
Reference-Set Constraints as Linear Tree
Transductions via Controlled Optimality Systems

Thomas Graf

Department of Linguistics
University of California, Los Angeles

tgraf@ucla.edu
http://tgraf.bol.ucla.edu

Abstract. Reference-set constraints are a special class of constraints
used in Minimalist syntax. They extend the notion of well-formedness
beyond the level of single trees: When presented with some phrase struc-
ture tree, they compute its set of competing output candidates and deter-
mine the optimal output(s) according to some economy metric. Doubts
have frequently been raised in the literature whether such constraints
are computationally tractable [4]. I define a subclass of Optimality Sys-
tems (OSs) that is sufficiently powerful to accommodate a wide range of
reference-set constraints and show that these OSs are globally optimal
[5], a prerequisite for them being computable by linear tree transducers.
As regular and linear context-free tree languages are closed under linear
tree transductions, this marks an important step towards showing that
the expressivity of various syntactic formalisms is not increased by adding
reference-set constraints. In the second half of the paper, I demonstrate
the feasibility of the OS-approach by exhibiting an efficiently computable
OS for a prominent reference-set constraint, Focus Economy [10].

Key words: Optimality Systems, Tree Transducers, Reference-Set Con-
straints, Transderivationality, Modeling

Introduction

Out of all the items in a syntactician’s toolbox, reference-set constraints are
probably the most peculiar one. When handed some syntactic tree, a reference-
set constraint does not determine its well-formedness from inspection of the tree
itself. Instead, it constructs a reference set — a set containing a number of trees
competing against each other — and chooses the optimal candidate from said
set.

Consider Fewest Steps [1]. The reference set that this constraint constructs
for any given tree t consists of t itself and all the trees that were assembled from
the same lexical items as t. All the trees in the reference set are then ranked
by the number of movement steps that occurred during their assembly (this is
usually identical to the number of traces they contain), and the tree(s) with the
fewest instances of movement is (are) chosen as the winner. All other trees are
flagged as ungrammatical, including t if it did not emerge as a winner.



2

Another reference-set constraint is Focus Economy [10], which accounts for
the empirical fact that neutral stress is compatible with more discourse situations
than shifted stress. Take a look at the utterances in (1), where main stress
is indicated by bold face. Example (1a) can serve as an answer to various
questions, among others “What’s going on?” and “What did your neighbor buy?”.
Yet the virtually identical (1b), in which the main stress falls on the subject
rather than the object, is compatible only with the question “Who bought a
book?”. These contrasts indicate a difference as to which constituents may be
focused, i.e. can be interpreted as providing new information.

(1) a. My neighbor bought a book.
b. My neighbor bought a book.

Focus Economy derives the relevant contrast by stipulating that first, any con-
stituent containing the node carrying the sentential main stress can be focused,
and second, in a tree in which stress was shifted from the neutral position, a
constituent may be focused only if it cannot be focused in the original tree with
unshifted stress. In (1a), the object, the VP and the entire sentence can be fo-
cused, since these are the constituents containing the main stress carrier. In (1b),
the main stress is contained by the subject and the entire sentence, however, only
the former may be focused because focusing of the the latter is already a licit
option in the neutral stress counterpart (1a).

This esoteric behavior of reference-set constraints coupled with a distinct lack
of formal work on their properties has led to various conjectures that they are
computationally intractable [4]. In this paper, I refute these claims by showing
how reference-set constraints can be emulated by a new variant of Optimality
Systems (OSs), and I contend that this route paves the way for reference-set con-
straints to be implemented as finite-state devices; linear bottom-up tree trans-
ducers (lbutts), to be precise. Lbutts are of interest for theoretical as well as
practical purposes because both regular and linear context-free tree languages
are known to be closed under linear transductions, so applying a linear transducer
to a regular/linear context-free tree language yields a regular/linear context-free
tree language again. On a theoretical level, this provides us with new insights
into the nature of reference-set constraints, while on a practical level, it ensures
that adding reference-set constraints to a grammar does not jeopardize its com-
putability. I support my claim by exhibiting a formal model of Focus Economy
as an lbutt. My results shed new light on reference-set computation as well as
on Optimality Systems and should be of interest to readers from various formal
backgrounds, foremost computational phonology and Minimalist grammars.

The paper is laid out as follows: After the preliminaries section, which due
to space restrictions has to be shorter than is befitting, I give a brief introduc-
tion to OSs before introducing my own variant, controlled OSs, in Sec. 3. The
mathematical core results of this section are a new characterization of the im-
portant property of global optimality and a simplification of Jäger’s theorem [5]
regarding the properties of an OS that jointly ensure that it does not exceed the
power of linear tree transducers. In the last section, I show how to model Focus
Economy as such a restricted OS.



3

1 Preliminaries and Notation

Let me introduce some notational conventions first. Given a relation R, its do-
main is denoted by dom(R), its range by ran(R). For any a ∈ dom(R), we let
aR := {b | 〈a, b〉 ∈ R}, unless R is a function, in which case aR = R(a). The
composition of two relations R and S is R ◦ S := {〈a, c〉 | 〈a, b〉 ∈ R, 〈b, c〉 ∈ S}.
The diagonal of some set A is id(A) := {〈a, a〉 | a ∈ A}.

Tree languages and tree transductions form an integral part of this pa-
per, however, the technical machinery is mostly hidden behind the optimality-
theoretic front-end so that only a cursory familiarity with the subject matter
is required. Nevertheless the reader is advised to consult [3] and [7] for further
details. I also assume that the reader is knowledgeable about string languages
and generalized sequential machines.

