Locality Domains and Phonological C-Command Over Strings

Thomas Graf

Take-Home Message

A cross-module restriction on well-formedness conditions:

Domain	Phonology	Syntax
bounded	intervocalic voicing	subcategorization
<u>u</u> nbounded	sibilant harmony	movement
b + u	non-final RHOL	c-command
b + u + b	*first-last harmony	*sibling of c-commandee

The Main Conjecture: Ban on Improper Locality

Once unbounded, always unbounded.

This talk is mostly about the **phonology** column.

- Only phonotactics considered (no input-output mappings)
- ➤ Subregular phonology as measuring rod for complexity (Heinz 2009, 2010; Heinz et al. 2011; Chandlee 2014; Jardine 2016; McMullin 2016; Graf 2017)

- 1 define different classes of grammars
- 2 organize these classes into an expressivity hierarchy
- 3 needed level of expressivity?

- Only phonotactics considered (no input-output mappings)
- ➤ Subregular phonology as measuring rod for complexity (Heinz 2009, 2010; Heinz et al. 2011; Chandlee 2014; Jardine 2016; McMullin 2016; Graf 2017)

- define different classes of grammars
- 2 organize these classes into an expressivity hierarchy
- 3 needed level of expressivity?

- Only phonotactics considered (no input-output mappings)
- ► Subregular phonology as measuring rod for complexity (Heinz 2009, 2010; Heinz et al. 2011; Chandlee 2014; Jardine 2016; McMullin 2016; Graf 2017)

- 1 define different classes of grammars
- 2 organize these classes into an expressivity hierarchy
- 3 needed level of expressivity?

- Only phonotactics considered (no input-output mappings)
- ► Subregular phonology as measuring rod for complexity (Heinz 2009, 2010; Heinz et al. 2011; Chandlee 2014; Jardine 2016; McMullin 2016; Graf 2017)

- define different classes of grammars
- 2 organize these classes into an expressivity hierarchy
- 3 needed level of expressivity?

Outline

- 1 Strictly Piecewise (SP)
- 2 Interval-Based Strictly Piecewise (IBSP)
- 3 Phonological Interactions of Local and Non-Local Information
- 4 Limitation to "String c-command"

Unbounded Phenomena in Phonology

1 Samala Sibilant Harmony Sibilants must not disagree in anteriority. (Applegate 1972)

- (1) a. * hasxintilawa∫
 - b. * ha∫xintilawas
 - c. ha∫xintilawa∫
- Unbounded Tone Plateauing in Luganda (UTP) No L may occur within an interval spanned by H. (Hyman 2011)
 - (2) a. LHLLLLL
 - b. LLLLLHL
 - c. * LHLLLHL
 - d. **LHHHHHL**

Strictly Piecewise Dependencies

► Each phenomenon can be represented by a collection of finitely many forbidden subsequences.

Phenomenon	Constraint	Forbidden Subsequences
	$*[lpha \ ext{ant}] \cdots [-lpha \ ext{ant}] \ *\mathbf{HLH}$	sʃ , ʃs HLH

▶ A well-formedness condition is **strictly piecewise** (SP) iff it is equivalent to a finite list of forbidden subsequences.

Blocking Effects are Beyond SP

- SP conditions have no notion of locality at all.
- ▶ Blocking is a simple form of locality, and hence beyond SP.

Latin L-Dissimilation (Simplified; (Stanton 2016))

- ▶ /I/ in morpheme /-alis/ becomes /r/ if stem contains /I/
 - (3) a. * lupanalis
 - b. Iupanaris
- ▶ blocked by intervening /r/
 - (4) a. fulguralis
 - b. * fulguraris
- ▶ Problem for SP: forbidding I··· I for (3a) also rules out (4a)

Locality Domains are Beyond SP

- ▶ There is also a problem with the SP account of UTP.
- ▶ *H···L···H bans any L between H, no matter what.
- But tone processes are known to also apply across words.
- Unless we limit representations to single words,
 *H···L···H overapplies.
- (5) a. *LHLLLHLL b. LHL\$LHLL
- ► The word boundary \$ should block tone plateauing, but blocking effects are not SP.

