
UCLA Working Papers in Linguistics, Papers in Mathematical Linguistics 1
Volume 15, Article 4: 1–53, 2010

A Tree Transducer Model of Reference-Set Computation

Thomas Graf

Reference-set constraints are a special class of constraints used in Min-
imalist syntax. They extend the notion of well-formedness beyond the
level of single trees: When presented with some phrase structure tree,
they compute its set of competing output candidates and determine
the optimal output(s) according to some economy metric. Doubts
have frequently been raised in the literature whether such constraints
are computationally tractable (Johnson and Lappin 1999). I define
a subclass of Optimality Systems (OSs) that is sufficiently powerful
to accommodate a wide range of reference-set constraints and show
that these OSs are globally optimal in the sense of Jäger (2002), a
prerequisite for them being computable by linear tree transducers. As
regular and linear context-free tree languages are closed under linear
tree transductions, this marks an important step towards showing
that the expressivity of various syntactic formalisms is not increased
by adding reference-set constraints. In the second half of the paper, I
demonstrate the feasibility of the OS-based transducer approach by ex-
hibiting the transducers for three prominent reference-set constraints,
Focus Economy (Reinhart 2006), Merge-over-Move (Chomsky 1995b),
and Fewest Steps (Chomsky 1991, 1995b). My approach sheds new
light on the internal mechanics of these constraints and suggests that
their advantages over standard well-formedness conditions have not
been sufficiently exploited in the empirical literature.

Keywords reference-set constraints, transderivationality, Optimality Systems,
tree transducers, modelling, finite-state methods, Focus Economy, Merge-over-
Move, Fewest Steps

Introduction

Out of all the items in a syntactician’s toolbox, reference-set constraints are
probably the most peculiar one. When handed some syntactic tree, a reference-set
constraint does not determine its well-formedness from inspection of the tree itself.
Instead, it constructs a reference set — a set containing a number of trees competing
against each other — and chooses the optimal candidate from said set.

Consider Fewest Steps, also known as the Shortest Derivation Principle (Chomsky
1991, 1995a). The reference set that this constraint constructs for any given tree t
consists of t itself and all the trees that were assembled from the same lexical items
as t. All the trees in the reference set are then ranked by the number of movement

c© 2010 Thomas Graf
This is an open-access article distributed under the terms of a Creative Commons Non-Commercial
License (http://creativecommons.org/licenses/by-nc/3.0/).

http://creativecommons.org/licenses/by-nc/3.0/


A Tree Transducer Model of Reference-Set Computation 2

steps that occurred during their assembly, and the tree(s) with the fewest instances of
movement is (are) chosen as the winner. All other trees are flagged as ungrammatical,
including t if it did not emerge as a winner.

Another reference-set constraint is Focus Economy (Szendrői 2001; Reinhart
2006), which accounts for the empirical fact that neutral stress is compatible with
more discourse situations than shifted stress. Take a look at the utterances in (1),
where main stress is indicated by bold face. Example (1a) can serve as an answer to
various questions, among others “What’s going on?” and “What did your neighbor
buy?”. Yet the virtually identical (1b), in which the main stress falls on the subject
rather than the object, is compatible only with the question “Who bought a book?”.
These contrasts indicate a difference as to which constituents may be focused, i.e. can
be interpreted as providing new information.

(1) a. My neighbor bought a book.
b. My neighbor bought a book.

Focus Economy derives the relevant contrast by stipulating that first, any constituent
containing the node carrying the sentential main stress can be focused, and second,
in a tree in which stress was shifted from the neutral position a constituent may
be focused only if it cannot be focused in the original tree with unshifted stress.
In (1a), the object, the VP and the entire sentence can be focused, since these
are the constituents containing the main stress carrier. In (1b), the main stress is
contained by the subject and the entire sentence, however, only the former may be
focused because focusing of the the latter is already a licit option in the neutral stress
counterpart (1a).

The application domain of reference-set constraints includes narrow syntax as
well as the interfaces. In syntax, one finds Fewest Steps (Chomsky 1995b), Merge-
over-Move (Chomsky 1995b, 2000), Pronouns as Last Resort (Hornstein 2001),
resumption in Lebanese Arabic (Aoun, Choueiri, and Hornstein 2001), phrase struc-
ture projection (Toivonen 2001), the Person Case Constraint (Rezac 2007), Chain
Uniformization (Nunes 2004), object extraction in Bantu (Nakamura 1997), and
many others. The most prominent interface constraints are Rule I (Grodzinsky and
Reinhart 1993; Heim 1998; Reinhart 2006; Heim 2009), Scope Economy (Fox 1995,
2000), and the previously mentioned Focus Economy, but there are also more recent
proposals such as Situation Economy (Keshet 2010).

The somewhat esoteric behavior of reference-set constraints coupled with a
distinct lack of formal work on their properties has provoked many researches to
explicitly reject them (Sternefeld 1996; Gärtner 2002; Potts 2002) and led to various
conjectures that they are computationally intractable (Collins 1996; Johnson and
Lappin 1999). In this paper, I refute the latter by showing how reference-set con-
straints can be emulated by a new variant of Optimality Systems (OSs), and I contend
that this route paves the way for reference-set constraints to be implemented as
finite-state devices; linear bottom-up tree transducers (lbutts), to be precise. Lbutts
are of interest for theoretical as well as practical purposes because both regular and
linear context-free tree languages are known to be closed under linear transductions,
so applying a linear transducer to a regular/linear context-free tree language yields a
regular/linear context-free tree language again. On a theoretical level, this provides



3 Thomas Graf

us with new insights into the nature of reference-set constraints, while on a practical
level, it ensures that adding reference-set constraints to a grammar does not jeopar-
dize its computability. I support my claim by exhibiting lbutts that provide formal
models for Focus Economy, Merge-over-Move and the Shortest Derivation Principle.
My results shed new light on reference-set computation as well as on OSs and should
be of interest to readers from various formal backgrounds, foremost computational
phonology and Minimalist Grammars; moreover, when viewed as tree transducers,
reference-set constraints also exhibit some previously overlooked connections to
synchronous TAG (Shieber and Schabes 1990; Shieber 2004, 2006), the exploration
of which I have to leave to future research, unfortunately.

The paper is laid out as follows: After the preliminaries section, which due to
space restrictions has to be shorter than is befitting, I give a brief introduction to
OSs before defining my own variant, controlled OSs, in Sec. 3. The mathematical
core results of this section are a new characterization of the important property of
global optimality and a simplification of Jäger’s theorem (Jäger 2002) regarding
the properties of an OS which jointly ensure that it does not exceed the power
of linear tree transducers. In the last three sections, I show how to model Focus
Economy, Merge-over-Move and the Shortest Derivation Principle as such restricted
OSs, and I discuss the similarities between the tree transducers corresponding to
these constraints.

1 Preliminaries and Notation

Let me introduce some notational conventions first. For any two sets A and B, A\B
denotes their relative complement and A× B their cartesian product. The diagonal
of A is id(A) := {〈a, a〉 | a ∈ A}. Given a relation R ⊆ A× B, its domain is denoted by
dom(R), its range by ran(R). For any a ∈ dom(R), we let aR := {b | 〈a, b〉 ∈ R}, unless
R is a function, in which case aR = R(a). The inverse of R is signified by R−1. The
composition of two relations R and S is R ◦ S := {〈a, c〉 | 〈a, b〉 ∈ R, 〈b, c〉 ∈ S}.

Tree languages and tree transductions form an integral part of this paper, however,
the technical machinery is mostly hidden behind the optimality-theoretic front-end
so that only a cursory familiarity with the subject matter is required. Nevertheless
the reader is advised to consult Gécseg and Steinby (1984) and Kepser and Mönnich
(2006) for further details. I also assume that the reader is knowledgeable about
string languages and generalized sequential machines (see Hopcroft and Ullman
1979).

Definition 1. A context-free tree grammar (CFTG) is a 4-tuple G := 〈Σ, F, S,∆〉,
where Σ and F are disjoint, finite, ranked alphabets of terminals and non-terminals,
respectively, S ∈ F is the start symbol, and ∆ is a finite set of productions of the form
F(x1, . . . , xn)→ t, where F is of rank n, and t is a tree with the node labels drawn
from Σ∪ F ∪

�

x1, . . . , xn
	

.

A production is linear if each variable in its left-hand side occurs at most once in
its right-hand side. A CFTG is linear if each production is linear. A CFTG is a regular
tree grammar (RTG) if all non-terminals are of rank 0. A tree language is regular iff it



A Tree Transducer Model of Reference-Set Computation 4

is generated by an RTG, and every regular tree language has a context-free language
as its string yield.

Definition 2. A bottom-up tree transducer is a 5-tuple A :=



Σ,Ω,Q,Q′,∆
�

, where
Σ and Ω are finite ranked alphabets, Q is a finite set of states, Q′ ⊆ Q the set
of final states, and ∆ is a set of productions of the form f (q1(x1), . . . , qn(xn)) →
q(t(x1, . . . , xn)), where f ∈ Σ is of rank n, q1, . . . , qn, q ∈Q, and t(x1, . . . , xn) is a tree
with the node labels drawn from Ω∪

�

x1, . . . , xn
	

.

Example. It is easy to write a transducer for very simple cases of wh-movement.
First, let the input alphabet Σ consist of all the labels that appear in trees generated
by some input grammar. In a GB setting, for instance, Σ contains all lexical items
and X′-annotated category labels. The output alphabet contains every element of
Σ and the indexed trace twh. There are only two states, q∗ (which we might call
the identity state) and qwh (which we might call the I have previously encountered a
wh-word-state). The final state is q∗. The number of productions of the transducer
can be rather high (2+ 3 ∗ |Σ− 1|)), but they can be compressed into 5 production
schemes by abstracting away from the specific lexical items. Thus, in the following,
σ denotes any element of Σ except the wh-phrase what.

σ→ q∗(σ)(1)

what→ qwh(twh)(2)

σ(q∗(x), q∗(y))→ q∗(σ(x , y))(3)

σ(q∗(x), qwh(y))→ qwh(σ(x , y))(4)

TP(qi(x), qwh(y))→ q∗(CP(what, C′(does,TP(x , y))))(5)

These rules can also be written in tree notation.

(1) σ→ q∗

σ

(3) σ

q∗

σ1

subtree 1

q∗

σ2

subtree 2

→ q∗

σ

σ1

subtree 1

σ2

subtree 2
(2) what→ qwh

twh

(4) σ

q∗

σ1

subtree 1

qwh

σ2

subtree 2

→ qwh

σ

σ1

subtree 1

σ2

subtree 2



5 Thomas Graf

(5) TP

q∗

σ1

subtree 1

qwh

σ2

subtree 2

→ q∗

CP

what C′

do TP

σ1

subtree 1

σ2

subtree 2

Figure 1 on the following page shows the phrase structure tree for the men like
what and how it is transformed by the transducer into the tree for what do the men
like.

Definition 3. A top-down tree transducer is 5-tuple A :=



Σ,Ω,Q,Q′,∆
�

, where Σ,
Ω and Q are as before, Q′ ⊆Q is the set of initial states, and all productions in ∆ are
of the form q( f (x1, . . . , xn))→ t, where f ∈ Σ is of rank n, q ∈Q, and t is a tree with
the node labels drawn from Ω∪

�

q(x) | q ∈Q, x ∈
�

x1, . . . , xn
		

.

For the sake of succinctness (but to the detriment of readability), I adopt the
following notational conventions for tree transducer productions:

• α{x ,y} is to be read as “αx or αy”.

• αa...z(βa′...z′ , . . . ,ζa′′,...,z′′) is to be read as “αa(βa′ , . . . ,ζa′′) or . . . or αz(βz′ , . . . ,ζz′′)”.

