TOWARDS A FACTORIZATION OF STRING-BASED PHONOLOGY

Abstract. Inspired by the model-theoretic treatment of phonology in Potts & Pul-
lum (2002) and Kracht (2003), we develop an extendable modal logic for the
investigation of string-based phonology. In contrast to previous research in this
vein (Russell 1993, Kaplan & Kay 1994, Mohri & Sproat 1996), we ultimately
strive to study the entire class of such theories rather than merely one particu-
lar incarnation thereof. To this end, we first provide a formalization of classic
Government Phonology in a restricted variant of temporal logic, whose genera-
tive capacity is then subsequently increased by the addition of further operators,
moving us along the subregular hierarchy until we reach the regular stringsets.
We then identify several other axes along which Government Phonology might
be generalized, moving us towards a parametric metatheory of phonology.

Like any other subfield of linguistics, phonology is home to a multitude of competing

theories that differ vastly in their conceptual and technical assumptions. Contentious
issues are, among others, the relation between phonology and phonetics (and if it
is an interesting research question to begin with), if features are privative, binary or
attribute valued, if phonological structures are strings or trees, if features can move
from one position to another (i.e. if they are autosegments), and what role optimal-
ity requirements play in determining well-formedness. Meticulous empirical com-
parisons carried out by linguists have so far failed to yield conclusive results; it seems
that for every phenomenon that lends support to certain assumptions, there is another
one that refutes them. We do not think that this constitutes a problem to phonolog-
ical research. Unless we assume that scientific theories can indeed reflect reality as
it is rather than merely approximate it, it is to be expected that one theory may fail
where another one succeeds and vice versa. A similar situation arises in physics, where
depending on the circumstances light is thought to exhibit particle-like or wave-like
properties.

But given this apparent indeterminacy of theory choice, it is only natural to ask if
we can identify classes of interchangeable theories, i.e. proposals which look different
superficially but are the same in any other respect. On a bigger scale, this requires
developing a metatheory of phonology that uses a finite set of parameters to conclu-
sively determine the equivalence class to which a given phonological theory belongs.
This paper aims to lay the basis for such a metatheory using techniques originating
in model-theoretic syntax (Blackburn & Meyer-Viol 1994, Kracht 1995, Rogers 2003).
We feel obliged to point out in advance that we doubt that a linguistically adequate
formal theory of phonology is attainable. However, we also think that in attempting to
construct such a metatheory, one gains crucial insights into the core claims about lan-
guage that are embodied by different phonological assumptions (e.g. computational
complexity and memory usage) and how one may translate those claims from one
theory into another. Moreover, the explicit logical formalization of linguistic theories
allows us to investigate various problems in an algorithmic way using techniques from
proof theory and model checking. These insights are relevant to linguists and com-
puter scientists alike. Linguists get a better understanding of how their claims relate
to the psychological reality of language, how the different modules of a given theory



interact to yield generalizations and how they increase the expressivity of a theory
(see Potts & Pullum (2002) for such results on optimality theory). To a limited de-
gree, they also get the freedom to switch to a different theory for specific phenomena
without jeopardizing the validity of their framework of choice. Computer scientists,
on the other hand, will find that the model-theoretic perspective on phonology eases
the computational implementation of linguistic proposals and allows them to gauge
their runtime-behavior in advance. Furthermore, they may use the connection be-
tween finite model theory and formal language theory to increase the efficiency of
their programs by picking the weakest phonological theory that is expressive enough
for the task at hand.

This paper is divided into two parts as follows. First, we introduce Government
Phonology as an example of a weak theory of phonology and show how it can be
axiomatized as a theory of richly annotated string structures using modal logic. In the
second part, we analyze several parameters that might have an effect on the gener-
ative capacity of our formalization of GP. We show that increasing the power of the
spreading operation moves us along the subregular hierarchy and that different types
of feature systems have no effect on expressivity in general. We close with a short dis-
cussion of two important areas of future research, the impact of the syllable template
on generative capacity and the relation between derivational and representational
theories.

The reader is expected to have some basic familiarity with formal language theory,
non-classical logics and model-theoretic syntax. There is an abundance of introduc-
tory material for the former two, while the latter is cogently summarized in Rogers
(1996) and Pullum (2007).