Definition 1. A context-free tree grammar (CFTG) is defined to be a 4-tuple
G := 〈Σ,F, S,∆〉, where Σ and F are disjoint, finite, ranked alphabets of termi-
nals and non-terminals, respectively, and S ∈ F is the start symbol. Furthermore,
∆ is a finite set of productions of the form F (x1, . . . , xn) → t, where F is of
rank n, and t is a tree with the node labels drawn from Σ ∪ F ∪ {x1, . . . , xn}.

A production is linear if each variable in its left-hand side occurs at most once in
its right-hand side. A CFTG is linear if each production is linear. A CFTG is a
regular tree grammar (RTG) if all non-terminals are of rank 0. A tree language
is regular iff it is generated by an RTG, and every regular tree language has a
context-free language as its string yield.

Definition 2. A bottom-up tree transducer is a 5-tuple A := 〈Σ,Ω,Q,Q′, ∆〉,
where Σ and Ω are finite ranked alphabets, Q is a finite set of states, and
Q′ ⊆ Q the set of final states. By ∆ we denote a set of productions of the form
f(q1(x1), . . . , qn(xn))→ q(t(x1, . . . , xn)), where f ∈ Σ is of rank n, q1, . . . , qn, q ∈
Q, and t(x1, . . . , xn) is a tree with the node labels drawn from Ω ∪ {x1, . . . , xn}.

Definition 3. A top-down tree transducer is 5-tuple A := 〈Σ,Ω,Q,Q′, ∆〉,
where Σ, Ω and Q are as before, Q′ ⊆ Q is the set of initial states, and all produc-
tions in ∆ are of the form q(f(x1, . . . , xn))→ t, where f ∈ Σ is of rank n, q ∈ Q
and t is a tree with the node labels drawn from Ω∪{q(x) | q ∈ Q, x ∈ {x1, . . . , xn}}.

As with CFTGs, a production is linear if each variable in its left-hand side occurs
at most once in its right-hand side. A transducer is linear if each production is
linear. I denote a linear bottom-up/top-down tree transducer by lbutt/ltdtt.
The class of ltdtts is properly contained in the class of lbutts, which in turn
is closed under union and composition. The domain and the range of an lbutt
are both recognizable, i.e. regular tree languages. The relation τ induced by a
(linear) tree transducer is called a (linear) tree transduction. For a bottom-up
tree transducer, the graph of τ consists of pairs 〈s, t〉 such that s and t are Σ-
and Ω-labeled trees, respectively, and for some q ∈ Q′, q(t) can be obtained from
s by finitely many applications of productions δ ∈ ∆. The definition is almost
unchanged for top-down tree transducers, except that we require that t can be



4

obtained from q(s). In a slight abuse of terminology, I call a relation rational
iff it is a finite-state string transduction or a linear tree transduction. For any
recognizable tree language L, id(A) is a rational relation. Furthermore, both
regular string/tree languages and linear context-free tree languages are closed
under rational relations.

In Sec. 4.2, I make good use of L2
K,P [11], an incarnation of monadic second-

order logic (MSO) specifically designed for linguistic purposes. MSO is the ex-
tension of first-order logic with monadic second-order variables and predicates
as well as quantification over them such that the first-order variables represent
nodes in the tree and the second-order variables and predicates sets of nodes. A
set of finite strings/trees is definable in MSO iff it is regular. Specifics of L2

K,P

will be briefly introduced in the relevant section. See [11] for further background.

2 Traditional Perspective on Optimality Systems

OSs were introduced independently by [2] and [6] as a formalization of Opti-
mality Theory (OT). In OT, well-formed expressions are no longer derived from
underlying representations through iterated applications of string rewrite rules,
as was the case with SPE. Instead, underlying representations — which are usu-
ally referred to as inputs — are assigned a set of output candidates by a relation
called generator, abbreviated Gen. This set is subsequently narrowed down by
a sequence of constraints c1, . . . , cn until only the optimal output candidates
remain. This narrowing-down process proceeds in a fashion such that only the
candidates that incurred the least number of violations of constraint ci are taken
into account for the evaluation of ci+1. Thus every constraint acts as a (violable)
filter on the set of output candidates, with the important addendum that the
order in which the filters are applied is crucial in determining optimality.

Consider the example in Fig. 1, which depicts an OT evaluation of output
candidates using the tableau notation. Here some input i is assigned three output
candidates o1, o2 and o3. The OT grammar uses only three constraints c1, c2
and c3. Constraint c1 is applied first. Candidates o2 and o3 each violate it once,
however, o1 violates it twice. Thus o2 and o3 are the output candidates incurring
the least number of violations of the constraint and are allowed to proceed to
the next round of the evaluation. Candidate o1, on the other hand, is ruled out
and does not participate in further evaluations. Neither o2 nor o3 violate c2 (nor
does o1, but this is immaterial since it has previously been discarded), so neither
is filtered out. In the third round, o2 and o3 are evaluated with respect to c3.
Each of them violates the constraint once, but since there is no candidate that
fares better than them (again, o1 is not taken into consideration anymore), they
also survive this round of the evaluation. Thus, o2 and o3 are the optimal output
candidates for i. If c3 had been applied before c1, on the other hand, o2 and o3
would lose out against o1.

With this intuitive understanding of OT grammars under our belt, the for-
mal definitions of OSs and their output language (not to be confused with the
candidate language ran(Gen)) are straight-forward.