Example. The production σ(qi j{a,b}(x), q jkc(y))→ q{a,c}(σ(x , y)) is a schema defining
eight productions:

σ(qi(x), q j(y))→ qa(σ(x , y)) σ(qi(x), q j(y))→ qc(σ(x , y))

σ(q j(x), qk(y))→ qa(σ(x , y)) σ(q j(x), qk(y))→ qc(σ(x , y))

σ(qa(x), qc(y))→ qa(σ(x , y)) σ(qa(x), qc(y))→ qc(σ(x , y))

σ(qb(x), qc(y))→ qa(σ(x , y)) σ(qb(x), qc(y))→ qc(σ(x , y))

As with CFTGs, a production is linear if each variable in its left-hand side occurs
at most once in its right-hand side. A transducer is linear if each production is linear.
I denote a linear bottom-up/top-down tree transducer by lbutt/ltdtt. The class of
transductions realized by ltdtts is properly contained in the class of transductions
realized by lbutts, which in turn is closed under union and composition. The domain
and the range of an lbutt are both recognizable, i.e. regular tree languages. The
relation τ induced by a (linear) tree transducer is called a (linear) tree transduction.
For a bottom-up tree transducer, the graph of τ consists of pairs 〈s, t〉 such that s
and t are Σ- and Ω-labeled trees, respectively, and for some q ∈ Q′, q(t) can be
obtained from s by finitely many applications of productions δ ∈∆. The definition is
almost unchanged for top-down tree transducers, except that we require that t can



TP

DP

the men

T′

T VP

like what

TP

DP

the men

T′

T VP

q∗

like

qwh

twh

TP

DP

the men

T′

T qwh

VP

like twh

TP

DP

the men

qwh

T′

T VP

like twh

TP

q∗

DP

the men

qwh

T′

T VP

like twh

q∗

CP

what C′

do TP

DP

the men

T′

T VP

like twh

(1),(2) (4)

(1),(4)

(1),(1),(3)

(5)

Figure 1: Example of transduction for simple wh-movement



7 Thomas Graf

be obtained from q(s). In a slight abuse of terminology, I call a relation rational iff it
is a finite-state string transduction or a linear tree transduction. For any recognizable
tree language L, id(A) is a rational relation. Furthermore, both regular string/tree
languages and linear context-free tree languages are closed under rational relations.

Since reference-set constraints originate from Minimalist syntax, I will often
assume that the input language to some transduction is given by a Minimalist
grammar (MG).

Definition 4. A Minimalist grammar is a 5-tuple G :=



Σ, F, Types, Lex, O
�

, where

• Σ 6= ; is the alphabet,

• F is the union of a non-empty set base of basic features and its prefixed vari-
ants

�

= f | f ∈ base
	

,
�

+ f | f ∈ base
	

,
�

− f | f ∈ base
	

of selector, licensor, and
licensee features, respectively,

• Types := {::, :} serves in distinguishing lexical from derived expressions,

• the lexicon Lex is a finite subset of Σ∗× {::} × F+,

• and O is the set of generating functions to be defined below.

We define the set C of chains Σ∗×Types×F∗ (whence Lex ⊂ C) and refer to non-empty
sequences of chains as expressions, the set of which we call E.

The set O of generating functions consists of the operations merge and move.
The operation merge: (E × E)→ E is the union of the following three functions, for
s, t ∈ Σ∗, · ∈ Types, f ∈ base, γ ∈ F∗, δ ∈ F+, and chains α1, . . . ,αk, ι1, . . . , ιk, 0≤ k, l:

s :: = f γ t · f , ι1, . . . , ιk merge1st : γ, ι1, . . . , ιk

s : = f γ,α1, . . . ,αk t · f , ι1, . . . , ιl merge2ts : γ,α1, . . . ,αk, ι1, . . . , ιl

s · = f γ,α1, . . . ,αk t · f δ, ι1, . . . , ιl merge3
s : γ,α1, . . . ,αk, t : δ, ι1, . . . , ιl

As the domains of all three functions are disjoint, their union is a function, too.
The operation move: E → E is the union of the two functions below, with the

notation as above and the further assumption that all chains satisfy the Shortest
Move Constraint (SMC), according to which no two chains in the domain of move
display the same licensee feature − f as their first feature.

s : + f γ,α1, . . . ,αi−1,t : − f ,αi+1, . . . ,αk move1ts : γ,α1, . . . ,αi−1,αi+1,αk

s : + f γ,α1, . . . ,αi−1,t : − f δ,αi+1, . . . ,αk move2
s : γ,α1, . . . ,αi−1, t : δ,αi+1, . . . ,αk



A Tree Transducer Model of Reference-Set Computation 8

The language L(G ) generated by G is the closure of the lexicon under the generating
functions.

Example. The following MG assigns the question what do the men like the same
phrase structure tree as the transducer from the previous example.

what :: d −wh like :: =d v
men :: n ε :: =v =d t
the :: =n d do :: = t +wh c

The corresponding derivation is depicted below, with binary branching nodes indicat-
ing instances of Merge and unary ones instances of Move.

what do the men like : c

do the men like : +wh c, what : −wh

do :: = t +wh c the men like : t, what : −wh

the men : d

the :: =n d men :: n

like : =d t, what : −wh

ε :: =v =d t like : v, what : −wh

like :: =d v what :: d −wh

The string language derived by an MG is mildly context-sensitive in the sense of
Joshi (1985). In particular, for every MG there exists a strongly equivalent multiple-
context free grammar (Michaelis 1998, 2001). This implies that a tree language
that can be derived by an MG may not be linear context-free. However, the set
of derivation trees of an MG is a regular tree language and there is an effective
procedure for obtaining the derived trees from their derivation trees — this holds
even of the strictly more powerful class of MGs with unbounded copying (Kobele
2006; Kobele, Retoré, and Salvati 2007).1

At the end of Sec. 5.2 and 6.3, I make good use of L 2
K ,P (Rogers 1998), an

incarnation of monadic second-order logic (MSO) specifically designed for linguistic
purposes. MSO is the extension of first-order logic with monadic second-order
variables and predicates as well as quantification over them such that the first-order
variables represent nodes in the tree and the second-order variables and predicates
sets of nodes. A set of finite strings/trees is definable in MSO iff it is regular. Specifics
of L 2

K ,P will be briefly introduced in the relevant sections. See Thomas (1997) for
further background material on MSO and Rogers (1997, 1998) for L 2

K ,P in particular.

1An alternative regular representation of MGs is given in Kolb, Michaelis, Mönnich, and Morawietz
(2003). The method of Kobele et al. is a better choice for this project, though, as many reference-set
constraints in the literature operate on derivation trees.



9 Thomas Graf

2 Traditional Perspective on Optimality Systems

OSs were introduced independently by Frank and Satta (1998) and Karttunen
(1998) as a formalization of Optimality Theory (OT) (Prince and Smolensky 2004),
which has been the dominant theory of phonology in mainstream linguistics for
the last fifteen years. In OT, well-formed expressions are no longer derived from
underlying representations through iterated applications of string rewrite rules, as
was the case with SPE (Chomsky and Halle 1968). Instead, underlying represen-
tations — which are usually referred to as inputs — are assigned a set of output
candidates by a relation called generator, abbreviated GEN. This set is subsequently
narrowed down by a sequence of constraints c1, . . . , cn until only the optimal output
candidates remain. This narrowing-down process proceeds in a fashion such that
only the candidates that incurred the least number of violations of constraint ci are
taken into account for the evaluation of ci+1. Thus every constraint acts as a filter on
the set of output candidates, with the important addendum that the order in which
the filters are applied is crucial in determining optimality.

Consider the example in Fig. 2, which depicts an OT evaluation of output can-
didates using the tableau notation. Here some input i is assigned three output
candidates o1, o2 and o3. The OT grammar uses only three constraints c1, c2 and c3,
with each ci preceding ci+1, 1 ≤ i < 2. Constraint c1 is applied first. Candidates o2
and o3 each violate it once, however, o1 violates it twice and there are no other output
candidates. Thus o2 and o3 are the output candidates incurring the least number
of violations of the constraint and are allowed to proceed to the next round of the
evaluation. Candidate o1, on the other hand, is ruled out and does not participate in
further evaluations. Neither o2 nor o3 violate c2 (nor does o1, but this is immaterial
since it has been previously ruled out), so neither is filtered out. In the third round,
o2 and o3 are evaluated with respect to c3. Each of them violates the constraint once,
but since there is no candidate that fares better than them (again, o1 is not taken
into consideration anymore), they also survive this round of the evaluation. Thus, o2
and o3 are the optimal output candidates for i. If c3 had been applied before c1, on
the other hand, o2 and o3 would lose out against o1.

i c1 c2 c3

o1 2 0 0
o2 1 0 1
o3 1 0 1

Figure 2: Example of an OT evaluation in tableau notation

With this intuitive understanding of OT grammars under our belt, the formal
definitions of OSs and their output language (not to be confused with the candidate
language ran(GEN)) are straightforward.

Definition 5. An optimality system over languages L, L′ is a pair O := 〈GEN, C〉
with GEN ⊆ L × L′ and C :=




c1, . . . , cn
�

a linearly ordered sequence of functions
ci : GEN→ N. For a, b ∈ GEN, a <O b iff there is an 1 ≤ k ≤ n such that ck(a) < ck(b)
and for all j < k, c j(a) = c j(b).



A Tree Transducer Model of Reference-Set Computation 10

Definition 6. Given an optimality system O := 〈GEN, C〉, 〈i, o〉 is optimal with respect
to O iff both 〈i, o〉 ∈ GEN and there is no o′ such that




i, o′
�

∈ GEN and



i, o′
�

<O 〈i, o〉.
The transduction induced by O is given by τ := {〈i, o〉 | 〈i, o〉 is optimal with respect
to O }. The output language of O is ran(τ).

The important insight of Frank and Satta (1998) as well as Karttunen (1998),
which was later improved upon by Wartena (2000), Jäger (2002) and Kepser and
Mönnich (2006), is that an OS as defined above can be understood to define a
transduction from a set of inputs to its set of optimal output candidates. Moreover,
if the OS is suitably restricted, it is guaranteed to define a rational relation, which
implies its efficient computability.

Theorem 7. Let O := 〈GEN, C〉 be an OS such that

• dom(GEN) is a regular string language, or a regular/linear context-free tree
language, and

• GEN is a rational relation, and

• all c ∈ C are output-markedness constraints, and

• each c ∈ C defines a regular tree language.

Then the transduction τ induced by the OS is a rational relation and ran(τ) belongs to
the same formal language class as dom(τ).

The theorem makes reference to a term the reader is presumably familiar with
from the OT literature, output-markedness, which is easily defined in formal terms.

Definition 8. Given an OS O := 〈GEN, C〉, c ∈ C is an output-markedness constraint
iff c(〈i, o〉) = c(




i′, o
�

) for all 〈i, o〉 ,



i′, o
�

∈ GEN.

In the case of regular string and tree languages, the theorem can be generalized
significantly, as was shown by Jäger (2002).

Theorem 9. Let O := 〈GEN, C〉 be an OS such that

• dom(GEN) is regular string/tree language, and

• GEN is a rational relation, and

• all c ∈ C are output-markedness constraints, and

• each c ∈ C defines a rational relation on ran(GEN), and

• O is globally optimal.

Then the transduction τ induced by the OS is a rational relation and ran(τ) belongs to
the same formal language class as dom(τ).