SP + Locality = IBSP

- ▶ The central problem of SP is the lack of locality domains.
- ▶ Danger: arbitrary domains push SP to DBSP ⇒ too powerful (Graf 2017)
- Restricted version: SP limited to specific intervals

Interval-Based Strictly Piecewise (IBSP)

- 1 Finite list of forbidden subsequences
- 2 Application domain, encoded as k-val

- ► Forbidden subsequence: *HLH
- ► Locality domain:
 - spans between two \$,
 - ▶ and no other \$ occurs between them.
- Represented as a 3-val:

- ► Forbidden subsequence: *HLH
- ► Locality domain:
 - spans between two \$,
 - ▶ and no other \$ occurs between them.
- Represented as a 3-val:

- ► Forbidden subsequence: *HLH
- ► Locality domain:
 - spans between two \$,
 - ▶ and no other \$ occurs between them.
- Represented as a 3-val:

- ► Forbidden subsequence: *HLH
- ► Locality domain:
 - spans between two \$,
 - ▶ and no other \$ occurs between them.
- Represented as a 3-val:

- ► Forbidden subsequence: *HLH
- ► Locality domain:
 - spans between two \$,
 - ▶ and no other \$ occurs between them.
- Represented as a 3-val:

Restricting *HLH with the k-Val

*HLH applies only to segments in a matching interval

▶ If both H are in different words, the 3-val cannot match.

\$LHLL\$HLL\$

Restricting *HLH with the k-Val

▶ *HLH applies only to segments in a matching interval

Restricting *HLH with the k-Val

▶ *HLH applies only to segments in a matching interval

Restricting *HLH with the k-Val

▶ *HLH applies only to segments in a matching interval

Restricting *HLH with the k-Val

▶ *HLH applies only to segments in a matching interval

Restricting *HLH with the k-Val

▶ *HLH applies only to segments in a matching interval

Restricting *HLH with the k-Val

*HLH applies only to segments in a matching interval

Restricting *HLH with the k-Val

▶ *HLH applies only to segments in a matching interval

Restricting *HLH with the k-Val

▶ *HLH applies only to segments in a matching interval

Restricting *HLH with the k-Val

▶ *HLH applies only to segments in a matching interval

Restricting *HLH with the k-Val

*HLH applies only to segments in a matching interval

▶ If both H are in different words, the 3-val cannot match.

\$ L H L L \$ H L L \$

Restricting *HLH with the k-Val

*HLH applies only to segments in a matching interval

Restricting *HLH with the k-Val

▶ *HLH applies only to segments in a matching interval

Restricting *HLH with the k-Val

▶ *HLH applies only to segments in a matching interval

- A simple constraint: *I
- ▶ With a peculiar domain:

*\$lupanalis\$

- A simple constraint: *I
- ► With a peculiar domain:

* \$ I u p a n a l i s \$

- A simple constraint: *I
- ► With a peculiar domain:

* \$ lupanalis\$

- A simple constraint: *I
- ▶ With a peculiar domain:

* \$ Tupanalis\$

- A simple constraint: *I
- ► With a peculiar domain:

* \$ lupanalis\$

- ► A simple constraint: *I
- ► With a peculiar domain:

* \$ Iupanalis\$

\$fulguralis\$

- A simple constraint: *I
- ▶ With a peculiar domain:

- A simple constraint: *I
- ► With a peculiar domain:

- A simple constraint: *I
- ► With a peculiar domain:

- A simple constraint: *I
- ► With a peculiar domain:

- A simple constraint: *I
- ► With a peculiar domain:

- A simple constraint: *I
- ► With a peculiar domain:

- Local constraints are IBSP conditions without fillers.
- Example: intervocalic voicing
 - Forbidden: [-voiced]
 - ▶ **Domain:** between vowels, with no fillers

*\$coge\$kipan\$

- Local constraints are IBSP conditions without fillers.
- Example: intervocalic voicing
 - Forbidden: [-voiced]
 - ► **Domain:** between vowels, with no fillers

* \$ coge \$ k i pan \$

- Local constraints are IBSP conditions without fillers.
- Example: intervocalic voicing
 - Forbidden: [-voiced]
 - ► **Domain:** between vowels, with no fillers

*\$coge\$kipan\$

- ▶ Local constraints are IBSP conditions without fillers.
- Example: intervocalic voicing
 - Forbidden: [-voiced]
 - ► **Domain:** between vowels, with no fillers

* \$coge \$kipan\$

- ► Local constraints are IBSP conditions without fillers.
- Example: intervocalic voicing
 - Forbidden: [-voiced]
 - ► **Domain:** between vowels, with no fillers

- ► Local constraints are IBSP conditions without fillers.
- Example: intervocalic voicing
 - Forbidden: [-voiced]
 - ► **Domain:** between vowels, with no fillers

- Local constraints are IBSP conditions without fillers.
- Example: intervocalic voicing
 - Forbidden: [-voiced]
 - ► **Domain:** between vowels, with no fillers

- ► Local constraints are IBSP conditions without fillers.
- Example: intervocalic voicing
 - Forbidden: [-voiced]
 - ► **Domain:** between vowels, with no fillers

P IBSP Non-Local Local c-Command Conclusion

Prediction: Local and Non-Local Do Not Mix

► All *k*-vals follow the same base template:

- ▶ To enforce adjacency, we have to ban all potential fillers.
- But without fillers, we get adjacency across the board!

▶ IBSP Prediction: Local and non-local do not mix.

SP IBSP **Non-Local Local** c-Command Conclusion

Non-Local Local Phenomena Exist!

- ▶ The IBSP prediction is false!
- Some phenomena combine local and non-local information:
 - 1 non-local blocking of local dissimilation (Samala) (Applegate 1972; McMullin 2016)
 - 2 non-final RHOL (Eastern Cheremis, Dongolese Nubian) (Haves 1995; Baek 2017)
 - 3 non-local trigger of ternary spreading (Copperbelt Bemba) (Bickmore and Kula 2013; Jardine 2016)
- ► **Conclusion**: IBSP needs a more fine-grained notion of *k*-val.

- Local Dissimilation in Samala... [sn], [sl], [st] are forbidden...
- 2 ... With Non-Local Blocking ...unless there is another [s] later on in the same word

```
*$ snan?$
$ snetus$
```

SP IBSP **Non-Local Local** c-Command Conclusion

- Local Dissimilation in Samala... [sn], [sl], [st] are forbidden...
- 2 ... With Non-Local Blocking ...unless there is another [s] later on in the same word

```
*n
*|
*+
```

```
* $ s n a n ? $
$ s n e t u s $
```

P IBSP **Non-Local Local** c-Command Conclusion

- **1** Local Dissimilation in Samala... [sn], [sl], [st] are forbidden...
- ... With Non-Local Blocking...unless there is another [s] later on in the same word

P IBSP **Non-Local Local** c-Command Conclusion

- **1** Local Dissimilation in Samala... [sn], [sl], [st] are forbidden...
- ... With Non-Local Blocking...unless there is another [s] later on in the same word

- Local Dissimilation in Samala... [sn], [sl], [st] are forbidden...
- ... With Non-Local Blocking...unless there is another [s] later on in the same word

- Local Dissimilation in Samala... [sn], [sl], [st] are forbidden...
- With Non-Local Blocking...unless there is another [s] later on in the same word