1. A Weak Theory of Phonology — Government Phonology
1.1. Informal Overview

Due to space restrictions, we offer but a sketch of the main ideas of Government
Phonology (GP), and the reader is advised to check the exposition against the exam-
ples in figure 1 on the facing page. First, though, a note on our sources is in order.
Just like Government-and-Binding theory, GP has changed a lot since its inception
and practitioners hardly ever fully specify the details of the version of GP they use.
However, there seems to be a consensus that a GP-variant is considered canonical if it
incorporates the following modules: government, the syllable template, coda licens-
ing and the ECP from Kaye, et al. (1990), magic licensing from Kaye (1992), and
licensing constraints and the revised theory of elements from Kaye (2000). Our gen-
eral strategy is to follow the definitions in Kaye (2000) as closely as possible and fill
in any gaps using the relevant literature. The interested reader might also want to
consult Graf (2009) for an in-depth discussion of GP.

In GP, the carrier of all phonological structure is the skeleton, a finite, linearly
ordered sequence of nodes to which phonological expressions (PEs) can be attached
in order to form the melody of the structure. A PE is built from a set E of privative
features called elements, yielding a pair (O,H), O C E a set of operators, H € E U {0}
the head, and H ¢ O. It is an open empirical question how many features are needed
for an adequate account of phonological behavior (Jensen 1994, Harris & Lindsey
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Figure 1: Some phonological structures in GP (with IPA notation)

1995) — Kaye (2000) fixes E := {A,I,U,H,L,?}, but for our axiomatization the only
requirement is for E to be finite. The set of licit PEs is further restricted by language-
specific licensing constraints, i.e. restrictions on the coocurrence of features and their
position in the PE. Some examples of PEs are [s] = ({A,H},0), [n] = ({L,?},A), [ =
(0,0), [1] = ({1},0), [i] = (0,1), and [j] = (8, 1).

As the last two examples show, every PE is inherently underspecified; whether it
is realized as a consonant or a vowel depends on its position in the structure, which
is annotated with constituency information. An expression is realized as a vowel if it
is associated to a node contained by a nucleus (N), but as a consonant if the node is
contained by an onset (O) or a coda (C). Every N constitutes a rhyme (R), with C an
optional subconstituent of R. All O, N and R may branch, that is be associated to up to
two nodes (by transitivity of containment, a branching R cannot contain a branching
N). Furthermore, word initial O can be floated, i.e. be associated to no node at all.
The number of PEs per node is limited to one, with the exception of unary branching
N, where the limit is two (to model light diphthongs).

All phonological structures are obtained from concatenating (O, R) pairs accord-
ing to constraints imposed by two government relations. Constituent government re-
stricts the distribution of elements within a constituent, requiring that the leftmost
PE licenses all other constituent-internal PEs. Transconstituent government enforces
dependencies between the constituents themselves. In particular, every branching O
has to be licensed by the N immediately following it, and every C has to be licensed by
the PE contained in the immediately following O. Even though the precise licensing
conditions are not fully worked out for either government relation, the general hy-
pothesis is that PE; licenses PE; iff PE; is leftmost and contained by N, or leftmost and
composed from at most as many elements as PE; and licenses no PE; # PE; (hence
any C has to be followed by a non-branching O, but a branching O might be followed
by a branching N or R).

GP also features empty categories: a non-coda segment associated solely to the
PE (0,0) can optionally remain unpronounced. For O, this is lexically specified. For
N, on the other hand, it is determined by the phonological ECB which allows only
non-branching p-licensed N to be mapped to the empty string. N is licensed if it is
followed by a coda containing a sibilant (magic licensing), or in certain languages if
it is the rightmost segment of the string (final empty nucleus, abbreviated FEN), or if
it is properly governed (Kaye 1990). N is properly governed if the first N following it
is not p-licensed and no government relations hold between or within any Cs or Os
in-between the two Ns.



Finally, GP allows elements to spread, just as in fully autosegmental theories (Gold-
smith 1976). All elements, though, are assumed to share a single tier, and association
lines are allowed to cross. The properties of spreading have not been explicitly spelled
out in the literature, but it is safe to assume that it can proceed in either direction and
might be optional or obligatory, depending on the element, its position in the string
and the language in question. While there seem to be restrictions on the set of vi-
able targets given a specific source, the only canonical one is a ban against spreading
within a branching O.

1.2. Formalization in Modal Logic

For our formalization, we use a very weak modal logic that can be thought of as the
result of removing the “sometime in the future” and “sometime in the past” modalities
from restricted temporal logic (Cohen, et al. 1993, Etessami, et al. 1997).

