Is Minimalism too Diverse?

Minimalism is a **program**, **not a theory**. Minimalist theories differ in many parameters:

feature system	privative \Leftrightarrow binary \Leftrightarrow multi-v
feature checking	Spec-Head \Leftrightarrow Agree
movement	upward \Leftrightarrow sideward
trees	traces \Leftrightarrow copies \Leftrightarrow multi-dor
constraints	local VS global VS transderiv
grammar mode	derivational \Leftrightarrow representatio

So is Minimalism just a random hodge podge of ideas, or is there a technical common ground?

Unification via Minimalist Grammars

Minimalist grammars (MGs; Stabler 1997) are a formalization of pre-Agree Minimalism. In recent years, they have been expanded in various directions. (Fowlie 2013; Gärtner and Michaelis 2010; Graf 2011, 2012b, 2014a,b; Hunter 2010; Kobele 2006, 2011; Stabler 2011)

- new feature systems
- a system for implementing all known movement types
- a system for implementing most syntactic constraints
- Agree, phases, and (late) adjunction
- representational characterizations
- mapping to LF structures
- mapping to prosodic structures

MGs have become a flexible formalism that can span the full range of ideas from the syntactic literature.

The Common Core

Irrespective of which extensions are added to the formalism, MGs always have a unified characterization. (Mönnich 2006; Kobele et al. 2007; Graf 2012a, 2013)

Derivational Decomposition

Every MG defines a set of well-formed derivations and a mapping from derivations to output structures.

Finite Working Memory

The derivation trees and the mapping must be computable with a finite amount of working memory.

These two properties do not hold of competing formalisms like HPSG and LFG. Minimalist proposals operate within a narrowly restricted class.

A HIDDEN CONSENSUS **COMPUTATIONAL INVARIANTS OF MINIMALIST SYNTAX Thomas Graf**

Comparing Minimalist Theories

While Minimalist proposals stay within the same class, they may occupy very different points in that class. We can measure their distance via three notions of equivalence.

Equivalence	Gra
derivational	der
strong	out
weak	strin

D-equivalent grammars are virtually indistinguishable, they describe the same I-language.

A Few Surprising Equivalences

Many contentious issues have no measurable impact, the competing pieces of machinery are d-equivalent:

- privative \Leftrightarrow binary \Leftrightarrow multi-valued
- ▶ features ⇔ constraints
- traces \Leftrightarrow copies \Leftrightarrow multi-dominance
- \blacktriangleright derivational \Leftrightarrow representational

The choice of movement types has the biggest impact, but even then weak equivalence usually holds.

Conclusion

- into two finite working memory components.

References

Fowlie, Meaghan. 2013. Order and optionality: Minimalist grammars with adjunction. In MoL 13, 12–20. • Gärtner, Hans-Martin, and Jens Michaelis. 2010. On the treatment of multiple-wh-interrogatives in minimalist grammars. In Language and logos, 339–366. • Graf, Thomas. 2011. Closure properties of minimalist derivation tree languages. In LACL 2011, LNAI 6736, 96–111. • Graf, Thomas. 2012a. Locality and the complexity of minimalist derivation tree languages. In Formal Grammar 2010/2011, LNCS 7395, 208–227. • Graf, Thomas. 2012b. Movement-generalized minimalist grammars. In LACL 2012, LNCS 7351, 58–73. • Graf, Thomas. 2013. Local and transderivational constraints in syntax and semantics. Doctoral Dissertation, UCLA. • Graf, Thomas. 2014a. Late merge as lowering movement in minimalist grammars. In LACL 2014, LNCS 8535, 107–121. • Graf, Thomas. 2014b. Models of adjunction in minimalist grammars. In Formal Grammar 2014, LNCS 8612, 52–68. • Hunter, Tim. 2010. Deriving syntactic properties of arguments and adjuncts from neo-davidsonian semantics. In The Mathematics of Language, LNCS 6149, 103–116. • Kobele, Gregory M. 2006. *Generating copies: An investigation into structural identity in language and grammar*. Doctoral Dissertation, UCLA. • Kobele, Gregory M. 2011. Minimalist tree languages are closed under intersection with recognizable tree languages. In LACL 2011, LNAI 6736, 129–144. • Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An automata-theoretic approach to minimalism. In *Model Theoretic Syntax at 10*, 71–80. • Mönnich, Uwe. 2006. Grammar morphisms. Ms. University of Tübingen. • Stabler, Edward P. 1997. Derivational minimalism. In LACL 1997, LNCS 1328, 68–95. • Stabler, Edward P. 2011. Computational perspectives on minimalism. In Oxford handbook of linguistic minimalism, 617–643.

* Stony Brook University

ammars have the same...

rivations tput structures ing yields

Minimalist research is characterized by the factorization Variation within that class can be precisely measured. A surprising number of contentious issues have no measurable bearing on matters of I-language.