
 - Algebraic Characterization
3. Empirical Conjectures
 - Algonquian PCC
 - Sign Language PCC
The PCC: A Closer Look

- attested in a variety of languages, including French, Spanish, Catalan, and Classical Arabic (Kayne 1975; Bonet 1991, 1994)
- specifics of PCC differ between languages, dialects, idiolects

Four Attested PCC Variants

- **Strong PCC** (S-PCC; Bonet 1994)
 DO must be 3.

- **Ultrastrong PCC** (U-PCC; Nevins 2007)
 DO is less local than IO (where $3 < 2 < 1$).

- **Weak PCC** (W-PCC; Bonet 1994)
 3IO combines only with 3DO.

- **Me-first PCC** (M-PCC; Nevins 2007)
 If IO is 2 or 3, then DO is not 1.
The Four PCC Variants

<table>
<thead>
<tr>
<th></th>
<th>IO ↓ / DO →</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>*</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

(a) S-PCC

<table>
<thead>
<tr>
<th></th>
<th>IO ↓ / DO →</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>*</td>
<td>NA</td>
<td></td>
</tr>
</tbody>
</table>

(b) U-PCC

<table>
<thead>
<tr>
<th></th>
<th>IO ↓ / DO →</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>*</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>NA</td>
</tr>
</tbody>
</table>

(c) W-PCC

<table>
<thead>
<tr>
<th></th>
<th>IO ↓ / DO →</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>✓</td>
<td>NA</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>*</td>
<td>✓</td>
<td>*</td>
<td>NA</td>
</tr>
</tbody>
</table>

(d) M-PCC
The PCC in Minimalism

- The Minimalist feature calculus is exactly as powerful as so-called rational constraints. (Graf 2011; Kobele 2011)
- So unless one puts restrictions on the feature system any given language may employ, any kind of rational constraint could in principle be instantiated in some language.
- The existence of PCC-like constraints is unsurprising under this view because they are indeed rational constraints.
- But there are at least $2^6 = 64$ logically possible PCC variants. Why do we find only 4?
The Generalized PCC

All four PCC-types can be described similar to the U-PCC.

<table>
<thead>
<tr>
<th>Generalized PCC (G-PCC)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IO is not less local than DO (IO $\not<$ DO), where</td>
<td></td>
</tr>
<tr>
<td>S-PCC: 1 $>$ 2 1 $>$ 3 2 $>$ 1 2 $>$ 3</td>
<td></td>
</tr>
<tr>
<td>U-PCC: 1 $>$ 2 1 $>$ 3</td>
<td>2 $>$ 3</td>
</tr>
<tr>
<td>W-PCC: 1 $>$ 3</td>
<td>2 $>$ 3</td>
</tr>
<tr>
<td>M-PCC: 1 $>$ 2 1 $>$ 3</td>
<td></td>
</tr>
</tbody>
</table>
Person Locality Hierarchies

(a) S-PCC
(b) U-PCC
(c) W-PCC
(d) M-PCC
Example 1: S-PCC

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 > 2 \\
1 > 3 \\
2 > 1 \\
2 > 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & 2 & 3 \\
1 & NA & * & \checkmark \\
2 & * & NA & \checkmark \\
3 & * & * & NA \\
\end{array}
\]
Example 2: W-PCC

\[
\begin{array}{c}
\text{IO} \downarrow/D\text{O} \\
\text{1} & \text{2} & \text{3} \\
1 & \text{NA} & \checkmark & \checkmark \\
2 & \checkmark & \text{NA} & \checkmark \\
3 & \ast & \ast & \text{NA} \\
\end{array}
\]

1 > 3
2 > 3
The locality hierarchies are *preorders*. (Reminder: we ignore the diagonal)

Definition (Preorder)

A binary relation \(\sqsubseteq \) is a preorder iff it is

- reflexive \((x \sqsubseteq x)\), and
- transitive \((x \sqsubseteq y & y \sqsubseteq z \Rightarrow x \sqsubseteq z)\)

In fact, they are all *presemilattices*.