- **1** Local Dissimilation in Samala... [sn], [sl], [st] are forbidden...
- ... With Non-Local Blocking...unless there is another [s] later on in the same word

- **Local Dissimilation in Samala...** [sn], [st] are forbidden...
- With Non-Local Blocking...unless there is another [s] later on in the same word

- **1** Local Dissimilation in Samala... [sn], [sl], [st] are forbidden...
- With Non-Local Blocking...unless there is another [s] later on in the same word

- **1** Local Dissimilation in Samala... [sn], [sl], [st] are forbidden...
- With Non-Local Blocking...unless there is another [s] later on in the same word

- Local Dissimilation in Samala... [sn], [sl], [st] are forbidden...
- ... With Non-Local Blocking...unless there is another [s] later on in the same word

- Local Dissimilation in Samala... [sn], [sl], [st] are forbidden...
- ... With Non-Local Blocking...unless there is another [s] later on in the same word

- **1** Local Dissimilation in Samala... [sn], [sl], [st] are forbidden...
- 2 ... With Non-Local Blocking...unless there is another [s] later on in the same word

- Local Dissimilation in Samala... [sn], [sl], [st] are forbidden...
- ... With Non-Local Blocking...unless there is another [s] later on in the same word

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

$$\begin{array}{c} *\acute{X}HX\\ *X\acute{L}X\\ *XX\acute{X} \end{array}$$

$$(X \in \{H,L\})$$

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

* \$ L L H H H S \$ I I H H H S

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

* \$ L L H H H S \$ I I H H H S

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

\$ 1 1 H H H \$

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

\$ L L H H H S

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

\$ L L H H H \$ \$ L L H H H H \$

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

\$ L L H H H S \$ I I H H H S

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

\$ L L H H

\$ L L H H H S

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- 1 Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

- Stress the rightmost non-final heavy syllable, if it exists.
- 2 Otherwise, stress the leftmost (=first) syllable.

SP IBSP **Non-Local Local** c-Command Conclusion

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- 2 ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

```
* $ H L L L L L H $

* $ H h L L L L H $

* $ H h h h h L H $

* $ H h h L L L H $
```

P IBSP **Non-Local Local** c-Command Conclusio

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- 2 ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

```
*LXX
*XLX
*hhh
(X \in \{H,L,h\})
```

```
* $ H L L L L L H $

* $ H h L L L L H $

* $ H h h L L L H $

* $ H h h L h L H $
```

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- 2 ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- 2 ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

* \$ H L L L L L H \$

Unbounded Tone Spreading in Copper Belt Bemba...
H spreads all the way to the right edge,...

none

... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- 2 ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

H h h I I I H \$

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- 2 ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- 2 ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- 2 ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- 2 ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- 2 ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- 2 ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- 2 ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- 2 ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- ... With a Non-Local Inhibitor...but only 2 syllables if there is an H later on.

- Unbounded Tone Spreading in Copper Belt Bemba...
 H spreads all the way to the right edge,...
- ... With a Non-Local Inhibitor ...but only 2 syllables if there is an H later on.

SP IBSP Non-Local Local **c-Command** Conclusion

Danger, Will Robinson! Overgeneration!

- ► IBSP needs more fine-grained intervals.
- ▶ But this easily leads to typological overgeneration.

SP IBSP Non-Local Local **c-Command** Conclusion

Danger, Will Robinson! Overgeneration!

- ► IBSP needs more fine-grained intervals.
- ▶ But this easily leads to typological overgeneration.

```
*sʃ
*ʃs
```

Danger, Will Robinson! Overgeneration!

- ▶ IBSP needs more fine-grained intervals.
- ▶ But this easily leads to typological overgeneration.

P IBSP Non-Local Local **c-Command** Conclusion

Danger, Will Robinson! Overgeneration!

- ► IBSP needs more fine-grained intervals.
- ▶ But this easily leads to typological overgeneration.