Let E be some non-empty finite set of basic elements different from the neutral
element v, which represents the empty set of GP’s feature calculus. We define the
set of elements & := (E x {1,2} x {head,onset} x {local,spread}) U ({v} x {1,2} x
{head, onset} x {local}). The set of melodic features /4 := &U {u, fake,v'} will be
our set of propositional variables. We employ u (mnemonic for mute) and v to mark
unpronounced and licensed segments, respectively, and fake for unassociated onsets.
For the sake of increased readability, the set of propositional variables is “sorted” such
that x € . is represented by m, m € & by e, heads by h, operators by o. The variable
e, is taken to stand for any element such that 7,(e) = n, where 7;(x) returns the i™
projection of x. In rare occasions, we will write e and e for a specific element e in
head and operator position, respectively.

We furthermore use three nullary modalities’, N, O, C, the set of which we desig-
nate by &, read skeleton. In addition, we have two unary diamond operators < and
>, whose respective duals are denoted by « and ». The set of well-formed formulas
is built up in the usual way from .#, &, <, >, — and L.

Our models M := (F, V) are built over bidirectional frames § := (D,R;,R.);co»
where D C N, and R; € D for each i € &, and R is the successor function over N.
The valuation function V : .# — p(D) maps propositional variables to subsets of D.
The definition of satisfaction is standard.

Mw =L never

Mwl=p ifft weV(p)

Mw |=-¢ iff Mwk ¢

Mw =AYy iff MwkEe¢and Mw =y

Mw =N iff weRy
Mw =0 iff weR,
Mw = C iff weR,

MwEad  iff MwtlkEg
Mw => ¢ iff Mw-1F¢

The formalization of the skeleton is straightforward if we model binary branching
constituents as two adjacent unary branching ones and view rhymes as mere nota-

!We follow the terminology of Blackburn, et al. (2002) here. Nullary modalities correspond to
unary relations and can hence be thought of as propositional constants.
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tional devices. Observe that we implement Ns containing diphthongs as single N with
both e; and e, elements associated to it.

S1 Nics (= Nigjesr =) Unique constituency
S2 («L—->0)A(» L—N) Word edges
S3 R— (NVC) Definition of rhyme
S4 N —-<0OV<aN Nucleus placement
S5 O—--<0V=->0 Binary branching onsets
S6 R—-<RV->R Binary branching rhymes
S7 C -><NAD>O Coda placement

GP’s feature calculus is also easy to capture. A propositional formula ¢ over a set
of variables xy,...,x, is called exhaustive iff ¢ := )\, ¥, where for every i, 1),
is either x; or —x;. A PE ¢ is an exhaustive propositional formula over & such that
¢ U {F1,F2,F3,F4,\/ h} is consistent.

F1 A, — /\hn w —h) Exactly one head
F2 -v — A\(h, — /\nl(h):nl(o) -0,) No basic element (except v) twice
F3 V- /\O 4 0 v excludes other operators
F4 Nes = \/ hy A\ oy) Pseudo branching implies first branch

Let PH be the least set containing all such ¢, and let lic : PH — p(PH) map every ¢ to
its set of melodic licensors. By S € PH we designate the set of PEs occurring in magic
licensing configurations (the letter S is mnemonic for “sibilants”). The following five
axioms, then, sufficiently restrict the melody.

M1 Nicy (i = (VR AV 0y) VuV fake) Universal annotation
M2 ((Ov <NV 1>N)— A —e,) No pseudo branching for O, C & branching N
M3 OA <10 = A yep(@ = Vyeiieryy < %) Licensing within branching onsets

M4 CANies ™1 =< A Nyp(@ = Vyeiiersy > %) Melodic coda licensing

M5 fake - O A /\m;éfake -m Fake onsets

Remember that GP allows languages to impose further restrictions on the melody
by recourse to licensing constraints. It is easy to see that licensing constraints operat-
ing on single PEs can be captured by propositional formulas. The licensing constraint
“A must be head”, for instance, corresponds to the propositional formula —A. Licens-
ing constraints that extend beyond a single segment can be modeled using < and >,
provided their domain of application is finitely bounded. See Graf (2009) and the
discussion on spreading below for further details.

As mentioned above, we use u to mark “mute” segments that will be realized as the
empty string. The distribution of u is simple for O and C — the former always allows
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it, the latter never does. For N, we first need to distribute v" in a principled manner
across the string to mark the licensed nuclei, which may remain unpronounced. Note
that v AV by itself does not designate unpronounced segments (remember the PE for
[0]), and that unpronounced segments may not contain any other elements (which
would affect spreading).