5

i c1 c2 c3
o1 2 0 0
o2 1 0 1
o3 1 0 1

Fig. 1. Example of an OT evaluation in tableau notation

Definition 4. An optimality system over languages L and L′ is a pair O :=
〈Gen, C〉 with Gen ⊆ L × L′ and C := 〈c1, . . . , cn〉 a linearly ordered sequence
of functions ci : Gen→ N. For a, b ∈ Gen, a <O b iff there is a 1 ≤ k ≤ n such
that ck(a) < ck(b) and for all j < k, cj(a) = cj(b).

Definition 5. Given an optimality system O := 〈Gen, C〉, 〈i, o〉 is optimal with
respect to O iff both 〈i, o〉 ∈ Gen and there is no o′ such that 〈i, o′〉 ∈ Gen and
〈i, o′〉 <O 〈i, o〉. The output language of O is ran({〈i, o〉 | 〈i, o〉 is optimal with
respect to O}).

The important insight of [2] as well as [6], which was later improved upon by [5,
7, 13], is that an OS as defined above can be understood to define a transduction
from a set of inputs to its set of optimal output candidates. Moreover, if the OS
is suitably restricted, it is guaranteed to define a rational relation, which implies
its efficient computability.

Theorem 6. Let O := 〈Gen, C〉 be an OS such that

– dom(Gen) is a regular string language, or a regular/linear context-free tree
language, and

– Gen is a rational relation, and
– all c ∈ C are output-markedness constraints, and
– each c ∈ C defines a rational relation on ran(Gen), and
– O is globally optimal.

Then the transduction τ induced by the OS is a rational relation and ran(τ)
belongs to the same formal language class as dom(τ).

As the reader might have guessed, the use of τ here is carried over straight-
forwardly from tree transducers, meaning that τ := {〈i, o〉 | 〈i, o〉 is optimal with
respect to O}. The theorem also makes reference to two notions we have not
encountered yet at all, output-markedness and global optimality. The former is
easily defined.

Definition 7. Given an OS O := 〈Gen, C〉, c ∈ C is an output-markedness
constraint iff c(〈i, o〉) = c(〈i′, o〉) for all 〈i, o〉 , 〈i′, o〉 ∈ Gen.

Global optimality, on the other hand, requires a lot of finite-state machinery to
be in place before it can be made formally precise, which would lead us off track
here. For our purposes it is sufficient to know that an OS is globally optimal
iff for every optimal output candidate o it holds that there is no input i such
that o is an output candidate for i but not an optimal one. The curious reader
is referred to [5] for a more rigorous definition.



6

3 Controlled Optimality Systems

OSs are perfectly capable of modeling reference-set constraints. The reference
set for any input i is defined by iGen, and the evaluation metric can straightfor-
wardly be implemented as a sequence of constraints. Fewest Steps, for instance,
can be viewed as an OS in which a tree t is related by Gen to all the trees
that were constructed from the same lexical items as t, including t itself. Besides
that, the OS has only one constraint ∗Trace, which punishes traces. As a con-
sequence, only the trees with the least number of traces will be preserved, and
these are the optimal output candidates for t. While this short example shows
that OSs can get the job done, the way output candidates are specified for
reference-set constraints actually relies on additional structure — the reference
sets — that is only indirectly represented by Gen. In the following I introduce
controlled OSs as a variant of standard OSs that is closer to reference-set com-
putation by making reference sets prime citizens of OSs and demoting Gen to
an ancillary relation that is directly computed from them.

We observe first that many reference-set constraints allow for distinct inputs
to be assigned the same reference set. Hence it makes sense to map entire sets
of inputs to reference sets, rather than the individual inputs themselves. Let us
call such a set of inputs a reference type. An OS can then be defined by reference
types and a function mapping them to reference sets:

Definition 8 (Controlled Optimality Systems). An F-controlled optimal-
ity system over languages L, L′ is a 4-tuple O[F ] := 〈Gen, C,F , γ〉, where

– Gen and C are defined as usual,
– F is a family of non-empty subsets of L, each of which we call a reference

type,
– the control map γ : F → ℘(L′) \ {∅} associates every reference type with a

reference set, i.e. a set of output candidates,
– the following conditions are satisfied
• exhaustivity:

⋃
X∈F X = L

• bootstrapping: xGen =
⋃

x∈X∈F Xγ

Every controlled OS can be translated into a canonical OS by discarding
its third and fourth component (i.e. F and the control map γ). In the other
direction, a controlled OS can be obtained from every canonical OS by setting
F := {{i} | i ∈ L} and γ : {i} 7→ iGen. So the only difference between the two
is that controlled OSs modularize Gen by specifying it through reference types
and the control map.

Now that OSs operate (at least partially) at the level of sets, it will often
be interesting to talk about the set of optimal output candidates assigned to
some reference type, rather than one particular input. But whereas the set of
optimal output candidates is always well-defined for inputs — for any input i
this set is given by iτ — we have to be more careful when lifting it to reference
types, because distinct inputs that belong to the same reference type may not
necessarily be assigned the same optimal output candidates. Such a situation



7

might arise in OSs with faithfulness or input-markedness constraints, which are
sensitive to properties of the input, or when two inputs i and j are of reference
type X, but in addition j is also of reference type Y . Given this ambiguity, one
has to distinguish between the set of output candidates that are optimal for at
least one member of reference type X, and the set of output candidates that are
optimal for all members of reference type X. The former is the up-transduction
Xτ↑ :=

⋃
x∈X xτ , the latter the down-transduction Xτ↓ :=

⋂
x∈X xτ .