This produces First-Last harmony (FLH), which is unattested. P IBSP Non-Local Local **c-Command** Conclusion

Proposal: k-Vals Must be c-Command-Like

- What separates FLH from the attested cases?
- ▶ k-val for FLH relaxes locality, then tightens it again (local + non-local + local)
- Attested cases are of the form
 - ► local + non-local, or
 - ▶ non-local + local
- This is similar to c-command.

c-Command as Local + Non-Local

x c-commands y (in a strictly binary branching tree) iff local x has a sister z, and non-local z reflexively dominates y. P IBSP Non-Local Local **c-Command** Conclusio

Deepening the Connnection: Monotonicity

Ban On Improper Locality

Within a k-val, the degree of locality must be

- monotonically increasing, or
- monotonically decreasing.
- Monotonicity in syntax
 - ► Subcategorization < A-Move < A'-Move
 - Once you've undergone a higher operation, you can't participate in lower ones anymore.
- Monotonicity in morphology
 - *ABA follows from monotonicity.
- Monotonicity in semantics
 - Everywhere. . .

SP IBSP Non-Local Local c-Command Conclusion

Summary

- ► SP bans subsequences ⇒ no locality at all
- ▶ Adding locality domains to SP greatly increases its power.
- ▶ But IBSP with simple k-vals is still too weak.
- Adding c-command-like locality domains
 - grants enough expressivity
 - while avoiding overgeneration.

Main Predictions

- *local + non-local + local (*LNL)
 No unbounded dependency between local "clusters"
- *non-local + local + non-local (*NLN) No local "cluster" within interval dependency

Next Steps

- Test the predictions against the full typology.
 *NC···NC (Blust 2012; thanks to Adam Jardine)
- 2 Explore the syntax column.
- 3 Go beyond monotonicity in deriving the limitation.

References I

- Applegate, Richard B. 1972. *Ineseño Chumash grammar*. Doctoral Dissertation, University of California, Berkeley.
- Baek, Hyunah. 2017. Computational representation of unbounded stress: Tiers with structural features. Ms., Stony Brook University; to appear in *Proceedings of CLS* 53.
- Bickmore, Lee S., and Nancy C. Kula. 2013. Ternary spreading and the OCP in Copperbelt Bemba. *Studies in African Linguistics* 42.
- Blust, Robert. 2012. One mark per word? some patterns of dissimilation in Austronesian and Australian languages. *Phonology* 29:355–381.
- Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral Dissertation, University of Delaware. URL http://udspace.udel.edu/handle/19716/13374.
- Graf, Thomas. 2017. The power of locality domains in phonology. *Phonology* 34:1–21. URL https://dx.doi.org/10.1017/S0952675717000197, in press.
- Hayes, Bruce. 1995. Metrical stress theory. Chicago: Chicago University Press.
- Heinz, Jeffrey. 2009. On the role of locality in learning stress patterns. *Phonology* 26:303–351. URL https://doi.org/10.1017/S0952675709990145.
- Heinz, Jeffrey. 2010. Learning long-distance phonotactics. *Linguistic Inquiry* 41:623-661. URL http://dx.doi.org/10.1162/LING_a_00015.

References II

- Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local constraints in phonology. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics*, 58–64. URL http://www.aclweb.org/anthology/P11-2011.
- Hyman, Larry. 2011. Tone: Is it different? In *The blackwell handbook of phonological theory*, ed. John A. Godlsmith, Jason Riggle, and Alan C. L. Yu, 197–238. Wiley.
- Jardine, Adam. 2016. Computationally, tone is different. Phonology 33:247–283. URL https://doi.org/10.1017/S0952675716000129.
- McMullin, Kevin. 2016. *Tier-based locality in long-distance phonotactics: Learnability and typology*. Doctoral Dissertation, Uniersity of British Columbia.
- Stanton, Juliet. 2016. Latin -alis/-aris and segmental blocking in dissimilation. Ms., MIT.