L1 u—="CAN—->V)AVAY Empty categories

L2 NA<N — (u—<u) Licensing of branching nuclei

L3 OAN<O = <uUA—uUA-D> U Licensing of branching onsets

L4 NAV <> (CA\,DV(m<NA» L)V P-licensing
Magic Licensing FEN

g(ﬂ<1N—><1 (KNVA«L)A(n>N —->> (N/\—'M))l

Proper Government

Axiom L4 looks daunting at first, but it is easy to unravel. The magic licensing condi-
tions tells us that N is licensed if it is followed by a sibilant in coda position.? The FEN
condition ensures that wordfinal N are licensed if they are non-branching. The proper
government condition is the most complex one, though it is actually simpler than the
original GP definition. Remember that N is properly governed if the first N following
it is pronounced and neither of the two licenses a branching onset. Also keep in mind
that we treat a binary branching constituent as two adjacent unary branching con-
stituents. The proper government condition then enforces a structural requirement
such that N (or the first N is we are talking about two adjacent N) may not be pre-
ceded by two constituents that are not N and (the second N) may not be followed by
two constituents that are not N or not pronounced. Given axioms S1-S7, this gives
the same results as the original constraint.

The last module, spreading, is also the most difficult to accommodate. Most prop-
erties of spreading are language specific — only the set of spreadable features and
the ban against onset internal spreading are universal. To capture this variability, we
define a general spreading scheme o with six parameters i, j, w, ™, min and max.

o= /\ﬂl(i):“1(j)(i Aw = \/mininﬁmwf On(] A (79) A (O A OO - \/min-i—lSnSmax <>n(] A (T))))

The variables i, j € &, coupled with judicious use of the formulas w and m regulate
the optionality of spreading. If spreading is optional, i is a spread element and w,
o are formulas describing, respectively, the structural configuration of the target of
spreading and the set of licit sources for spreading operations to said target. If spread-
ing is mandatory, then i is a local element and w, m describe the source and the set
of targets. If we want spreading to be mandatory in only those cases where a target is
actually available, w has to contain the subformula \/min <n<max O"m. Observe more-
over that we need to make sure that every structural configuration is covered by some
w, so that unwanted spreading can be blocked by making o not satisfiable. As fur-
ther parameters, the finite values min, max > 0 encode the minimum and maximum

2Note that we can easily restrict the context, if this appears to be necessary for empirical reasons.
Strengthening the condition to > (C A \/ieS i)A <« L, for example, restricts magic licensing to the N
occupying the second position in the string.



distance of spreading, respectively. Finally, the operator ¢ € {<, >} fixes the direction
of spreading for the entire formula (¢" is the n-fold iteration of ¢{). With optional
spreading, the direction of the operator is opposite to the direction of spreading, oth-
erwise they are identical.

As the astute reader has probably noticed by now, nothing in our logic prevents us
from defining alternative versions of GP. Whether this is a welcome state of affairs is
a matter of perspective. On the one hand, the flexibility of our logic ensures its appli-
cability to a wide range of different variants of GP, e.g. to versions where spreading
is allowed within onsets or where the details of proper government and the restric-
tions on branching vary. On the other hand, it begs the question if there isn’t an even
weaker modal logic that is still expressive enough to formalize GP. The basic feature
calculus of GP already requires the logical symbols = and A, giving us the complete
set of logical connectives, and we need < and > to move us along the phonological
string. Hence, imposing any further syntactic restrictions on formulas requires ad-
vanced technical concepts such as the number of quantifier alternations. However,
we doubt that such a move would have interesting ramifications given our goals;
we do not strive to find the logic that provides the best fit for a specific theory but
to study entire classes of string-based phonological theories from a model-theoretic
perspective. In the next section, we try to get closer to this goal.