11 Thomas Graf

Global optimality is a rather technical notion that requires a lot of finite-state
machinery to be in place before it can be made formally precise. Intuitively, an OS
is globally optimal iff for every optimal output candidate o it holds that there is no
input i such that o is an output candidate for i but not an optimal one. It is worth
going through the formal definition, though, as this will also make it clear why the
more general theorem does not carry over to linear context-free tree languages.

We start out with two definitions that reimplement the constraints of an OS, plus
its filtering procedure in relational terms.

Definition 10. Given some R ⊆ GEN, we associate with every ci ∈ C a relation
relRi :=

�


o, o′
�

| ci(o)< ci(o′)
	

∩ (R−1 ◦ R), the ranking of ci relativized to R.

The relativization with respect to R is achieved by intersecting the relation
representing the ranking the constraint induces over the entire candidate language
with (R−1 ◦ R), which is the relation that holds between two candidates o and o′

iff they are competing output candidates for some input i, i.e. iff both 〈i, o〉 and



i, o′
�

belong to GEN. In structural terms, relRi is the substructure obtained from
the structure defined by ci by removing all branches between output candidates
that never compete against each other. Note that since the class of rational string
relations is closed under intersection, composition, and taking inverse, relRi will
be a rational relation iff R is rational and there is a rational relation S such that
S ∩ (R−1 ◦ R) =

�


o, o′
�

| ci(o)< ci(o′)
	

∩ (R−1 ◦ R). Linear tree transductions, on
the other hand, are not closed under inverse, so when talking about rational tree
relations it has to be ensured that relRi itself is rational.

Definition 11. Let R ⊆ GEN and ci ∈ C . Then R � ci := R ◦ id(ran(R) \ ran(R ◦ relRi )) is
called the generalized lenient composition of R with ci.

The generalized lenient composition is the OS-model of the OT-filtering procedure.
It looks rather scary but is actually easy to master. Let us proceed from the inside to
the outside. By composing R with relRi , we obtain the subset of R in which the output
candidates are suboptimal. To see this, suppose that o is an optimal output candidate
with respect to relRi , so it is a minimal element in the structure defined by relRi . Now
suppose that there is an output candidate o′ that is worse than o, i.e.




o, o′
�

∈ relRi .
Assuming that R contains the pair 〈i, o〉, composing R and relRi means composing
the pairs 〈i, o〉 and




o, o′
�

, which yields



i, o′
�

. The optimal candidate o has been
“hidden” by the composition. With this short explanation the reader should now be
able to verify that the range of R ◦ relRi contains all suboptimal output candidates.
Removing those from the range of R and taking the diagonal over this new set thus
yields the identity function over the set of optimal output candidates, and composing
R with this function hence means filtering out all suboptimal candidates (as a helpful
exercise, the reader may verify that we get the right result even if all competing
output candidates incur the same number of violations with respect to ci).

To see that the generalized lenient composition is a finite-state procedure, it
suffices to know (i) that the range of a rational relation is a regular language if its
domain is regular, (ii) that the class of regular languages is closed under relative
complement, and (iii) that the diagonal of a regular set is a rational relation. However,



A Tree Transducer Model of Reference-Set Computation 12

the class of linear context-free languages is not closed under relative complement, and
this is why we need stronger conditions for OSs over linear context-free languages.

The finite-state perspective on OSs also allows for a redefinition of the transduc-
tions they induce. As Jäger (2002) shows, transductions can be defined purely in
terms of generalized lenient composition.

Theorem 12. Given an OS O :=



GEN,



c1, . . . , cn
��

satisfying the conditions above,
τ := GEN � c1 � . . . � cn.

But we set out to give a formal definition of global optimality, and now we have
all the required machinery.

Definition 13. Let R and S be relations. Optimality is global with respect to R and S
iff

∀i, o[(iRo ∧¬∃p(iRp ∧ pSo))→¬∃p(p ∈ ran(R)∧ pSo)]

Now let O := 〈GEN, C〉, C :=



c1, . . . , cn
�

be an optimality system. Then we say that O
is globally optimal or satisfies global optimality iff optimality is global with respect to
GEN � c i−1

1 := GEN � c1 � . . . � ci−1 and the ranking of ci relativized to GEN � c i−1
1 for all

1≤ i ≤ n.

The important thing to keep in mind here is that S does not correspond to the
absolute ranking induced by a constraint ci, but its relativized ranking (i.e. the one
with “holes” in it). Therefore global optimality does not demand that if o is optimal
for i, there is no output p that is more optimal than o for i, but rather that no output
p that competes against o with respect to some input j is more optimal than o. In
less technical terms, if o is an optimal output candidate for some input i, then there
is no input j for which o is an output candidate but not an optimal one.

In the next section, I introduce a notational variant of OS and use this variant to
show that global optimality is always satisfied for reference-set constraints, thereby
highlighting them as a very restricted subclass of OS. For the sake of simplicity, I will
implicitly assume that the OSs consist of only one constraint, as this does away with
a lot of tedious induction steps. Fortunately, this has no negative consequences for
the relevance of the results. First, when modelling reference-set constraints we do
not need more than one constraint. Second, every OS O :=




GEN,



c1, . . . , cn
��

can be
decomposed into a cascade of n OSs Ok :=




GENk,



ck
��

such that GENk is given by
GEN for k = 1 and {〈i, o〉 ∈ GENk−1 | 〈i, o〉 is optimal with respect to ck−1} otherwise
(for finite-state OS, the latter is equivalent to GENk−1 � ck−1).

3 Controlled Optimality Systems

OSs are perfectly capable of modelling reference-set constraints. The reference set
for any input i is defined by iGEN, and the evaluation metric can straightforwardly be
implemented as a sequence of constraints. Fewest Steps, for instance, can be viewed
as an OS in which a tree t is related by GEN to all the trees that were constructed
from the same lexical items as t, including t itself. Besides that, the OS has only one



13 Thomas Graf

constraint ∗TRACE, which punishes traces. As a consequence, only the trees with the
least number of traces will be preserved, and these are the optimal output candidates
for t. Focus Economy is slightly more involved and allows for different models. In
one of them (which isn’t the one I will formalize in Sec. 5.2), GEN relates a tree t
without stress annotation but a focus-marked constituent to its analogs with neutral
and shifted stress. The OS then uses two constraints, the first of which weeds out
trees in which the focus-marked constituent does not contain the main stress carrier,
while the second penalizes derivation length (the assumption here is that derivations
for trees with shifted stress are longer than those for trees with neutral stress). Then
a tree derived by stress shift will be optimal just in case the equivalent tree with
neutral stress has already been ruled out by the first constraint.

While these two examples show that OSs certainly can get the job done, the
way output candidates are specified for reference-set constraints actually relies on
additional structure — the reference sets — that is only indirectly represented by GEN.
In the following I introduce controlled OSs as a variant of standard OSs that is closer
to reference-set computation by making reference sets prime citizens of OSs and
demoting GEN to an ancillary relation that is directly computed from them. Note,
though, that in the case of a constraint like Focus Economy, where input language
and candidate language are disjoint, distinct inputs might be assigned the same
reference set. In such a configuration, it makes sense to map entire sets of inputs to
reference sets, rather than the individual inputs themselves. Let us call such a set of
inputs a reference type. An OS can then be defined by reference types and a function
mapping them to reference sets:

Definition 14. An F -controlled optimality system over languages L, L′ is a 4-tuple
O [F ] :=




GEN, C ,F ,γ
�

, where

• GEN and C are defined as usual,

• F is a family of non-empty subsets of L, each of which we call a reference type,

• the control map γ : F → ℘(L′) \ {;} associates every reference type with a
reference set, i.e. a set of output candidates,

• the following conditions are satisfied

– exhaustivity:
⋃

X∈F X = L
– bootstrapping: xGEN =

⋃

x∈X∈F Xγ

Every controlled OS can be translated into a canonical OS by discarding its third
and fourth component (i.e. F and the control map γ). In the other direction, a
controlled OS can be obtained from every canonical OS by setting F := {{i} | i ∈ L}
and γ : {i} 7→ iGEN. So the only difference between the two is that controlled OSs
modularize GEN by specifying it through reference types and the control map.

Now that OSs operate (at least partially) at the level of sets, it will often be
interesting to talk about the set of optimal output candidates assigned to some
reference type, rather than one particular input. But whereas the set of optimal



A Tree Transducer Model of Reference-Set Computation 14

output candidates is always well-defined for inputs — recall that for any input i this
set is given by iτ— we have to be more careful when lifting it to reference types,
because distinct inputs that belong to the same reference type may not necessarily be
assigned the same optimal output candidates. Such a situation may arise in OSs with
faithfulness or input-markedness constraints, which are sensitive to properties of the
input, or when two inputs i and j are of reference type X , but in addition j is also
of reference type Y . Given this ambiguity, one has to distinguish between the set of
output candidates that are optimal for at least one member of reference type X , and
the set of output candidates that are optimal for all members of reference type X .
The former is the up-transduction Xτ↑ :=

⋃

x∈X xτ, the latter the down-transduction
Xτ↓ :=

⋂

x∈X xτ.
At this point it might be worthwhile to work through a simple example. Fig. 3

on the facing page depicts a controlled OS and the distinct steps of its computation.
We are given a collection of reference types consisting of RED :=

�

i1, i2, i3, i4, i5, i6
	

,
SIENNA :=

�

i4
	

, TEAL :=
�

i5, i6, i7
	

, PURPLE :=
�

i8
	

, and LIME :=
�

i7, i9, i10
	

. The ref-
erence sets are BLUE :=

�

o1, o2, o3
	

, ORANGE :=
�

o3, o4, o5, o6, o7
	

, GREEN :=
�

o6, o7
	

,
and BROWN :=

�

o8, o9
	

. Finally, the graph of γ consists of the pairs 〈RED, BLUE〉,
〈SIENNA, BROWN〉, 〈TEAL,GREEN〉, 〈PURPLE, BROWN〉, and 〈LIME,ORANGE〉. Note that a
reference type may overlap with another reference type or even be a proper subset
of it, and the same holds for reference sets. This means that an input can belong
to several reference types at once. Consequently, xGEN may be a superset of Xγ for
every reference type X that contains x , as is the case for i4, say, but not for i7, even
though both are assigned exactly two reference types. Input i4 is related by GEN to all
outputs contained in REDγ ∪ SIENNAγ = BLUE ∪ BROWN =

�

o1, o2, o3, o8, o9
	

, whereas
i7 is related to LIMEγ ∪ TEALγ = ORANGE ∪ GREEN = ORANGE =

�

o3, o4, o5, o6, o7
	

. As
soon as GEN has been determined from the reference types and the control map,
the computation proceeds as usual with the constraints of the OS filtering out all
suboptimal candidates.

Interestingly, almost all reference-set constraints fall into two classes with respect
to how reference types and reference sets are distributed (see Fig. 4 on the next
page). In the case of Fewest Steps, where the input language is also the candidate
language, each reference type is mapped to itself, that is to say, there is no distinction
between reference types and reference sets. A constraint like Focus Economy, on the
other hand, requires not only the input language and the candidate language to be
disjoint, but also all reference sets and reference types.

The Fewest Steps-type class of OSs is best captured by the notion of endocentricity.

Definition 15. An F -controlled OS is endocentric iff Xγ= X for all X ∈ F .

Constraints like Focus Economy, on the other hand, are output-partitioned and
output-segregated in the following senses:

Definition 16. An F -controlled OS is

• output-partitioned iff for all distinct X , Y ∈ F , Xγ 6= Yγ implies Xγ∩ Yγ= ;.