Definition (Presemilattices for linguists)

A preorder \(\sqsubseteq \) over set \(S \) is a presemilattice iff for all \(u, v \in S \), there is some \(t \in S \) such that

- \(t \) “reflexively dominates” \(u \) and \(v \), or
- \(u \) and \(v \) “reflexively dominate” \(t \).
The locality hierarchies are **preorders**. (Reminder: we ignore the diagonal)

Definition (Preorder)

A binary relation \sqsubseteq is a preorder iff it is

- reflexive ($x \sqsubseteq x$), and
- transitive ($x \sqsubseteq y \land y \sqsubseteq z \Rightarrow x \sqsubseteq z$)

In fact, they are all **presemilattices**.

Definition (Presemilattices for linguists)

A preorder \sqsubseteq over set S is a presemilattice iff for all $u, v \in S$, there is some $t \in S$ such that

- t “reflexively dominates” u and v, or
- u and v “reflexively dominate” t.
The number of presemilattices over \{1, 2, 3\} is still more than 4.

Top and Bottom

Top For all \(x\), \(1 < x\) implies \(x < 1\).

‘Every person feature is at most as local as 1.’

Bottom There is no \(x\) such that \(x < 3\).

‘No person feature is less local than 3.’

Unifying the PCCs

The class of attested PCCs is given by

- \(\text{IO} \nless \text{DO}\), where
- \(<\) defines a presemilattice over \{1, 2, 3\} respecting both Top and Bottom.
Two More Restrictions

The number of presemilattices over \(\{1, 2, 3\} \) is still more than 4.

Top and Bottom

- **Top** For all \(x \), \(1 < x \) implies \(x < 1 \).
 ‘Every person feature is at most as local as 1.’

- **Bottom** There is no \(x \) such that \(x < 3 \).
 ‘No person feature is less local than 3.’

Unifying the PCCs

The class of attested PCCs is given by

- \(IO \not< DO \), where
- \(<\) defines a presemilattice over \(\{1, 2, 3\} \) respecting both Top and Bottom.
Generalizing Top

From a mathematical perspective, Top and Bottom aren’t duals.

Redefining Top as the Dual of Bottom

There is some x such that $x < 1$.

‘Some person feature is less local than 1.’

Pairing Bottom with Top’ yields one more hierarchy.
Generalizing Top

From a mathematical perspective, Top and Bottom aren’t duals.

Redefining Top as the Dual of Bottom

Top′ There is some x such that $x < 1$.
‘Some person feature is less local than 1.’

Pairing Bottom with Top′ yields one more hierarchy.
In some Algonquian languages 2 is apparently more local than 1. Nishnaabemwin affixes its verb with an inverse marker if DO is more local than SUBJ (Béjar and Rezac 2009:50).

(2)
 a. n-waabm-ig
 1-see-3.INV
 ‘He sees me.’
 b. g-waabm-ig
 2-see-3.INV
 ‘He sees you.’
The marker also occurs if DO is 2 and SUBJ is 1, but not the other way round, where a default marker is used instead (Béjar and Rezac 2009:49). This indicates that 2 is indeed more local than 1.

(3) a. g-waabm-in
 2-see-1.INV
 ‘I see you.’

b. g-waabm-i
 2-see-DFLT.1
 ‘You see me.’
Redefining Bottom as the Dual of Top

Bottom’ For all \(x, x < 3 \) implies \(3 < x \).

Coupling Top with Bottom’ yields two new hierarchies:

(a) IO must be 1
(b) No clitic combinations
The first new hierarchy might be present in sign languages, where 2 and 3 form a natural class. Are there sign languages that show PCC effects?

The second type disallows all clitic combinations. This behavior is attested in some languages such as Cairene Arabic (Shlonsky 1997:207; Martin Walkow p.c.).
Conclusion

What has been Accomplished?

- The four attested PCC variants are unified into the Generalized PCC: $\text{IO} \not< \text{DO}$.
- The possible interpretations of $<$ are given a succinct, natural algebraic characterization in terms of presemilattices.

Open Questions

- Do we find any of the conjectured patterns?
- Why $\text{IO} \not< \text{DO}$, and not $\text{DO} \not< \text{IO}$ or $\text{IO} \geq \text{DO}$?
- What motivates Top and Bottom?