2. The Parameters of Phonological Theories
2.1. Elaborate Spreading — Increasing the Generative Capacity

It is easy to see that our logic is powerful enough to account for all finitely bounded
phonological phenomena (note that this does not imply that GP itself can account
for all of them, since certain phenomena might be ruled out by, say, the syllable
template or the ECP). In fact, it is even possible to accommodate many long-distance
phenomena in a straight-forward way, provided that they can be reinterpreted as
arising from iterated application of finitely bounded processes or conditions. Consider
for example a stress rule for language L that assigns primary stress to the last syllable
that is preceded by an even number of syllables. Assume furthermore that secondary
stress in L is trochaic, that is to say it falls on every odd syllable but the last one. Let
1 and 2 stand for primary and secondary stress, respectively. Unstressed syllables are
assigned the feature 0. Then the following formula will ensure the correct assignment
of primary stress (for the sake of simplicity, we assume that every node in the string
represents a syllable; it is an easy but unenlightening exercise to rewrite the formula
for our GP syllable template).

\V in N\ G- -)DA(«L—=1V2)A(2->0)A
i€{0,1,2} i#je{0,1,2}
O->AV2)Ve IH)A(1l->=-<1IA(»Lv>r 1))

Other seemingly unbounded phenomena arising from iteration of local processes,
most importantly vowel harmony (see Charette & Goksel (1996) for a GP analysis),
can be captured in a similar way. However, there are several unbounded phonolog-
ical phenomena that require increased expressivity (see Graf (2009) for details). As
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we are only concerned with string structures, it is a natural move to try to enhance
our language with operators from more powerful string logics, in particular, linear
temporal logic.

The first step is the addition of two operators < and >" with the corresponding
relation RY, the transitive closure of R,. This new logic is exactly as powerful as re-
stricted temporal logic (Cohen et al. 1993), which in turn has been shown in Etessami
et al. (1997) to exactly match the expressivity of the two-variable fragment of first-
order logic (see Weil (2004) for further equivalence results). Among other things,
OCP effects (Leben 1973, Goldsmith 1976) can now be captured in an elegant way:.
The formula OAAAL A? -+ ~(0 AAA D), for example, disallows alveolar nasals to
be followed by another alveolar stop, no matter how far the two are apart.

But <" and > are too coarse for faithful renditions of unbounded spreading.
For example, it is not possible to define all intervals of arbitrary size within which a
certain condition has to hold (e.g. no b may appear between a and c). As a remedy,
we add the until and since operators U and S familiar from linear temporal logic,
granting us the power of full first-order logic. This enables us to define all star-free
languages (McNaughton & Pappert 1971, Thomas 1979, Cohen 1991, Cohen et al.
1993). These feature a plethora of properties that make them very attractive for
purposes of natural language processing. Moreover, the only phenomenon known
to the author that exceeds their confines is stress assignment in Cairene Arabic and
Creek, which basically works like the stress assignment system outlined above — with
the one exception that secondary stress is not marked overtly (Mitchell 1960, Haas
1977). Under these conditions, assigning primary stress involves counting modulo
2, which is undefinable in first-order logic, whence a more powerful logic is needed.
The next step up from the star-free stringsets are the regular languages, which can
count modulo n. From previous research, we know that the regular stringsets are
identical to the set of finite strings definable in monadic second order logic (MSO)
(Biichi 1960), linear temporal logic with modal fixed point operators (Vardi 1988)
or regular linear temporal logic (Leucker & Sanchez 2005). In linguistic terms, this
corresponds to spreading being capable of picking its target based on more elaborate
patterns.

A caveat is in order, though. Thatcher (1967) proved that every recognizable set
is a projection of some local set. Thus the hierarchy outlined above collapses if we
grant ourselves an arbitrary number of additional features to encode all the structural
properties our logic cannot express. In the case of primary stress in Cairene Arabic and
Creek, for instance, we could just use the feature for secondary stress assignment even
though secondary stress seems to be absent in these languages. Generally speaking,
we can reinterpret any unbounded dependency as a result of iterated local processes
by using “invisible” features. Therefore, all claims about generative capacity hold only
under the proviso that all such spurious coding-features are being eschewed.

We have just seen that the power of GP can be extended along the subregular
hierarchy, up to the power of regular languages, and that there seems to be empir-
ical motivation to do so. Interestingly, it has been observed that SPE yields regular
languages, too (Johnson 1972, Kaplan & Kay 1994). But even the most powerful ren-
dition of GP defines only a proper subset of the stringsets derivable in SPE, apparently
due to its restrictions on the feature system, the syllable template and its government



requirements. The question we face, then, is whether we can generalize GP in these
regards, too, to push it to the full power of SPE and obtain a multidimensional vector
space of phonological theories.