• output-segregated iff for all distinct X , Y ∈ F , neither Xγ⊆ Yγ nor Yγ⊆ Xγ.



i9 c1 c2 c3

o1 1 2 0
+ o2 0 0 4

o3 2 2 1
+ o8 0 0 4

o9 0 1 0

i7 c1 c2 c3

o1 1 2 0
+ o2 0 0 4

o3 2 2 1
+ o8 0 0 4

o9 0 1 0

i1 i2 i3
i4

i5 i6
i7

i8

i9
i10

o1 o2 o3

o4

o5
o6

o7

o8
o9

Reference Types Reference Sets

Evaluation Output Language

i4 c1 c2 c3

o1 1 2 0
+ o2 0 0 4

o3 2 2 1
+ o8 0 0 4

o9 0 1 0

o2

o4

o6

o7

o8

yie
ld

s

yields

Figure 3: Example of a controlled OS; GEN is defined in a modular fashion using reference
types, reference sets, and the control map γ from reference types to reference sets

i1 i2 i3
i4

i5 i6
i7

i8

i9 i10

i5 i6
i7

i8

o1

o2

o3

o8
o9

Figure 4: Almost all instances of reference-set computation in the literature use one of the
two configurations above, both of which are output joint preserving



A Tree Transducer Model of Reference-Set Computation 16

While this class certainly fits Focus Economy and its ilk pretty well, it does not
extend naturally to endocentric OSs, which means that we would have to study the
two classes independently from each other. In particular, endocentric OSs aren’t
necessarily output-partitioned, as they do allow for overlapping reference-sets. Nor
is output-segregation a meaningful restriction on endocentric OSs: Given some F -
controlled OS, assume x ∈ X , y ∈ Y , X ⊆ Y . Then x is also a member of Y , whence
both




x , y
�

and



y, x
�

are in (the graph of) GEN. The reference type X is immaterial
for computing GEN and can be removed from F without consequences. Given these
discrepancies, we should not be too sure that results pertaining to one class can
easily be carried over to the other. As it turns out, though, a natural unification of
the two subclasses is available in the form of output joint preservation.

Definition 17. An F -controlled optimality system is output joint preserving iff for all
distinct X , Y ∈ F , Xγ∩ Yγ 6= ; → X ∩ Y 6= ;.

The OS depicted in Fig. 3 on the preceding page fails output joint preservation. It
is clearly violated by SIENNA and PURPLE, which are disjoint yet mapped to the same
reference set, BROWN. It isn’t respected by RED and LIME, either, which are mapped to
BLUE and ORANGE, respectively, the intersection of which is non-empty even though
RED and LIME are disjoint. Moving on to Fig. 4 on the previous page, we observe that
every endocentric OS is output joint preserving. In addition, all output-partitioned
OSs trivially satisfy output joint preservation, too, because there are no joints to
preserve in these OSs. These inclusions tell us that output joint preservation is
certainly general enough a property to encompass the kinds of controlled OSs we are
interested in. In the following, I show that in conjunction with another property it is
also sufficiently restrictive to establish a link to global optimality.

Definition 18. An F -controlled OS is type-level optimal iff Xτ↑ � Xγ= Xτ↓ � Xγ for
all X ∈ F .

Type-level optimality is essentially the restriction of global optimality to reference
types: If o is an optimal output candidate for some x ∈ X , then there is no y ∈ X
such that o isn’t optimal for y. Against this backdrop, the following lemma is hardly
surprising.

Lemma 19. Let O [F ] an F -controlled OS. Then O [F ] is type-level optimal if it is
globally optimal.

Proof. We prove the contrapositive. If O [F ] is not type-level optimal, then it holds
for some X ∈ F that Xτ↑ � Xγ 6= Xτ↓ � Xγ. But this implies that there are x , y ∈ X
and z ∈ Xγ such that xτ 3 z /∈ yτ, which is an unequivocal violation of global
optimality.

It should also be pointed out that type-level optimality is trivially satisfied if all
reference types are singleton. This setting also provides numerous examples that
show that the converse of the lemma does not hold. For instance, let O [F ] consist
only of the reference types {i} and

�

j
	

, which are both mapped to the reference
set
�

o, p
	

, but iτ= {o} whereas jτ=
�

p
	

. Then O [F ] is type-level optimal but not



17 Thomas Graf

globally optimal. The problem is that type-level optimality leaves a loop-hole for
OSs, as different reference types may have overlapping reference sets but disagree
on which candidates in the intersection they deem optimal. This hole is patched by
output joint preservation.

Theorem 20. Every output joint preserving OS is type-level optimal iff it is globally
optimal.

Proof. The right-to-left direction follows from Lem. 19. We prove the contrapositive
of the other direction. If O [F ] fails global optimality, then there are x , y ∈ L and
z ∈ L′ such that 〈x , z〉 ,




y, z
�

∈ GEN yet xτ 3 z /∈ yτ. W.l.o.g. let x ∈ X and y ∈ Y ,
X , Y ∈ F , whence z ∈ Xγ∩Yγ. As O [F ] is output joint preserving, Xγ∩Yγ 6= ; entails
X ∩ Y 6= ;. Pick some p ∈ X ∩ Y . Now assume towards a contradiction that O [F ] is
type-level optimal. Then it holds that Xτ↑ � Xγ= Xτ↓ � Xγ and Yτ↑ � Yγ= Yτ↓ � Yγ,
so z ∈ xτ implies z ∈ pτ, whereas z /∈ yτ implies z /∈ pτ. Contradiction. It follows
that O [F ] is not type-level optimal.

To reiterate, type-level optimality ensures that optimality is fixed for entire
reference types, so the individual inputs can be ignored for determining optimality.
However, it is too weak a restriction to rule out disagreement between reference
types that are mapped to overlapping reference sets, so output joint preservation has
to step in; it guarantees that if two reference types X and Y share at least one output
candidate, there exists some input p belonging to both X and Y that will be faced
with conflicting requirements if X and Y disagree with respect to which candidates
in Xγ∩ Yγ they deem optimal (since the OS is type-level optimal, optimality can be
specified for entire reference types rather than their members). It is clear, then, that
the conditions jointly imply global optimality.

Given our interest in using controlled OS to investigate the computability of
reference-set constraints, it would be advantageous if we could read off the con-
straints right away whether they interfere with type-level optimality. This is indeed
feasible thanks to the following entailment.

Lemma 21. Let O [F ] :=



GEN, C ,F ,γ
�

an F -controlled OS such that every c ∈ C is
an output-markedness constraint. Then O [F ] is type-level optimal.

Proof. Assume the opposite. Then for some X ∈ F , Xτ↑ � Xγ 6= Xτ↓ � Xγ, whence
there are x , y ∈ X and z ∈ Xγ with xτ 3 z /∈ yτ. But this is the case only if
there is some c ∈ C such that c(〈x , z〉) 6= c(




y, z
�

), i.e. c isn’t an output-markedness
constraint.

Corollary 22. Let O [F ] :=



GEN, C ,F ,γ
�

an output joint preserving OS such that
every c ∈ C is an output-markedness constraint. Then O [F ] is globally optimal.

Combining these results, we arrive at the equivalent of Thm. 7 for F -controlled
OSs.

Corollary 23. Let O [F ] :=



GEN, C ,F ,γ
�

an F -controlled OS such that

• dom(GEN) is a regular string language, or a regular/linear context-free tree
language, and



A Tree Transducer Model of Reference-Set Computation 18

• GEN is a rational relation, and

• all c ∈ C are output-markedness constraints, and

• each c ∈ C defines a rational relation on ran(GEN)/a rational tree language, and

• O [F ] is output joint preserving.

Then the transduction τ induced by the OS is a rational relation and ran(τ) belongs to
the same formal language class as dom(τ).

In sum, then, not only do output joint preserving OSs look like a solid base for
modelling reference-set constraints, they also have the neat property that the global
optimality check is redundant, thanks to Lem. 21. As it is pretty easy to determine for
any given reference-set constraint whether it can be modeled by output-markedness
constraints alone, the only stumbling block in the implementation of constraints that
can be modeled by output joint preserving OSs is the transducers for the constraints
and GEN. If those transducers each define a rational relation, so does the entire
optimality system.

It is not difficult to see, however, that Thm. 20 leaves ample room for generaliza-
tion. After all, the only role of output joint preservation is to ensure — in a rather
round-about way — that reference types with overlapping reference sets agree on
which candidates in the intersection they consider optimal. If this criterion can be
expressed directly, output joint preservation is redundant.

Definition 24. An F -controlled OS O [F ] satisfies synchronized optimality or is in
sync iff it is type-level optimal and satisfies the following condition:

(*) for all X , Y ∈ F with Xγ ∩ Yγ 6= ;, if z ∈ Xγ ∩ Yγ is an optimal output
candidate for X , it is also optimal for Y .

Theorem 25. An F -controlled OS O [F ] satisfies synchronized optimality if and only
if it is globally optimal.

Proof. In proving the contrapositive of the left-to-right direction, we distinguish two
cases. If it holds for all X , Y ∈ F that Xγ∩ Yγ = ;, then (*) is vacuously satisfied but
type-level optimality does not hold since O [F ] fails global optimality, so there has to
be a reference type X ∈ F whose inputs disagree on the optimality of some o ∈ Xγ.
So assume that O [F ] is type-level optimal but not output-partitioned. Then the lack
of global optimality entails that types X , Y ∈ F disagree on the optimality of some
o ∈ Xγ∩ Yγ, whence (*) is not satisfied.

It only remains for us to show the implication in the other direction. We prove the
contrapositive. If O [F ] is not in sync, then it fails type-level optimality or violates (*).
In the former case, Lem. 19 tells us immediately that the OS does not satisfy global
optimality. Assume then w.l.o.g. that O [F ] is type-level optimal but (*) does not
hold. Then there are X , Y ∈ F and z ∈ Xγ∩ Yγ such that xGEN 3 z ∈ yGEN for some
x ∈ X and some y ∈ Y , yet xτ 3 z /∈ yτ. Thus O [F ] is not globally optimal.



19 Thomas Graf

While Thm. 25 is more general than Thm. 20, its use is also more limited for
practical purposes. This is because synchronized optimality does not follow from
restricting the OS to output-markedness constraints. Just consider a case where Xγ
is a proper subset of Yγ. Then it cannot be precluded that even though x ∈ Xγ is
optimal for X , there is some y ∈ Yγ\Xγ that it loses out against, which means that x
is not optimal for Y . In particular, if Xγ is singleton, x will always be optimal for X ,
no matter how bad a candidate it is. Without the entailment from output-markedness
constraints, we are forced to manually check for synchronized optimality, which
might be a laborious process. As output joint preservation seems to be a robust
property of reference-set constraints and makes it a lot easier to check for global
optimality, Thm. 20 is of greater importance.

4 Transduction Preserving Operations

One argument that could be leveled against approaching global optimality by
means of the subclass of output joint preserving OSs rather than through synchro-
nized optimality is that output-joint preservation does not extend to several config-
urations that seem very natural and may in principle give rise to globally optimal
OSs. Consider for instance an F -controlled OS where F consists only of two disjoint
reference types X and Y , which are mapped to the same reference set. Such an
OS fails output joint preservation, yet it might be globally optimal if it is type-level
optimal.

One reply to this concern is to emphasize once more that such configurations do
not seem to occur with reference-set constraints. However, such a rebuttal would
be rather unappealing on a theoretical level, especially because the solution to the
problem above is simple: if we take the union of the reference types X and Y ,
what we get is an OS that defines the same generator relation, and thus the same
transduction, yet satisfies output joint preservation. So it seems that output joint
preservation is not as restrictive a property as one might think, provided that we
allow ourselves to meddle with the makeup of F . The question we have to answer,
then, is in which ways F may be manipulated without affecting the transduction
induced by an OS.