At this point it might be worthwhile to work through a simple example.
Fig. 2 on the following page depicts a controlled OS and the distinct steps
of its computation. We are given a collection of reference types consisting of
Red := {i1, i2, i3, i4, i5, i6}, Sienna := {i4}, Teal := {i5, i6, i7}, Purple :=
{i8}, and Lime := {i7, i9, i10}. The reference sets are Blue := {o1, o2, o3},
Orange := {o3, o4, o5, o6, o7}, Green := {o6, o7}, and Brown := {o8, o9}.
Finally, the graph of γ consists of the pairs 〈Red,Blue〉, 〈Sienna,Brown〉,
〈Teal,Green〉, 〈Purple,Brown〉, and 〈Lime,Orange〉. Note that a refer-
ence type may overlap with another reference type or even be a proper subset of
it, and the same holds for reference sets. This means that an input can belong
to several reference types at once. Consequently, xGen may be a superset of
Xγ for every reference type X that contains x, as is the case for i4, say, but
not for i7, even though both are assigned exactly two reference types. Input i4 is
related by Gen to all outputs contained in Redγ∪Siennaγ = Blue∪Brown =
{o1, o2, o3, o8, o9}, whereas i7 is related to Limeγ∪Tealγ = Orange∪Green =
Orange = {o3, o4, o5, o6, o7}. As soon as Gen has been determined from the
reference types and the control map, the computation proceeds as usual with
the constraints of the OS filtering out all suboptimal candidates.

Interestingly, almost all reference-set constraints fall into two classes with
respect to how reference types and reference sets are distributed. In the case
of Fewest Steps, where the input language is also the candidate language, each
reference type is mapped to itself, that is to say, there is no distinction between
reference types and reference sets. A constraint like Focus Economy, on the
other hand, requires not only the input language and the candidate language to
be disjoint, but also all reference sets and reference types. A natural unification
of these two subclasses is available in the form of output joint preservation.

Definition 9. An F-controlled optimality system is output joint preserving iff
for all distinct X,Y ∈ F , Xγ ∩ Y γ 6= ∅ → X ∩ Y 6= ∅.

The OS depicted in Fig. 2 on the next page fails output joint preservation.
It is clearly violated by Sienna and Purple, which are disjoint yet mapped
to the same reference set, Brown. It isn’t respected by Red and Lime, either,
which are mapped to Blue and Orange, respectively, the intersection of which
is non-empty even though Red and Lime are disjoint.

Output joint preservation is certainly general enough a property to encom-
pass the kinds of controlled OSs we are interested in. In the following, I show
that it is also sufficiently restrictive to establish a link to the crucial notion of
global optimality.



8

i9 c1 c2 c3

o1 1 3 2
o2 0 0 3
o3 2 0 0
o8 0 0 3
o9 0 1 0

i7 c1 c2 c3

o1 1 3 2
o2 0 0 3
o3 2 0 0
o8 0 0 3
o9 0 1 0

i1 i2 i3

i4

i5 i6
i7

i8

i9
i10

o1 o2 o3

o4

o5 o6

o7

o8
o9

Reference Types Reference Sets

Evaluation Output Language

i4 c1 c2 c3

o1 1 3 2
o2 0 0 3
o3 2 0 0
o8 0 0 3
o9 0 1 0

o2

o4

o6

o7

o8

yi
eld

s

yields

Fig. 2. Example of a controlled OS. Gen is defined in a modular fashion using reference
types, reference sets, and the control map γ from reference types to reference sets.

Definition 10. An F-controlled OS is type-level optimal iff Xτ↑ � Xγ = Xτ↓ �
Xγ for all X ∈ F .

Lemma 11. Let O[F ] an F-controlled OS. Then O[F ] is type-level optimal only
if it is globally optimal.

Proof. We prove the contrapositive. If O[F ] is not type-level optimal, then it
holds for some X ∈ F that Xτ↑ � Xγ 6= Xτ↓ � Xγ. But this implies that
there are x, y ∈ X and z ∈ Xγ such that xτ 3 z /∈ yτ , which is an unequivocal
violation of global optimality. ut

Theorem 12. Every output joint preserving OS is type-level optimal iff it is
globally optimal.

Proof. The right-to-left direction follows from Lemma 11. We prove the contra-
positive of the other direction. If O[F ] fails global optimality, then there are
x, y ∈ L and z ∈ L′ such that 〈x, z〉 , 〈y, z〉 ∈ Gen yet xτ 3 z /∈ yτ . W.l.o.g.
let x ∈ X and y ∈ Y , X,Y ∈ F , whence z ∈ Xγ ∩ Y γ. As O[F ] is output
joint preserving, Xγ ∩ Y γ 6= ∅ entails X ∩ Y 6= ∅. Pick some p ∈ X ∩ Y . Now
if O[F ] is type-level optimal, then it holds that Xτ↑ � Xγ = Xτ↓ � Xγ and
Y τ↑ � Y γ = Y τ↓ � Y γ, so z ∈ xτ implies z ∈ pτ , whereas z /∈ yτ implies z /∈ pτ .
Contradiction. It follows that O[F ] is not type-level optimal. ut



9

Intuitively, type-level optimality ensures that optimality is fixed for entire refer-
ence types, so the individual inputs can be ignored for determining optimality.
However, it is too weak a restriction to rule out disagreement between reference
types that are mapped to overlapping reference sets, so output joint preserva-
tion has to step in; it guarantees that if two reference types X and Y share
at least one output candidates, there exists some input p belonging to both X
and Y that will be faced by conflicting requirements if X and Y disagree with
respect to which candidates in Xγ ∩ Y γ they deem optimal (since the OS is
type-level optimal, optimality can be specified for entire reference types rather
than their members). It should be easy to see that the conditions jointly imply
global optimality.