2.2. Feature Systems

The restriction to privative features is immaterial. A set of PEs is denoted by some
propositional formula over &, and the boolean closure of & is isomorphic to p(&).
But Keenan (2008, 81-109) shows that a binary feature system using a set of fea-
tures & can be modeled by the powerset algebra (%), too. So if |& = |Z], then
(&) = p(Z), whence the two feature systems are isomorphic. The same result holds
for systems using more than two feature values, provided their number is finitely
bounded, since multivalued features can be replaced by a collection of binary valued
features given sufficient co-occurrence restrictions on feature values (which can easily
be formalized in propositional logic).

One might argue, though, that the core restriction of privative feature systems
does not arise from the feature system itself but from the methodological principle
that absent features, i.e. negative feature values, behave like constituency informa-
tion and cannot spread. In general, though, this is not a substantial restriction either,
as for every privative feature system & we can easily design a privative feature sys-
tem F = {e",e” | e € &} such that M,w |= e* iff M,w = e and M, w |= e iff
M, w = —e. Crucially, though, this does not entail that the methodological principle
described above has no impact on expressivity when the set of features is fixed across
all theories, which is an interesting issue for future research.

2.3. Syllable Template

While GP’s syllable template could in principle be generalized to arbitrary numbers
and sizes of constituents, a look at competing theories such as SPE and Strict CV
(Lowenstamm 1996, Scheer 2004) shows that the number of different constituents is
already more than sufficient. This is hardly surprising, because GP’s syllable template
is modeled after the canonical syllable template, which in general is thought not to be
in need of further refinement. Consequently, we only need to lift the restriction on the
branching factor and allow theories not to use all three constituent types. SPE then
operates with a single N constituent of unbounded size, whereas Strict CV uses N and
O constituents of size 1. Regarding the government relations, the idea is to let every
theory fix the branching factor b for each constituent and the maximum number [ of
licensees per head. Every node within some constituent has to be constituent licensed
by the head, i.e. the leftmost node of said constituent. Similarly, all nodes in a coda or
non-head position have to be transconstituent licensed by the head of the following
constituent. For every head the number of constituent licensees and transconstituent
licensees, taken together, may not exceed [.

Even from this basic sketch it should already be clear that the syllable template
can have a negative impact on expressivity, but only under the right conditions. For
instance, if our feature system is set up in a way such that every symbol of our alpha-
bet is to be represented by a PE in N (as happens to be the case for SPE), restrictions
on b and [ are without effect. Thus one of the next stages in this project will revolve



around determining under which conditions the syllable template has a monotonic
effect on generative capacity.

2.4. Representations versus Derivations

One of the most striking differences between phonological theories is the distinction
between representational and derivational ones, which begs the question how we can
ensure comparability between these two classes. Representational theories are nat-
urally captured by our declarative, model-theoretic approach, whereas derivational
theories are usually formalized as regular relations (Kaplan & Kay 1994, Mohri &
Sproat 1996), which resist being recast in logical terms due to their closure prop-
erties. For SPE, one can use a coding trick from two-level phonology (Koskenniemi
1983) and use an unpronounced feature like u to ensure that all derivationally re-
lated strings have the same length. SPE can be then be interpreted as language over
pairs and hence cast in MSO terms, which was successfully done by Vaillette (2003).
Unfortunately, it is unclear how this method could be extended to subregular gram-
mars. At the same time, no other open issue is of greater importance to the success of
this project.

3. Conclusion

The purpose of this paper was to lay the foundation for a general framework in which
string-based phonological theories can be matched against each other. We started
with a modal logic which despite its restrictions was still perfectly capable of defining
a rather advanced and intricate phonological theory. We then tried to generalize
the theory along several axes, some of which readily lent themselves to conclusive
results while others didn’t. We saw that the power of spreading, by virtue of being an
indicator of the necessary power of the description language, has an immediate and
monotonic effect on generative capacity. Feature systems, on the other hand, were
shown to be a negligible factor in theory comparisons; it remains an open question if
the privativity assumption might affect generative capacity when the set of features is
fixed. A detailled study of the effects of the syllable template also had to be deferred
to later work. The most pressing issue in our opinion, though, is the translation from
representational to derivational theories. Not only will it enable us to reconcile two
supposedly orthogonal perspectives on phonology, but it also allows us to harvest
results on finite-state OT (Frank & Satta 1998) to extend the framework to optimality
theory. Even though a lot of work remains to be done and not all of our goals may
turn out be achievable, we are confident that a model-theoretic approach provides an
interesting new perspective on long-standing issues in phonology.
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