Note that the malleability of F is interesting for practical purposes, too, as it
might allow us to deal with peculiar cases where some reference types taken by
themselves are considerably more complex than their union. To give an example,
let P be the set of strings over some alphabet Σ whose length is prime, and Q its
complement. Now P does not define a regular language, not even a context-free one
(it is context-sensitive), but the union of P and Q is Σ∗, which is regular (in fact, it is
strictly 2-local, i.e. it belongs to one of the weakest classes of string languages that
are commonly studied).

So let us see what kind of operations can be applied to F without altering the
transduction τ induced by the OS. In our short discussion above, it was already
mentioned that if an operation has no effect on GEN, it has no effect on τ either.
In the case at hand, the operation was to take unions of reference types that are
mapped to the same reference set. Or speaking in functional terms, we took the



A Tree Transducer Model of Reference-Set Computation 20

union of all reference types that have the same image under the control map γ. So
we only turned γ from a many-to-one into a one-to-one function.

Theorem 26. Let O [F ] :=



GEN, C ,F ,γ
�

be an F -controlled OS over language L, L′.
Then there is an F ′-controlled OS O [F ′] :=




GEN, C ,F ′,γ′
�

over the same languages
such that γ′ is one-to-one (and F ′ is obtained from F by taking the union of all
X , Y ∈ F with Xγ= Yγ).

Thanks to this theorem, only OSs whose control map is one-to-one need to be
considered in the remainder of this section. In these cases taking unions of reference
types also requires taking union of reference sets. So if Xγ= A and Yγ= B, we want
(X ∪ Y )γ to be A∪ B. The same holds in the other direction, whence it does not make
a real difference whether we talk about unions of reference types or reference sets.
Soon though it will become evident that the conditions one may want to impose are
best expressed over reference sets; consequently, “taking unions” should be read as
“taking unions of reference sets” in the following.

Many examples are readily at hand that establish that transductions are not
preserved under arbitrary union. Consider an OS withF := {{a, b} , {b, c}}, {a, b}γ =
{d}, {b, c}γ = {e}, aτ = {d}, cτ = {e}, and bτ = {d, e}. If we take the union of {d}
and {e} (and consequently also of {a, b} and {b, c}), there is no guarantee that the
transduction will remain the same. In fact, it is very unlikely, since the constraints of
the OS would have to be sensitive to the input in such a way that d and e are equally
optimal for b, but d is a better output for a and at the same time worse for c. This
is a feasible out-turn, but hardly a common one. In particular, there is no way such
a result could obtain if all constraints were output-markedness constraints, which
is an important restriction for us. It also implies that we lost global optimality by
unionizing the reference sets. In the light of this outcome it seems prudent to focus
our attention on globally optimal OSs that use only output-markedness constraints;
after all, we are mostly interested in tinkering with computable OSs and extending
the applicability of output joint preservation, so these restrictions have no negative
repercussions for our endeavor.

For globally optimal OSs with output-markedness constraints only, then, arbitrary
union will in general induce a change in the transduction. As indicated by the
example above, this is almost inevitable if the reference sets are disjoint, since
it is very unlikely that all optimal output candidates of reference set A incur the
same number of violations with every constraint as all optimal output candidates
of reference set B. So what about taking unions of overlapping reference sets? Can
we find restrictions for this case that will ensure that the transduction itself remains
untouched?

At first sight overlapping reference sets appear to be just as problematic. If we
add an element f to the reference sets in the previous example, we run into the
same problems nonetheless. The source of all our troubles isn’t the disjointness
of the reference sets, but that by unionizing the reference sets, the optimal output
candidates of reference set A are suddenly confronted with new contenders, the
optimal output candidates of reference set B; unless all optimal output candidates of
A and B are evenly matched, a change in the transduction is inevitable. Figuratively
speaking, taking unions is a little bit like reshuffling the pack. For disjoint reference



21 Thomas Graf

sets, the reshuffling always creates an unpredictable situation, but with overlapping
reference sets, there is a case where we can still predict the outcome after the
reshuffling: if all optimal output candidates already had to compete against each
other in the original OS.

Definition 27. Given an OS O [F ] :=



GEN,



c1, . . . , cn
�

,F ,γ
�

over L, L′, z ∈ L′ is a
finalist iff it is in the range of GEN � c1 � . . . � cn−1. Two sets X , Y ∈ F with Xγ∩Yγ 6= ;
are finalist intersective iff Xγ ∩ Yγ ⊇

�

z ∈ Xγ∪ Yγ | z is a finalist
	

. An optimality
system is finalist intersective iff all X , Y ∈ F with Xγ∩ Yγ 6= ; are finalist intersective.

The notion of being finalist intersective is rather indirect, ideally there would be
a particular arrangement of reference sets that can be linked to it in a systematic
way. Now observe that no optimality system O [F ] with distinct X , Y, Z ∈ F such
that Xγ∩Yγ 6= ;, Xγ∩ Zγ 6= ; and Xγ∩Yγ∩ Zγ = ; is finalist intersective. Otherwise,
all finalists of X would have to be contained in Xγ∩ Yγ and Xγ∩ Zγ, i.e. (Xγ∩ Yγ)∩
(Xγ∩ Zγ) = Xγ∩ Yγ∩ Zγ, which is the empty set. In fact it can be shown that all
finalist intersective OSs are built from one basic pattern, which I call a blossom.

Definition 28. Given an F -controlled OS O [F ] with n ≥ 1 distinct X1, . . . , Xn ∈ F
such that

⋂n
i=1 X iγ is non-empty, we call B :=

�

X1γ, . . . , Xnγ
	

a blossom of O [F ], each
X iγ a petal of B and

⋂n
i=1 X iγ the stem of B. We say that B is maximal iff there is no

distinct Xn+1 ∈ F with Xn+1γ∩ X iγ 6= ;.

From the definition it follows immediately that all distinct maximal blossoms are
disjoint.

Lemma 29. Let O [F ] be an F -controlled OS with B :=
�

X1, . . . , Xn
	

⊆ F , n ≥ 1. If
X1γ, . . . , Xnγ are pairwise finalist intersective then B is a blossom, the stem of which
contains the finalists of each X i, 1≤ i ≤ n.

Proof. If O [F ] is output partitioned, this is trivially true. In all other cases, we have
to show that

⋂n
i=1 X i is non-empty and that it contains every finalist. This follows

from a simple proof by induction: W.l.o.g. put all members of B in a total order that
is reflected by their index. Now consider X1 and X2 in B. Since they are finalist
intersective, X1 ∩ X2 6= ; and contains all finalists of X1 and X2. Now suppose that M
is the intersection of X1, . . . , Xm ∈ B, 2< m< n; by assumption it contains the finalists
of each X i. By virtue of pairwise finalist intersectivity, Xm+1 ∩ X i has to contain all
the finalists of Xm+1 as well as X i for every 1≤ i ≤ m, so Xm+1 ∩M is non-empty and
contains all the finalists of X1, . . . , Xm+1.

Theorem 30. Let O [F ] be an OS that satisfies global optimality and uses only output-
markedness constraints. Then global optimality of O [F ] is preserved under union of
finalist intersective reference sets.

Proof. Assume w.l.o.g. that the reference sets X1, . . . , Xn are finalist intersective. By
the previous lemma, all finalists of each X i, 1≤ i ≤ n, belong to

⋂n
i=1 X i. So none of

them are outranked by any member of X j \
⋂n

i=1 X i for all 1≤ j ≤ n (an easy proof
by contradiction is sufficient to establish this). Thus no member of

⋃n
i=1 X i \

⋂n
i=1 X i

can be an optimal output candidate for any x ∈
⋃n

i=1 X i, whence xτ is unaffected by
extending xGEN to

⋃n
i=1 X i and global optimality is preserved.



A Tree Transducer Model of Reference-Set Computation 22

Since maximal blossoms are disjoint, it follows that if an OS is finalist intersective,
an equivalent output-partitioned OS can be obtained by taking unions of finalist
intersective reference sets. Adding to this the observation that γ can be assumed to
be one-to-one, we derive that every finalist intersective OS has an equivalent output
joint preserving OS.

Corollary 31. For every finalist intersective OS O [F ] :=



GEN, C ,F ,γ
�

there exists an
output joint preserving OS O [F ]′ :=




GEN, C ,F ′,γ′
�

that defines the same transduction.

5 Focus Economy

Judging from the general results about OSs it seems very likely that many
reference-set constraints can be implemented by linear transducers and hence are
efficiently computable. We already established that output joint preservation is usu-
ally satisfied, and the same goes for type-level optimality. The crucial question, then,
is whether GEN and the constraints can be computed by linear transducers. In the
remainder of this paper, I demonstrate that this is true for three popular constraints,
starting with Focus Economy.

5.1 Focus Economy Explained

Focus Economy (Szendrői 2001; Reinhart 2006) was briefly discussed in the
introduction. It is invoked in order to account for the fact that sentences such as (2a),
(2b) and (2c) below differ with respect to what is given and what is new information.
Once again main stress is marked by boldface.

(2) a. My friend Paul bought a new car.
b. My friend Paul bought a new car.
c. My friend Paul bought a new car.

That these utterances are associated to different information structures is witnessed
by the following (in)felicity judgments. For the reader’s convenience, the focus, i.e.
the new discourse material introduced by each answer, is put in square brackets.

(3) What happened?
a. [F My friend Paul bought a red car.]
b. # [F My friend Paul bought a red car.]
c. # [ f My friend Paul bought a red car.]

(4) What did your friend Paul do?
a. He [F bought a red car].
b. # He [F bought a red car].
c. # He [F bought a red car].

(5) What did your friend Paul buy?
a. He bought [F a red car].



23 Thomas Graf

b. # He bought [F a red car].
c. # He bought [F a red car].

(6) Did your friend Paul sell a red car?
a. # No, he [F bought] a red car.
b. No, he [F bought] a red car.
c. # No, he [F bought] a red car.

(7) Did your friend Paul buy a green car?
a. # No, he bought a [F red] car.
b. # No, he bought a [F red] car.
c. He bought a [F red] car.

Restricting our attention to the a-sentences only, we might conclude that a
constituent can be focused just in case one of its subconstituents carries sentential
main stress. A short glimpse at the b- and c-utterances falsifies this conjecture,
though. Perhaps, then, main stress has to fall on the subconstituent at the right edge
of the focused constituent? This is easily shown to be wrong, too. In (8) below, the
stressed constituent isn’t located at either edge of the focused constituent.

(8) a. What happened to Mary?
b. [F John killed her.]

The full-blown Focus Economy system (rather than the simplified sketch given
in the introduction) accounts for the data as follows. First, the Main Stress Rule
demands that in every pair of sister nodes, the “syntactically more embedded” node
(Reinhart 2006:p.133) is assigned strong stress, its sister weak stress (marked in the
phrase structure tree by subscripted S and W, respectively). If a node has no sister, it
is always assigned strong stress (in Minimalist syntax, this will be the case only for
the root node, as all Minimalist trees are strictly binary branching). Main stress then
falls on the unique leaf node that is connected to the root node by a path of nodes
that have an S-subscript. See Fig. 5 for an example.

The notion of being syntactically more embedded isn’t explicitly defined in the
literature. It is stated in passing, though, that “. . . main stress falls on the most
embedded constituent on the recursive side of the tree” (Reinhart 2006:p.133).
While this is rather vague, it is presumably meant to convey that — at least for
English, in which complements follow the heads they are introduced by — the right
sister node is assigned strong stress as long as it isn’t an adjunct. This interpretation
seems to be in line with the empirical facts.