Given our interest in using controlled OS to investigate the computability
of reference-set constraints, it would be advantageous if we could read off the
constraints right away whether they yield type-level optimality. This is indeed
very easy to do thanks to the following entailment.

Lemma 13. Let O[F ] := 〈Gen, C,F , γ〉 an F-controlled OS such that every
c ∈ C is an output-markedness constraint. Then O[F ] is type-level optimal.

Proof. Assume the opposite. Then for some X ∈ F , Xτ↑ � Xγ 6= Xτ↓ � Xγ,
whence there are x, y ∈ X and z ∈ Xγ with xτ 3 z /∈ yτ . But this is the case
only if there is some c ∈ C such that c(〈x, z〉) 6= c(〈y, z〉), i.e. c isn’t an output-
markedness constraint. ut

Corollary 14. Let O[F ] := 〈Gen, C,F , γ〉 an output joint preserving OS such
that every c ∈ C is an output-markedness constraint. Then O[F ] is globally
optimal.

Combining these results, we arrive at the equivalent of Thm. 6 for F-controlled
OSs.

Corollary 15. Let O[F ] := 〈Gen, C,F , γ〉 an F-controlled OS such that

– dom(Gen) is a regular string language, or a regular/linear context-free tree
language, and

– Gen is a rational relation, and
– all c ∈ C are output-markedness constraints, and
– each c ∈ C defines a rational relation on ran(Gen), and
– O[F ] is output joint preserving.

Then the transduction τ induced by the OS is a rational relation and ran(τ)
belongs to the same formal language class as dom(τ).

In sum, then, not only do output joint preserving OSs look like a solid base
for modeling reference-set constraints, they also have the neat property that the
global optimality check is redundant, thanks to Lem. 13. As it is pretty easy to
determine for any given reference-set constraint whether it can be modeled by
output-markedness constraints alone, the decisive factor in their implementation
are the transducers for the constraints and Gen. If those transducers each define
a rational relation, so does the entire optimality system.



10

4 Application to Reference-Set Computation

4.1 Focus Economy Explained

Focus Economy [10] was briefly discussed in the introduction. It is invoked in
order to account for the fact that sentences such as (2a), (2b) and (2c) below
differ with respect to what is given and what is new information. Once again
main stress is marked by boldface.

(2) a. My friend bought a red car.
b. My friend bought a red car.
c. My friend bought a red car.

That these utterances are associated to different information structures is wit-
nessed by the fact that for instance only (2a) is compatible with the question
“What happened?”.

The full-blown Focus Economy system (rather than the simplified sketch
given in the introduction) accounts for the data as follows. First, the Main Stress
Rule demands that in every pair of sister nodes, the “syntactically more embed-
ded” node [10, p.133] is assigned strong stress, its sister weak stress (marked in
the phrase structure tree by subscripted S and W, respectively). If a node has no
sister, it is always assigned strong stress (in Minimalist syntax, this will be the
case only for the root node, as all Minimalist trees are strictly binary branching).
Main stress then falls on the unique leaf node that is connected to the root node
by a path of nodes that have an S-subscript. See Fig. 3 for an example.

TPS

DPW

myW friendS

T′
S

TW VPS

boughtW DPS

aW D′
S

redW carS

Fig. 3. The stress-annotated phrase structure tree for (2a).

The notion of being syntactically more embedded isn’t explicitly defined in
the literature. It is stated in passing, though, that “. . .main stress falls on the
most embedded constituent on the recursive side of the tree” [10, p.133]. While
this is rather vague, it is presumably meant to convey that, at least for English,
in which complements follow the heads they are introduced by, the right sister



11

node is assigned strong stress as long as it isn’t an adjunct. This interpretation
seems to be in line with the empirical facts.

The second integral part of the proposal is the operation Stress Shift, which
shifts the main stress to some leaf node n by assigning all nodes on the path
from n to the root strong stress and demoting the sisters of these nodes to
weakly stressed nodes. For instance, the tree for “My friend bought a red car”
is obtained from the tree in Fig. 3 by changing myW and friendS to myS and
friendW , respectively, and DPW and T′S to DPS and T′W , respectively.

While Stress Shift could be invoked to move stress from anaphoric elements
to their left sister as in (3), this burden is put on a separate rule, for inde-
pendent reasons. The rule in question is called Anaphoric Destressing and obli-
gatorily assigns weak stress to anaphoric nodes, where a node is anaphoric iff
it is “. . . D[iscourse]-linked to an accessible discourse entity” [10, p.147]. Thus
Anaphoric Destressing not only accounts for the unstressed anaphor in (3), but
also for the special behavior of stress in cases of parallelism.

(3) John killed her.

(4) First Paul bought a red car.
a. Then John bought one.
b. * Then John bought one.

The overall system now works as follows. Given a phrase structure tree that
has not been annotated for stress yet, one first applies Anaphoric Destressing
to make sure that all d-linked constituents are assigned weak stress and thus
cannot carry main stress. Next the Main Stress Rule is invoked to assign every
node in the tree either W or S. Note that the Main Stress Rule cannot overwrite
previously assigned labels, so if some node n has been labeled W by Anaphoric
Destressing, the Main Stress Rule has to assign S to the sister of n. Now that
the tree is fully annotated, we compute its focus set, the set of constituents that
may be focused.

(5) Focus Projection
Given some stress-annotated tree t, its focus set is the set of nodes re-
flexively dominating the node carrying main stress.

The focus set of “My friend bought a red car”, for instance, contains [car], [.D′
red car], [.DP a red car], [.VP bought a red car] and [.TP My friend bought a
red car]. For “Then John bought one”, on the other hand, it consists only of
[John] and [.TP Then John bought one].

