The computational cost of generalizations: *An example from micromorphology*

Sedigheh Moradi, Alëna Aksënova and Thomas Graf Stony Brook University

Abstract

Morphotactics has been argued to be limited to the formal class of tier-based strictly local languages [1]. We claim that the level of the complexity of a pattern largely depends on the way it is morphologically analyzed. Using an example from adjectival inflection in Noon (Niger-Congo), we show that the complexity of this pattern falls in two different classes in the subregular hierarchy if viewed from different perspectives. The traditional segmentation of Noon affixes [8] yields a 3-TSL grammar, while the same pattern is 3-SSTSL under the perspective of micromorphology [9]. Both grammars require a locality window of 3 segments; however, the micromorphology-based analysis shows an increase in formal complexity, although it reduces the grammar size by defining complex affixes in terms of simpler ones.

Subregular Languages

The formal class of regular languages can be decomposed in smaller subclasses that together form the *subregular hierarchy* [7, 5, i.a.].

Strictly Local

Strictly local (SL) languages evaluate a string based on the *n*-grams it contains [6]. SL grammars capture local dependencies by blocking or allowing substrings of a certain length. As a result, it is not possible to capture a long-distance dependency with a SL grammar.

SL language

Language L1: ab, abab, ababab, etc. Rules of language L1:

- well-formed words start with a:
- well-formed words end with b:
- the symbols a and b should alternate.

Tier alphabet: $\Sigma = \{a, b\}$ **Negative SL grammar:** $G_{NeqSL} = (* \rtimes b, *aa, *bb, *a\ltimes)$

Tier-based SL

Tier-based strictly local (TSL) languages evaluate strings by looking for allowed or prohibited substrings while evaluating its tier [4]. Only the symbols present in the *tier alphabet* T are projected allowing the representation of long-distance dependencies locally over the tier.

TSL language

Language L2: b, aaab, aaba, baa Rules of language L2:

- *a* might be present or not;
- there must always be a single b.

Tier alphabet: $T = \{b\}$ **Positive TSL grammar:** $G_{PosTSL} = (\rtimes b, b \ltimes)$

^{ok} abaa			*bab				
\Join		b			\ltimes	× b b ⊳	
×	a	b	a	a	ĸ	× b a b ⊳	

Figure 2: Examples of the TSL evaluation

Structure Sensitive TSL

Structure sensitive tier-based strictly local grammars (SS-TSL) allow the projection of items on the tier only if they satisfy certain local condition(s) [3, 2]. SS-TSL languages encode long-distance dependencies that interact with local restrictions.

Figure 3: Examples of the SS-TSL evaluation

Noon Adjective Inflection

The inflectional system of adjectives in Noon is very complex, but we restrict our focus on the attributive prefix and the definite suffix.

Traditional Approach

The Noon attributive prefix and definite suffix are single morphemes regardless of their internal structures [8]. Both of these morphemes express the class of the dependent noun as well.

- (1) waas wi-yak road ATTR-big 'a big road (near you)'
- (2) waas-um wi-yak-um road-DEF ATTR-big-DEF 'the big road (near you)'

In this case, the class markers can appear only in two positions: immediately preceding the prefixal or the suffixal formation. Moreover, the class marker needs to be exactly the same in both positions.

Formal Analysis of Noon Pattern

We assume the length of the stem to be potentially unbounded, and use the marker # in order to indicate the edges of the stem.

Micromorphological Perspective

CM-PF-#-RT-#

(4) Indefinite adjectives (5) Definite adjectives CM-PF-#-RT-#-CM-SF

Contact Information: Department of Linguistics Stony Brook University Stony Brook, NY 11794-4376

Email:

sedigheh.moradi@stonybrook.edu alena.aksenova@stonybrook.edu

Class	Indefinite	Definite
C1	wi-yak	wi-yak-wum
C2	fi-yak	fi-yak-fum

Micromorphology

On the contrary, micromorphology states that a morphological unit may be morphologically complex, i.e. an affix may be a combination of other affixes [9]. According to this approach, the same adjective wiyakwum is segmented as shown in (3). (CM – class markers, PF – prefixal formative, SF - suffixal formative, RT - stem.