The second integral part of the proposal is the operation Stress Shift, which shifts
the main stress to some leaf node n by assigning all nodes on the path from n to the
root strong stress and demoting the sisters of these nodes to weakly stressed nodes.
For instance, the tree for “My friend Paul bought a new red car” is obtained from the
tree in Fig. 5 by changing friendW and PaulS to friendS and PaulW , respectively, and
DPW and T′S to DPS and T′W , respectively.

While Stress Shift could be invoked to move stress from anaphoric elements
to their left sister as in (8), this burden is put on a separate rule, for independent



A Tree Transducer Model of Reference-Set Computation 24

TPS

DPW

myW D′S

friendW PaulS

T′S

TW VPS

boughtW DPS

aW APS

redW carS

Figure 5: The stress-annotated phrase structure tree for (2a)

reasons. The rule in question is called Anaphoric Destressing and obligatorily assigns
weak stress to anaphoric nodes, where a node is anaphoric iff it is “. . . D[iscourse]-
linked to an accessible discourse entity” (Reinhart 2006:p.147). Thus Anaphoric
Destressing not only accounts for the unstressed anaphor in (8), but also for the
special behavior of stress in cases of parallelism.

(9) First Paul bought a red car.
a. Then John bought one.
b. * Then John bought one.

The overall system now works as follows. Given a phrase structure tree that has
not been annotated for stress yet, one first applies Anaphoric Destressing to make
sure that all d-linked constituents are assigned weak stress and thus cannot carry
main stress. Next the Main Stress Rule is invoked to assign every node in the tree
either W or S. Note that the Main Stress Rule cannot overwrite previously assigned
labels, so if some node n has been labeled W by Anaphoric Destressing, the Main
Stress Rule has to assign S to the sister of n. Now that the tree is fully annotated, we
compute its focus set, the set of constituents that may be focused.

(10) Focus Projection
Given some stress-annotated tree t, its focus set is the set of nodes reflexively
dominating the node carrying main stress.

The focus set of “Paul bought a red car”, for instance, contains [car], [.AP red car],
[.DP a red car], [.VP bought a red car] and [.TP Paul bought a red car] (equivalently,
we could associate every node in the tree with a unique address and simply use
these addresses in the focus set). For “Then John bought one”, on the other hand, it
consists only of [John] and [.TP Then John bought one].

At this point, Stress Shift may optionally take place. After the main stress has
been shifted, however, the focus set has to be computed all over again, and this time
the procedure involves reference-set computation.



25 Thomas Graf

(11) Focus Projection Redux
Given some stress-annotated tree t ′ that was obtained from tree t by Stress
Shift, the focus set of t ′ contains all the nodes reflexively dominating the
node carrying main stress which aren’t already contained in the focus set of
t.

So if “Then John bought one” had been obtained by Stress Shift from [.TP Then John
bought one] rather than Anaphoric Destressing, its focus set would have contained
only [John], because [.TP Then John bought one] already belongs to the focus set of
“Then John bought one”. As an easy exercise, the reader may want to draw annotated
trees for the examples in (2) and compute their focus sets.

5.2 A Model of Focus Economy

After this general overview, we may attempt to formalize Focus Economy. In
order to precisely model Focus Economy, though, I have to make some simplifying
assumptions, for reasons that are entirely independent from the restrictions of OSs.
First, I stipulate that adjuncts are explicitly marked as such by a subscript A on their
label. This is simply a matter of convenience, as it reduces the complexity of the
transducers and makes my model independent from the theoretical status of adjuncts
in syntax.

Second, I decided to take movement out of the picture, because the interaction of
focus and movement is not touched upon in Reinhart (2006), so there is no original
material to formalize. Incidentally, movement seems to introduce several interesting
complications, as illustrated by sentences involving topicalization, where no other
assignment of focus and main stress is grammatical.

(12) a. [F Johni] Paul likes ti.
b. * Johni [FPaul] likes ti.
c. * Johni [F Paul likes ti].

At the end of the section I argue that the model can be extended to capture theories
involving movement.

The last simplification concerns Anaphoric Destressing itself. While the core of
Anaphoric Destressing, the destressing of pronominal (and possibly covert) elements,
is easy to accommodate, the more general notion of d-linking is impossible to capture
in any model that operates on isolated syntactic trees. Devising a working model of
discourse structure vastly exceeds the scope of this contribution. Also, the role of d-
linking in anaphoric destressing is of little importance to this paper, which focuses on
the reference-set computational aspects of Focus Economy. Thus my implementation
will allow almost any constituent to be anaphorically destressed and leave the task
of matching trees to appropriate discourse contexts to an external theory of d-linking
that remains to be specified.

With these provisions made explicit, the formalization of Focus Economy as a
controlled OS can commence. The input language is supposedly derived by some
movement-free MG E for English (Stabler and Keenan 2003) in which interior nodes



A Tree Transducer Model of Reference-Set Computation 26

are given explicit category labels (once more for the sake of convenience). As MGs
without remnant movement generate regular tree languages (Kobele 2010), it is safe
to assume that MGs without any kind of movement do so, too.

Next I define GEN as the composition of four linear transducers corresponding
to Anaphoric Destressing, the Main Stress Rule, Stress Shift, and Focus Projection,
respectively. Given a tree t derived by E , the transducer cascade computes all
logically possible variants of t with respect to stress assignment and then computes
the focus in a local way. This means that GEN actually overgenerates with respect to
focus, a problem that we have to take care of at a later step.

Anaphoric Destressing is modeled by a non-deterministic ltdtt that may randomly
add a subscript D to a node’s label in order to mark it as anaphoric. The only
condition is that if a node is labeled as anaphoric, all the nodes it properly dominates
must be marked as such, too.

Definition 32. Let Σ := ΣL ∪ΣA be the vocabulary of the MG E that generated the
input language, where ΣL contains all lexical items and category labels and ΣA their
counterparts explicitly labeled as adjuncts. Anaphoric Destressing is the ltdtt D where
ΣD := Σ, ΩD is the union of Σ and ΣD :=

�

σD | σ ∈ Σ
	

, Q :=
�

qi , qd
	

, Q′ :=
�

qi
	

, and
∆D contains the rules below, with σ ∈ Σ and σD ∈ ΣD:

qi(σ(x , y))→ σ(qi(x), qi(y)) qi(σ)→ σ
q{i,d}(σ(x , y))→ σD(qd(x), qd(y)) q{i,d}(σ)→ σD

The transducer for the Main Stress Rule is non-deterministic, too, but it proceeds
in a bottom-up manner. It does not alter nodes subscripted by A or D, but if it
encounters a leaf node without a subscript, it randomly adds the subscript S or W
to its label. However, W is allowed to occur only on left sisters, whereas S is mostly
restricted to right sisters and may surface on a left sister just in case the right sister
is already marked by A or D. Note that we could easily define a different stress
pattern, maybe even parametrized with respect to category labels, to incorporate
stress assignment rules from other languages.

Definition 33. Main Stress is the lbuttM where ΣM := ΩD , ΩM is the union of Σ,
ΣD and Σ∗ :=

�

σS ,σW | σ ∈ Σ
	

, Q :=
�

qs, qu, qw
	

, Q′ :=
�

qs
	

and ∆M contains the
following rules, with σ ∈ Σ, σA ∈ ΣA, σx ∈

�

σx | σ ∈ Σ
	

for x ∈ {D, S, W}:

σA→ qu(σA) σA(qu(x), qu(y))→ qu(σA(x , y))

σD→ qu(σD) σD(qu(x), qu(y))→ qu(σD(x , y))

σ→ qsw(σSW ) σ(q{u,w}(x), qs(y))→ qsw(σSW (x , y))

σ(qs(x), qu(y))→ qsw(σSW (x , y))

Stress Shift is best implemented as a non-deterministic ltdtt that may randomly
switch the subscripts of two S/W-annotated sisters.

Definition 34. Stress Shift is the ltdtt S where ΣS = ΩS = ΩM , Q :=
�

qi , qs, qw
	

,



27 Thomas Graf

Q′ :=
�

qs
	

, and ∆S contains the rules below, with σ ∈ ΣS and σ∗ ∈ Σ∗:

qs(σ∗(x , y))→ σSSS(qisw(x), qiws(y)) qs(σ∗)→ σS

qw(σ∗(x , y))→ σW (qi(x), qi(y)) qw(σ∗)→ σW

qi(σ(x , y))→ σ(qi(x), qi(y)) qi(σ)→ σ

The last component is Focus Projection, which is formalized as a non-deterministic
ltdtt with two states, q f and qg . The transducer starts at the root in q f . Whenever a
node n is subscripted by W, the transducer switches into qg at this node and stays
in the state for all nodes dominated by n. As long as the transducer is in q f , it may
randomly add a superscript F to a label to indicate that it is focused. Right afterward,
it changes into qg and never leaves this state again. Rather than associating a stress-
annotated tree with a set of constituents that can be focused, Focus Projection now
generates multiple trees that differ only with respect to which constituent along the
path of S-labeled nodes is focus-marked.

Definition 35. Focus Projection is the ltdtt F , where ΣF = ΩS , ΩF is the union of
ΩS and ΩF

S := {ωF |ω ∈ ΩS }, Q := {q f , qg}, Q′ := {q f }, and ∆F contains the rules
below, with σ ∈ ΣF and σS ∈ ΣF \

�

σS | σ ∈ Σ
	

:

q f (σS(x , y))→ σS(q f (x), q f (y))

q f (σS(x , y))→ σF
S (qg(x), qg(x)) q f (σS)→ σF

S

q f (σS(x , y))→ σS(qg(x), qg(x)) q f (σS)→ σS

qg(σ(x , y))→ σ(qg(x), qg(y)) qg(σ)→ σ

All four transducers are linear, so they can be composed into a single lbutt
modelling GEN (see Engelfriet 1975 for a constructive proof that every ltdtt can be
converted into an lbutt defining the same transduction). Expanding on what was
said above about the inner workings of GEN, we now see that for any tree t in the
input language, tGEN is the set of stress-annotated trees in which, first, some subtrees
may be marked as adjuncts or anaphorical material (or both) and thus do not carry
stress information, second, there is exactly one path from the root to some leaf such
that every node in the path is labeled by S, and third, exactly one node belonging to
this path is marked as focused. The reader should have no problem verifying that in
terms of controlled OSs, all reference types are singleton and their reference-sets do
not overlap, i.e. output joint preservation and type-level optimality are satisfied.

Now it only remains for us to implement Focus Projection Redux. In the original
account, Focus Projection Redux applied directly to the output of Stress Shift, i.e.
trees without focus information, and the task at hand was to assign the correct focus.
In my system, on the other hand, every tree is fed into Focus Projection and marked
accordingly for focus. This leads to overgeneration for trees in which Stress Shift has
taken place — a node may carry focus even if it could also do so in the tree without
shifted main stress. Consequently, the focus set of “John died”, for instance, turns
out to contain both [John] and [.TP John died] rather than just the former. Under
my proposal, then, Focus Projection Redux is faced with the burden of filtering out
focus information instead of assigning it. In other words, Focus Projection Redux is a
constraint.



A Tree Transducer Model of Reference-Set Computation 28

This is accomplished by defining a regular tree language Lc such that when GEN is
composed with the diagonal of Lc (which is guaranteed to be a linear transduction),
only trees with licit focus marking are preserved. Said regular language is easily
specified in the monadic second-order logic L 2

K ,P (Rogers 1998). First one defines
two predicates, StressPath and FocusPath. The former picks out the path from the
root to the leaf carrying main stress, whereas the latter refers to the path from the
root to the leaf that would carry main stress in the absence of stress shift. This
implies that FocusPath replicates some of the information that is already encoded in
the Main Stress transducer. Note that in the definitions below, A(x), D(x) and S(x)
are predicates picking out all nodes with subscript A, D, S, respectively, x / y denotes
“x is the parent of y”, x ≺ y “x is the left sibling of y”, and /∗ the reflexive transitive
closure of /.