At this point, Stress Shift may optionally take place. After the main stress
has been shifted, however, the focus set has to be computed all over again, and
this time the procedure involves reference-set computation.

(6) Focus Projection Redux
Given some stress-annotated tree t′ that was obtained from tree t by
Stress Shift, the focus set of t′ contains all the nodes reflexively domi-
nating the node carrying main stress which aren’t already contained in
the focus set of t.



12

So if “Then John bought one” had been obtained by Stress Shift from [.TP Then
John bought one] rather than Anaphoric Destressing, its focus set would have
contained only [John], because [.TP Then John bought one] already belongs to
the focus set of “Then John bought one”. As an easy exercise, the reader may
want to draw annotated trees for the examples in (2) and compute their focus
sets.

4.2 A Model of Focus Economy

After this general overview, the time has come to formalize Focus Economy. In
order to precisely model Focus Economy, though, I have to make some simplify-
ing assumptions, for reasons that are entirely independent from the restrictions
of OSs. First, I stipulate that adjuncts are explicitly marked as such by a sub-
script A on their label. This is simply a matter of convenience, as it reduces
the complexity of the transducers and makes my model independent from the
theoretical status of adjuncts in syntax.

Second, I decided to take movement out of the picture, because the interac-
tion of focus and movement is not touched upon in [10], so there is no original
material to formalize. Incidentally, movement seems to introduce several inter-
esting complications (e.g. mandatory main stress for topicalized constituents).
The end of this section contains a brief discussion as to whether my model can
be extended to capture theories involving movement.

The last simplification concerns Anaphoric Destressing. While the destress-
ing of pronominal (and possibly covert) elements is easy to accommodate, the
invoked notion of d-linking is impossible to capture in any model that oper-
ates on isolated syntactic trees. Devising a working model of discourse struc-
ture vastly exceeds the scope of this contribution. Also, the role of d-linking in
anaphoric destressing is of little importance to this paper, which focuses on the
reference-set computational aspects of Focus Economy. Thus my implementation
will allow almost any constituent to be anaphorically distressed and leave the
task of matching trees to appropriate discourse contexts to an external theory
of d-linking that remains to be specified.

With these provisions made explicit, the formalization of Focus Economy as
a controlled OS can commence. The input language is supposedly derived by
some movement-free Minimalist grammar E for English [12] in which interior
nodes are given explicit category labels (once more for the sake of convenience).
As Minimalist grammars without remnant movement generate regular tree lan-
guages [8], it is safe to assume that Minimalist grammars without any kind of
movement do so, too.

Next I define Gen as the composition of four linear transducers corresponding
to Anaphoric Distressing, the Main Stress Rule, Stress Shift, and Focus Projec-
tion, respectively. Given a tree t derived by E , the transducer cascade computes
all logically possible variants of t with respect to stress assignment and then
computes the focus in a local way. This means that Gen actually overgenerates
with respect to focus, a problem that we have to take care of at a letter step.



13

Anaphoric Distressing is modeled by a non-deterministic ltdtt that may ran-
domly add a subscript D to a node’s label in order to mark it as anaphoric. The
only condition is that if a node is labeled as anaphoric, all the nodes it properly
dominates must be marked as such, too.

Definition 16. Let Σ := ΣL ∪ ΣA be the vocabulary of the Minimalist gram-
mar E that generated the input language, where ΣL contains all lexical items
and category labels and ΣA their counterparts explicitly labeled as adjuncts.
Anaphoric Destressing is the ltdtt D where ΣD := Σ, ΩD is the union of Σ
and ΣD := {σD | σ ∈ Σ}, Q := {qi, qd}, Q′ := {qi}, and ∆D contains the rules
below, with σ ∈ Σ and σD ∈ ΣD and α{x,y} to be read as “αx or αy”:

qi(σ(x, y))→ σ(qi(x), qi(y)) qi(σ)→ σ

q{i,d}(σ(x, y))→ σD(qd(x), qd(y)) q{i,d}(σ)→ σD

The transducer for the Main Stress Rule is non-deterministic, too, but it
proceeds in a bottom-up manner. It does not alter nodes subscripted by A or
D, but if it encounters a leaf node without a subscript, it randomly adds the
subscript S or W to its label. However, W is allowed to occur only on left sisters,
whereas S is mostly restricted to right sisters and may surface on a left sister
just in case the right sister is already marked by A or D. Note that we could
easily define a different stress pattern, maybe even parametrized with respect to
category labels, to incorporate stress assignment rules from other languages.

Definition 17. Main Stress is the lbuttM where ΣM := ΩD, ΩM is the union
of Σ, ΣD and Σ∗ := {σS , σW | σ ∈ Σ}, Q := {qs, qu, qw}, Q′ := {qs} and ∆M
contains the following rules, with σ ∈ Σ, σA ∈ ΣA, σx ∈ {σx | σ ∈ Σ} for
x ∈ {D,S,W}, and αa...z(βa′...z′ , . . . , ζa′′,...,z′′) to be read as “αa(βa′ , . . . , ζa′′) or
. . . or αz(βz′ , . . . , ζz′′)”:

σA → qu(σA) σA(qu(x), qu(y))→ qu(σA(x, y))

σD → qu(σD) σD(qu(x), qu(y))→ qu(σD(x, y))

σ → qsw(σSW ) σ(q{u,w}(x), qs(y))→ qsw(σSW (x, y))

σ(qs(x), qu(y))→ qsw(σSW (x, y))

Stress Shift is best implemented as a non-deterministic ltdtt that may ran-
domly switch the subscripts of two S/W-annotated sisters.