(3) w-i-yak-w-um CM-PF-RT-CM-SF 'the big (one)'

Class	Indefinite	Definite
C1	w-i-yak	w-i-yak-w-um
C2	f-i-yak	f-i-yak-f-um

Complexity of Noon pattern:

• Micromorphology: 3-SS-TSL \rightsquigarrow less restrictive \odot ; • **Traditional**: 3-TSL \rightsquigarrow more restrictive \bigcirc .

Noon pattern: 3-SS-TSL analysis

 $T = \{ CM, PF^{after cm}, SF^{after cm}, \# \}$ $G_{SSTSL} = (\rtimes - CM - PF, CM - PF - \#, PF - \#, \# - \# - CM, \# - CM - SF,$ $CM-SF-\ltimes, \#-\#-\ltimes)$

^{ok}CM-PF-#-RT-#-CM-SF \rtimes CM PF # # CM SF \ltimes \rtimes CM PF # RT # CM SF \ltimes

Figure 4: SS-TSL analysis of Noon adjectives

*CM-X-PF-#-RT-# × CM # # × → CM X PF # RT # K

Figure 5: SS-TSL analysis of Noon adjectives [cont.]

Traditional Perspective

Under the traditional perspective, the CM-PF and CM-SF sequences are single morphemes ATTR and DEF, respectively.

(6) Indefinit ATTR-#-

(7) Definite ATTR-#-

Noon pat

 $T = \{ATT\}$ $G_{TSL} = ($

Conclusion

Noon inflectional morphotactic pattern varies in its computational complexity based on how it is analyzed.

We are not discriminating one morphotactic approach over the other. In-

stead, we show that the encoding of the formalism largely affects its computational complexity: it is not always the case that simplifying the way basic elements are represented reduces the overall complexity of the resulting system.

References

[9] Greg Stump. Rule conflation in an inferential-realizational theory of morphotactics. Acta Linguistica Academica, 64(1):79–124, 2017.

e adjectives RT-#
adjectives RT-#-DEF
tern: 3-TSL analysis
[¤-ATTR-#, ATTR-#-#, #-#-⋉, #-#-DEF, #-DEF-⋉)
ok ATTR-#-RT-#-DEF → ATTR # # DEF × → ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Figure 6: TSL analysis of Noon adjectives

• Traditionally, it falls into the subregular class of TSL languages.

• Micromorphologically, the same pattern is computationally more complex, and needs a SS-TSL grammar in order to be captured.

[1] Alëna Aksënova, Thomas Graf, and Sedigheh Moradi. Morphotactics as tier-based strictly local dependencies. In Proceedings of the 14th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology, pages 121–130. Association for Computational Linguistics, 2016.

[2] Aniello De Santo. Extending tsl to account for interactions of local and non-local constraints, 2018. Poster presented at the Society for Computation in Linguistics (SCiL) 2018, Salt Lake City, Utah.

[3] Aniello De Santo and Thomas Graf. Structure sensitive tier projection: Applications and formal properties, 2017. Manuscript. Stony Brook University.

[4] Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner. Tier-based strictly local constraints for phonology. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 58-64, Portland, USA, 2011. Association for Computational Linguistics.

[5] Robert McNaughton and Seymour A. Papert. *Counter-Free Automata (M.I.T. Research* Monograph No. 65). The MIT Press, 1971.

[6] James Rogers and Geoffrey Pullum. Aural pattern recognition experiments and the subregular hierarchy. Journal of Logic, Language and Information, 20:329–342, 2011. [7] Marcel-Paul Schützenberger. On finite monoids having only trivial subgroups. Information and Control, 8:190–194, 1965.

[8] Maria Soukka. A descriptive grammar of Noon: A Cangin language of Senegal. LIN-COM Europa, Munich, 2000.