Path(X )↔∃x
h

X (x)∧¬∃y[y / x]
i

∧ ∃!x
h

X (x)∧¬∃y[x / y]
i

∧

∀x , y, z
h

�

X (x)∧ X (y)→ x /∗ y ∨ y /∗ x
�

∧
�

X (x)∧¬X (z)→¬(z /∗ x)
�

i

StressPath(X )↔ Path(X )∧∀x[X (x)→ S(x)]

FocusPath(X )↔ Path(X )∧∀x , y, z
h

X (x)∧ x / y ∧ x / z→
�

(A(y)∨ D(y))→ X (z)
�

∧
�

¬A(y)∧¬D(y)∧ y ≺ z→ X (z)
�

i

In a tree where no stress shift has taken place, StressPath and FocusPath are
true of the same subsets and any node contained by them may be focused. After an
application of the Stress Shift rule, however, the two paths are no longer identical,
although their intersection is never empty (it has to contain at least the root node). In
this case, then, the only valid targets for focus are those nodes of the StressPath that
aren’t contained in the FocusPath. This is formally expressed by the L 2

K ,P sentence φ
below. Just like A(x), D(x) and S(x) before, F(x) is a predicate defining a particular
set of nodes, this time the set of nodes labeled by some ωF ∈ ΩF

S . I furthermore use
X ≈ Y as a shorthand for ∀x[X (x)↔ Y (x)].

φ := ∀x , X , Y [F(x)∧ X (x)∧ StressPath(X )∧ FocusPath(Y )→ (Y (x)→ X ≈ Y )]

Note that φ by itself does not properly restrict the distribution of focus. First of
all, there is no requirement that exactly one node must be focused. Second, nodes
outside StressPath may carry focus, in which case no restrictions apply to them at
all. Finally, StressPath and FocusPath may be empty, because we have not made
any assumptions about the distribution of labels. Crucially, though, φ behaves as
expected over the trees in the candidate language. Thus taking the diagonal of the
language licensed by φ and composing it with GEN filters out all illicit foci, and
only those. Since the diagonal over a regular language is a linear transduction, the
transduction obtained by the composition is too. This establishes the computational
feasibility of Focus Economy when the input language is a regular tree language.
That is, Focus Economy preserves the regularity of the input language.



29 Thomas Graf

So far I have left open the question, though, how movement fits into the picture.
First of all, it cannot be ruled out a priori that the interaction of movement and focus
are so intricate on a linguistic level that significant modifications have to be made
to the original version of Focus Economy. On a formal level, this would mean that
the transduction itself would have to be changed. In this case, it makes little sense
to speculate how my model could be extended to accommodate movement, so let
us instead assume that Focus Economy can remain virtually unaltered and it is only
the input language that has to be modified. In my model, the input language is a
regular tree language by virtue of being generated by an MG without movement. But
note that MGs with movement generate regular tree languages, too, in the presence
of a ban against more exotic kinds of movement such as remnant movement or
head movement (Kobele 2010). Now keep in mind that regular tree languages yield
context-free string languages, which are generally assumed to be powerful enough
for the greatest part of natural language syntax. Thus the restriction to regular
tree languages itself does not preclude us from accommodating most instances of
movement.

If we want the full expressive power of MGs, then the best strategy is to express
Focus Economy as a constraint over derivation trees, since for every MG the set of
derivation trees it licenses forms a regular language that fully determines the tree
yield of the grammar (Kobele et al. 2007). The only difference between Minimalist
derivation trees and movement-free phrase structure trees as derived above is that
the latter are unordered. Hence, if we require that linear order (which can be
easily determined from the labels of the leaves) is directly reflected in the derivation
trees, the formalization above carries over unaltered to derivation trees and may
be extended as desired to deal with instances of movement. One possible obstacle
for taking this route though is that even though regular languages are closed under
linear transductions, it is still an open problem whether the derivation tree languages
of an MG are, too. If they weren’t, then applying a linear transduction would still
yield a regular language, but not necessarily a well-formed derivation language.

At least for Focus Economy, though, closure under linear transductions may be
more than we actually need. First, notice that the transducers the composition
of which makes up GEN are very simple non-deterministic finite-state relabelings.
Now we shouldn’t expect the derivation tree languages of MGs to be closed under
finite-state relabelings, despite their simplicity (the IO-context-free tree languages,
for instance, aren’t closed under these relabelings). However, when we consider
the form of the trees in the range of GEN, it seems fairly unlikely that it couldn’t be
obtained directly by an MG. The only conditions are that there is a unique path of
S-labeled nodes and that one node in this path is also marked for focus. Things are
complicated slightly by the special status of adjuncts and anaphorically destressed
nodes, but overall we are dealing with very simple conditions that a MG should
have no problem with. The truly problematic question, then, is whether the tree
languages of MGs are closed under intersection with a regular language, i.e. whether
we can apply the filtering step to tame the overgeneration inherent to GEN. To my
knowledge, this is an open problem, too, although the answer might already be
implicit in the automata-theoretic perspective on MGs of Kobele et al. (2007) or the



A Tree Transducer Model of Reference-Set Computation 30

two-step approach of Kolb et al. (2003).

6 Merge-over-Move

Another well-known reference-set constraint is Chomsky’s Merge-over-Move
condition (MOM; Chomsky 1995b, 2000), which is the subject of inquiry in this
section. After a short discussion of the mechanics of the constraint and its empirical
motivation, I turn to the formal aspects of implementing MOM. In spite of the fact
that MOM is what we might now — using the terminology previously introduced
for OSs — call an endocentric, i.e. Fewest Steps-like constraint, the procedure for
devising a MOM transducer exhibits many parallels to Focus Economy. I take this as
further support of my earlier claim that both kinds of constraints can be naturally
studied in the framework of OSs and tree transducers.

6.1 Merge-over-Move Explained

In comparison to Focus Economy, modelling MOM is slightly more intricate,
because there are multiple versions of the constraint, which are seldom carefully
teased apart in the literature. Naturally they all share the core idea of MOM: if at
some point in a derivation we are allowed to choose between Merge and Move as
the next step of the derivation, Merge is preferable to Move. This idea can be used to
account for some puzzling contrasts involving expletives (if not indicated otherwise,
all examples are taken from Castillo, Drury, and Grohmann 2009).

(13) a. There seems to be a man in the garden.
b. * There seems a man to be in the garden.
c. A man seems to be in the garden.

Recall that in an MG in Chomsky’s sense, we start out with a multiset of lexical
items — the numeration — that are enriched with interpretable and uninterpretable
features, the latter of which have to be erased by the operation of feature checking.
Under such a conception, (13a) and (13c) are easy to derive. Let us look at (13c)
first. It starts out with the numeration {seems, to, be, a, man, in, the, garden}.
Multiple applications of Merge yield the phrase [TP to be a man in the garden]]. At
this point, the Extended Projection Principle (EPP) demands that the specifier of
the infinitival TP be filled by some phrase. The only item left in the numeration is
seems, which cannot be merged in SpecTP. Hence we are stuck with moving the DP a
man into SpecTP, yielding [TP a man to be tDP in the garden]. Afterwards, the TP is
merged with seems and the DP is once again moved, this time into the specifier of
seems to check the case feature of the DP and satisfy the EPP.

For (13a), however, things are slightly different. Here the numeration initially
consists of {there, seems, to, be, a, man, in, the, garden}. Once again we start out
by merging items from the numeration until we arrive at [TP to be [DP a man in the
garden]]. But now we have two options: Merger of there, which is later followed by
moving there into the specifier of seems, thus yielding the grammatical (13a), or first



31 Thomas Graf

moving a man into the specifier of to be and subsequently merging there with seems a
man to be in the garden, which incorrectly produces the ungrammatical (13b). MOM
rectifies this overgeneration problem by barring movement of a man into the specifier
of to be, as the more economical route of merging there in this position is available to
us. At the same time, MOM does not block (13c) because we aren’t given a choice
between Merge and Move at any point of its derivation.

Different versions of MOM emerge depending on the setting of two binary pa-
rameters:

P1 Reference set algorithm: indiscriminate/cautious
Indiscriminate versions of MOM (iMOM) pick the most economical derivation
even if it derives an ungrammatical phrase structure tree — such derivations
are said to crash. Cautious versions of MOM (cMOM), on the other hand, picks
the most economical derivation that yields a well-formed tree.2

P2 Mode of application: sequential/output
Sequential versions of MOM (sMOM) check for MOM violations after every step
of the derivation. Thus early violations of MOM carry a significantly greater
penalty than later ones.3 MOM applied to the output (oMOM), however, is
sensitive only to the total number of violations, not their timing. So if derivation
d incurs only one violation of MOM, which occurs at step 4 in the derivation,
while derivation d ′ incurs seven, starting at step 5, then d will win against d ′

under an output filter interpretation of MOM and lose under a sequential one.

Combining the parameters in all logically possible ways (modulo underspecifi-
cation) yields the four variants isMOM, csMOM, ioMOM and coMOM. All four of
them supposedly use the Identity of Numerations Condition (INC) for computing
reference sets, according to which the reference set of a derivation d contains all
the derivations that can be built from the same numeration as d.4 “Supposedly”,
because only the sMOM variants have been discussed at length in the literature. The
original proposal by Chomsky (1995b) is what I call csMOM. But the global flavor of
csMOM (if MOM is evaluated at every step of the derivation, i.e. before the derivation

2If we include crashing derivations in the reference set, however, we face the problem that the
empty derivation, or a derivation that never moves anything, will always be the most grammatical
option. The condition would have to be strengthened such that one may only consider derivations that
obey all syntactic principles up to the first choice between Merge and Move, at which point they may
later run into irreparable problems. The technical details are presumably much more complicated than
that, but fortunately they are of little importance given my objectives. I will simply adopt the tentative
assumption in the literature that only “reasonable” alternatives are in the reference set.

3This raises several thorny issues concerning the notion of derivational earliness, as derivations
are usually partial rather than total strict orders. Fortunately these complications do not surface in
the cases MOM was designed to account for, so I will happily ignore them. But in grammars with
sidewards-movement this issue needs to be properly addressed (Drummond 2010).

4The astute reader may rightfully point out that the INC is both too weak and too strong. On the
one hand, it erroneously allows John likes Mary to compete against Mary likes John, yet on the other
hand it seems to block competition between candidates that differ only in their feature make-up, even
if only marginally so. This observation is correct and highlights a problem in the specification of MOM’s
reference-set algorithm that has frequently been lamented in the literature (Sternefeld 1996). As it
turns out, though, these formal problems, as well as certain empirical quandaries I will discuss later on,
do not arise in a tree transducer model of MOM.



A Tree Transducer Model of Reference-Set Computation 32

is completed, how does it know which competing derivations will crash later on
and thus may be discarded for the comparison?) prompted the creation of isMOM
as a strictly local alternative. Indeed isMOM can be argued to contain not even a
modicum of reference-set computation, as it simply states that if there is a choice
between Merge and Move, pick Merge. Whether such a choice exists can always be
checked locally.

For simple cases like (13), where we only have to choose once between Merge
and Move, all MOM variants produce the same results (although evaluation of iMOM
variants is complicated by the open question which degree of deviancy one wants
to allow for competing derivations; see my remarks in fn. 2). But as soon as we
encounter examples involving embedded clauses, the predictions diverge (which was
already noted as early as 1997 by Wilder and Gärtner).