Definition 18. Stress Shift is the ltdtt S where ΣS = ΩS = ΩM, Q := {qi, qs, qw},
Q′ := {qs}, and ∆S contains the rules below, with σ ∈ ΣS and σ∗ ∈ Σ∗:

qs(σ∗(x, y))→ σSSS(qisw(x), qiws(y)) qs(σ∗)→ σS

qw(σ∗(x, y))→ σW (qi(x), qi(y)) qw(σ∗)→ σW

qi(σ(x, y))→ σ(qi(x), qi(y)) qi(σ)→ σ

The last component is Focus Projection, a non-deterministic ltdtt with two
states, qf and qg. The transducer starts at the root in qf . Whenever a node



14

n is subscripted by W, the transducer switches into qg at this node and stays
in the state for all nodes dominated by n. As long as the transducer is in qf ,
it may randomly add a superscript F to a label to indicate that it is focused.
Right afterward, it changes into qg and never leaves this state again. Rather than
associating a stress-annotated tree with a set of constituents that can be focused,
Focus Projection now generates multiple trees that differ only with respect to
which constituent along the path of S-labeled nodes is focus-marked.

Definition 19. Focus Projection is the ltdtt F , where ΣF = ΩS , ΩF is the
union of ΩS and ΩF

S := {ωF | ω ∈ ΩS}, Q := {qf , qg}, Q′ := {qf}, and ∆F
contains the rules below, with σ ∈ ΣF and σS ∈ ΣF \ {σS | σ ∈ Σ}:

qf (σS(x, y))→ σS(qf (x), qf (y))

qf (σS(x, y))→ σF
S (qg(x), qg(x)) qf (σS)→ σF

S

qf (σS(x, y))→ σS(qg(x), qg(x)) qf (σS)→ σS
qg(σ(x, y))→ σ(qg(x), qg(y)) qg(σ)→ σ

All four transducers are linear, whence they can be composed into a single
linear transducer modeling Gen. Expanding on what was said above about the
inner workings of Gen, we now see that for any tree t in the input language,
tGen is the set of stress-annotated trees in which, first, some subtrees may be
marked as adjuncts or anaphorical material (or both) and thus do not carry
stress information, second, there is exactly one path from the root to some leaf
such that every node in the path is labeled by S, and third, exactly one node
belonging to this path is marked as focused. The reader should have no problem
verifying that in terms of controlled OSs, all reference types are singleton and
their reference-sets do not overlap, i.e. output joint preservation and type-level
optimality are satisfied.

Now it only remains for us to implement Focus Projection Redux. In the
original account, Focus Projection Redux applied directly to the output of Stress
Shift, i.e. trees without focus information, and the task at hand was to assign
the correct focus. In my system, on the other hand, every tree is fed into Focus
Projection and marked accordingly for focus. This leads to overgeneration for
trees in which Stress Shift has taken place — a node may carry focus even if
it could also do so in the tree without shifted main stress. Consequently, the
focus set of “John died”, for instance, turns out to contain both [John] and
[.TP John died] rather than just the former. Under my proposal, then, Focus
Projection Redux is faced with the burden of filtering out focus information
instead of assigning it. In other words, Focus Projection Redux is a constraint.
This is accomplished by defining a regular tree language Lc such that when
Gen is composed with the diagonal of Lc (which is guaranteed to be a linear
transduction), only trees with licit focus marking are preserved; said regular
language is easily specified in the monadic second-order logic L2

K,P [11].
First one defines two predicates, StressPath and FocusPath. The former picks

out the path from the root to the leaf carrying main stress, whereas the latter
refers to the path from the root to the leaf that would carry main stress in



15

the absence of stress shift. This implies that FocusPath replicates some of the
information that is already encoded in the Main Stress transducer. Note that in
the definitions below, A(x), D(x) and S(x) are predicates picking out all nodes
with subscript A, D, S, respectively, x / y denotes “x is the parent of y”, x ≺ y
“x is the left sibling of y”, and /∗ the reflexive transitive closure of /.

Path(X)↔ ∃x
[
X(x) ∧ ¬∃y[y / x]

]
∧ ∃!x

[
X(x) ∧ ¬∃y[x / y]

]
∧

∀x, y, z
[(
X(x) ∧X(y)→ x /∗ y ∨ y /∗ x

)
∧
(
X(x) ∧ ¬X(z)→ ¬(z /∗ x)

)]
StressPath(X)↔ Path(X) ∧ ∀x[X(x)→ S(x)]

FocusPath(X)↔ Path(X) ∧ ∀x, y, z
[
X(x) ∧ x / y ∧ x / z →(

(A(y) ∨D(y))→ X(z)
)
∧
(
¬A(y) ∧ ¬D(y) ∧ y ≺ z → X(z)

)]
In a tree where no stress shift has taken place, StressPath and FocusPath

are true of the same subsets and any node contained by them may be focused.
After an application of the Stress Shift rule, however, the two paths are no
longer identical, although their intersection is never empty (it has to contain
at least the root node). In this case, then, the only valid targets for focus are
those nodes of the StressPath that are not contained in the FocusPath. This is
formally expressed by the L2

K,P sentence φ below. Just like A(x), D(x) and S(x)
before, F (x) is a predicate defining a particular set of nodes, this time the set of
nodes labeled by some ωF ∈ ΩF

S . I furthermore use X ≈ Y as a shorthand for
∀x[X(x)↔ Y (x)].

φ := ∀x,X, Y [F (x)∧X(x)∧StressPath(X)∧FocusPath(Y )→ (Y (x)→ X ≈ Y )]

Note that φ by itself does not properly restrict the distribution of focus. First
of all, there is no requirement that exactly one node must be focused. Second,
nodes outside StressPath may carry focus, in which case no restrictions apply to
them at all. Finally, StressPath and FocusPath may be empty, because we have
not made any assumptions about the distribution of labels. Crucially, though,
φ behaves as expected over the trees in the candidate language. Thus taking
the diagonal of the language licensed by φ and composing it with Gen filters
out all illicit foci, and only those. Since the diagonal over a regular language
is a linear transduction, the transduction obtained by the composition is too.
This establishes the computational feasibility of Focus Economy when the input
language is a regular tree language.

So far I have left open the question, though, how movement fits into the pic-
ture. First of all, it cannot be ruled out a priori that the interaction of movement
and focus are so intricate on a linguistic level that significant modifications have
to be made to the original version of Focus Economy. On a formal level, this
would mean that the transduction itself would have to be changed. In this case,



16

it makes little sense to speculate how my model could be extended to accom-
modate movement, so let us instead assume that Focus Economy can remain
virtually unaltered and it is only the input language that has to be modified. In
my model, the input language is a regular tree language by virtue of being gen-
erated by a Minimalist grammar without movement. But note that Minimalist
grammars with movement generate regular tree languages, too, in the presence
of a ban against more exotic kinds of movement such as remnant movement or
head movement [8]. Thus the restriction to regular tree languages itself does not
preclude us from accommodating most instances of movement.1

Conclusion

I have shown that despite claims to the contrary, reference-set constraints aren’t
computationally intractable. Controlled OSs were introduced as a formal model
for reference-set constraints. I gave a new characterization of global optimality
for the subclass of output joint preserving OSs, which is general enough to ac-
commodate most reference-set constraints. The shift in perspective induced by
controlled OSs made it apparent that out of the five conditions that jointly guar-
antee for an OS to stay within the limits of linear tree transductions, three are
almost trivially satisfied by reference-set constraints, with the only problematic
areas being the power of Gen and the rankings induced by the constraints on the
range of Gen. A model of a prominent reference-set constraint, Focus Economy,
showed that at least for some constraints those point aren’t problematic, either.
These new results suggest that reference-set constraints are significantly better
behaved than is usually believed.

Acknowledgements

I am greatly indebted to Ed Stabler, Ed Keenan and Uwe Mönnich as well as the
two anonymous reviewers for their motivational comments and helpful criticism.
The research reported herein was supported by a DOC-fellowship of the Austrian
Academy of Sciences.

Bibliography

[1] Chomsky, N.: The Minimalist Program. MIT Press, Cambridge, Mass.
(1995)

1 If we want the full expressive power of Minimalist grammars, then the best strategy
is to express Focus Economy as a constraint over derivation trees, since for every
Minimalist grammar the set of derivation trees it licenses forms a regular language
that fully determines the tree yield of the grammar [9]. The only difference between
Minimalist derivation trees and movement-free phrase structure trees as derived
above is that the latter are unordered. Hence, if we require that linear order (which
can be easily determined from the labels of the leaves) is directly reflected in the
derivation trees, the formalization above carries over unaltered to derivation trees
and may be extended as desired to deal with instances of movement.



17

[2] Frank, R., Satta, G.: Optimality theory and the generative complexity of
constraint violability. Computational Linguistics 24, 307–315 (1998)

[3] Gécseg, F., Steinby, M.: Tree Automata. Academei Kaido, Budapest (1984)
[4] Johnson, D., Lappin, S.: Local Constraints vs. Economy. CSLI, Stanford

(1999)
[5] Jäger, G.: Gradient constraints in finite state OT: The unidirectional and

the bidirectional case. In: Kaufmann, I., Stiebels, B. (eds.) More than
Words. A Festschrift for Dieter Wunderlich, pp. 299–325. Akademie Ver-
lag, Berlin (2002)

[6] Karttunen, L.: The proper treatment of optimality in computational phonol-
ogy (1998), manuscript, Xerox Research Center Europe

[7] Kepser, S., Mönnich, U.: Closure properties of linear context-free tree lan-
guages with an application to optimality theory. Theoretical Computer Sci-
ence 354, 82–97 (2006)

[8] Kobele, G.M.: Without remnant movement, MGs are context-free. In:
Ebert, C., Jäger, G., Michaelis, J. (eds.) MOL 10/11. Lecture Notes in
Computer Science, vol. 6149, pp. 160–173 (2010)

[9] Kobele, G.M., Retoré, C., Salvati, S.: An automata-theoretic approach to
minimalism. In: Rogers, J., Kepser, S. (eds.) Model Theoretic Syntax at
10. pp. 71–80 (2007), workshop organized as part of the Europen Summer
School on Logic, Language and Information, ESSLLI 2007, 6-17 August
2007, Dublin, Ireland

[10] Reinhart, T.: Interface Strategies: Optimal and Costly Computations. MIT
Press, Cambridge, Mass. (2006)

[11] Rogers, J.: A Descriptive Approach to Language-Theoretic Complexity.
CSLI, Stanford (1998)

[12] Stabler, E.P., Keenan, E.: Structural similarity. Theoretical Computer Sci-
ence 293, 345–363 (2003)

[13] Wartena, C.: A note on the complexity of optimality systems. In: Blutner,
R., Jäger, G. (eds.) Studies in Optimality Theory, pp. 64–72. University of
Potsdam, Potsdam, Germany (2000)