(14) a. There was [a rumor [that a man was tDP in the room]] in the air.
b. [A rumor [that there was a man in the room]] was tDP in the air.

Both oMOM-versions get the right result: Each sentence prefers Move over Merge
exactly once, so assuming that there are no (grammatical) competing derivations
that start from the same numeration and incur fewer violations, (14a) and (14b)
should both be grammatical. The sMOM variants, on the other hand, struggle with
this data. The sentences are built up from the same numeration, so (14b) should
block (14a), since the former violates MOM at a later derivational step than the
latter. In order to account for such cases, Chomsky (2000) stratifies numerations
into subnumerations such that each CP has its own numeration (which is extended
in Chomsky 2001 to the contemporary phase system). In the case at hand, (14a) is
built from the numeration {{there, was, a, rumor, in, the, air}, {that, was, a, man,
in, the, room}}, and (14b) from the minimally different {{was, a, rumor, in, the,
air}, {that, there, was, a, man, in, the, room}}. By the INC, then, derivations built
from the former do not belong to the same reference set as derivations built from the
latter.

So now we have a third parameter to take into account. Even though it isn’t
directly related to the makeup of MOM, I will indicate it as a prefix as before.

P3 Application domain: restricted/unbounded
Restricted versions of MOM (rMOM) are parts of a grammar where every CP
has its own numeration. Unbounded versions (uMOM) belong to grammars
with one big numeration.

Taking stock, we have csuMOM as the version of MOM introduced in Chomsky
(1995b), isuMOM as its local counterpart, and csrMOM as the modification put for-
ward in Chomsky (2000). Somewhat surprisingly, no oMOM variants are entertained
in the literature, despite the small empirical advantage they have displayed so far.
For this reason, I shall mostly restrict myself to sMOM variants in the following.

6.2 Properties of Merge-over-Move

Let us step back for a second to take in the architecture of MOM on a broad
scale, in terms of OSs. If one abstracts away from the peculiarities of the application



33 Thomas Graf

mode, MOM merely acts as a filter on the tree language derived by a grammar;
the trees don’t have to be manipulated at all, as was the case with Focus Economy.
It follows that MOM is endocentric and thus output joint preserving. Moreover,
reference sets presumably do not overlap, at least not if we take the identity of
numerations requirement literally, whence MOM is also output partitioned. Finally,
the evaluation metric is independent of the input — for oMOM, that is. With sMOM
we run into a problem. Whether a step was taken earlier in comparison to other
candidates cannot simply be read off the total number of violations. Instead, the
evaluation itself has to proceed in a bottom up fashion, weeding out candidates
with unnecessary instances of Move after every derivational step. It seems, then,
that the metric involves genuine reference-set computation which requires us to
consider multiple tree structures at once. However, remember that we faced a similar
problem with Focus Economy, where the constraint as it was stated in the literature
relied on comparing two focus-annotated trees to determine licit foci. Our answer
to this problem was to represent the competing trees within a single tree (using the
FocusPath and StressPath predicates) and thus emulate the comparative procedures
by well-formedness constraints on this one underlying tree. If we could find a similar
way of representing competing derivations within one derivation tree, a major hurdle
would be out of the way.

But there is yet another problem, and this one pertains to sMOM as well as oMOM:
the INC; it is impossible for a linear tree transducer to define the corresponding
partition over the input language. The major culprit here is the restriction to finite
memory, which entails that we can only distinguish between a bounded number of
occurrences of lexical items. For some suitably large n, the multiset M ′ obtained
from M := {Johnn, thinksn, thatn, Mary died} by adding one more occurrence of
John, thinks, and that will be indistinguishable from M for the transducer. Thus the
challenges surrounding definability by transducers extend from the evaluation metric
directly to GEN. And so does the solution.

6.3 A Model of sMOM

The INC is both too powerful and too weak. Consider (13) again, repeated here
for the reader’s convenience.

(15) a. There seems to be a man in the garden.
b. * There seems a man to be in the garden.
c. A man seems to be in the garden.

MOM’s objective is to explain why (15b) is ungrammatical, and it does so by
using a metric that makes it lose out against (15a). The grammaticality of (15c), on
the other hand, follows from the fact that it isn’t a member of the same reference
set, due to the INC. But identity of numerations is a rather indirect encoding of
the relationship that holds between (15a) and (15b). A formally simpler condition
emerges when we look at their derivation trees (cf. Fig. 6 on page 35). Ignoring the
feature specifications of the lexical items, we see that the only difference between
the respective derivation trees is the timing of move. Rather than a transducer



A Tree Transducer Model of Reference-Set Computation 34

modelling the INC, then, all we need is a transducer that will produce (at least) the
derivation trees for (15a) and (15b) when given either as an input. This involves
merely changing the position of the unary branch, which is an easy task for a linear
transducer. But now compare these derivations to the one for (15c) in Fig. 7 on
page 36. The derivation trees of (15a) and (15b) are essentially the result of non-
deterministically replacing one instance of move in the derivation tree of (15c) by
merger with expletive there. Strikingly, though, rewriting the lower occurrence of O
yields the grammatical (15a), whereas rewriting the structurally higher occurrence
gives rise to the ungrammatical (15b). Now if we design the transducer such that it
won’t rewrite an O as a there-merger after it has already passed up on an opportunity
to do so earlier in the derivation, (15b) cannot be generated from the derivation
tree of (15c). In linguistic parlance, this is tantamount to treating MOM as a well-
formedness condition on derivation trees (note the similarity to the Focus Economy
strategy).

The idea just outlined is captured as follows: First, we take as our input language I
the set of derivation trees of an MG that generates the intended derivation trees. Then,
we use a transducer α to map this language to a set U of underspecified derivation
trees. The transducer strips away all features from the lexical items, deletes expletive
there and rewrites O as O/there in the TP-domain. The underspecified representation
of (15a)–(15c), for instance, is almost identical to the derivation tree of (15c) except
that the two O nodes are now labeled O/there (and the lexical items are devoid
of any features). These underspecified representations are then turned into fully
specified representations again by the transducer β . It reinstantiates the features
on the lexical items and non-deterministically rewrites O/there as O or Merger of
there, but with the added condition that once an O/there node has been replaced by
an O, all remaining instance of O/there in the same CP have to be rewritten as O. I
call the output language of the second transduction J . The name is meant to be a
shorthand for junk, as J will contain a lot thereof, for two independent reasons. First,
the non-deterministic rewriting of O/there allows for two occurrences of O/there to
be rewritten as there, which yields the (derivation tree of the) ungrammatical there
seems there to be a man in the garden. Second, the reinstantiation of the features is a
one-to-many map that will produce a plethora of illicit derivation trees as some lexical
items may not be able to get all their features checked. This overgeneration problem
is taken care of by intersecting J with I . The overall structure of the computation,
in comparison to Focus economy and the under specification strategy in general, is
depicted in Fig. 8 on page 36. Note that in terms of OSs, the actual content of MOM
is now squeezed into GEN and the only constraint of the OS is the input language
itself.

Just as with Focus Economy, there is some reason for concern as it is still an open
question whether Minimalist derivation tree languages are closed under intersection
with regular languages (as regular sets are closed under linear transductions, J is
guaranteed to be regular, so we only need to know whether I ∩ J is a derivation tree
language for some MG). For sMOM itself I expect that I ∩ J is the derivation tree
language of some MG, as it only removes a few derivation trees from I , which could
also be achieved by judicious use of the feature calculus.



M

C O

M

seems M

there M

to be M

M

a man

M

in M

the garden
M

C M

there M

seems O

M

to be M

M

a man

M

in M

the garden

Figure 6: The derivation trees of (15a) and (15b) differ only in the position of the unary
branch



M

C O

M

seems O

M

to be M

M

a man

M

in M

the garden

Figure 7: The derivation tree of (15c) can be taken as a basis for the previous two

I U J F

I
F

U

J

F
I
U

J

α

α

α

α

ββ

β ββ β

GENGEN

Figure 8: Architecture of the underspecification-and-filtration strategy in general (top),
sMOM (left) and Focus Economy (right) in comparison



37 Thomas Graf

After these important remarks, let us get started on the low-level implemen-
tation of MOM. As mentioned before, I assume that I is given by some MG E :=



ΣE , FE , Types, LexE , O
�

. The specifics of E will be elaborated in the next section, for
now I only have to assume that the derivation trees are fully labeled such that leave
nodes are decorated by items drawn from LexE and unary and binary branching
nodes, respectively, by M and O (short for merge and move). The transduction α is
obtained from composing the two transducers Remove Features and Underspecify.

Definition 36. Remove Features is the deterministic (one-state) relabeling that maps
each l :=




σ :: f1, . . . , fbase, . . . , fn
�

∈ LexE to l ′ := σ fbase
, where fbase is the base feature

of l. The set of these simplified lexical items is denoted by Λ.

Even though the definition of an MG in Sec. 1 allows for a lexical item to have
several base features or none at all, neither option is ever exploited for real-life
grammars, so Remove Features is well-defined. If for some reason multiple base
features (or their absence) are indispensable, the transduction can be extended such
that each lexical item is subscripted by the n-tuple of its n base features. In either
case, the map defined by Remove Features is many-to-one, so Λ is finite by virtue of
the finiteness of LexE .

Definition 37. Underspecify is the lbutt U , where ΣU := Λ ∪ {M , O}, ΩU := ΣU ∪
{O/there}, Q :=

�

q∗, qc , qi , qt
	

, Q′ :=
�

q∗
	

, and ∆U consists of the rules below, where
I use the following notational conventions:

• σI (σC) denotes any lexical item l ∈ Λ whose base feature is I (C),

• the symbol “there” refers to any expletive l ∈ Λ involved in MOM (usually just
there, but possibly also it),

• σl denotes any lexical item which doesn’t fall into (at least) one of the cate-
gories described above,

• as derivation trees aren’t linearly ordered, rules for binary branching nodes are
given for only one of the two possible orders (namely the one that reflects the
linear order in the derived structure).

σl → q∗(σl) M(qc∗(x), qi∗(y))→ q∗(M(x , y))

σI → qi(σI) M(qi(x), q{i,∗}(y))→ qi(M(x , y))

there→ qt(there) M(qt(x), q{i,∗}(y))→ qi(O/there(y))

σC → qc(σC) O(q∗(x))→ q∗(O(x))

O(qi(x))→ qi(O/there(x))

The underspecified derivation have to be turned back into fully specified ones by
the transduction β , which is the composition of Path Condition and the inverse of
Remove Features.



A Tree Transducer Model of Reference-Set Computation 38

Definition 38. Path Condition is the lbutt P , where ΣP := ΩU , ΩP := ΣU , Q :=
�

q∗, qc , qo
	

, Q′ :=
�

q∗
	

, and ∆P contains the rules below (the same notational
conventions apply):

σl → q∗(σl) M(qc{c,∗}(x), qo{c,∗}(y))→ q∗(M(x , y))

σI → q∗(σI) M(q{∗,o}(x), qo(y))→ qo(M(x , y))

σC → qc(σC) O(q∗(x))→ q∗(O(x))

O/there(q∗(x))→ q∗(M(there, x))

O/there(q{o,∗}(x))→ qo(O(x))

The crucial step toward capturing MOM is the last rule of Underspecify, which tells
the transducer that after it has rewritten one instance of O/there as O, it has to switch
into state qo, which tells it to always rewrite O/there as O. Only if it encounters a
node of category C may the transducer switch back into its normal state q∗ again.

We can alternatively restrict α to Remove Features, express the composition of
Underspecify and Path Condition as an MSO constraint ψ on the surface language
of Remove Features applied to the derivation language of E (since said language is
regular), and let β be the inverse of α. All ψ has to do is pick out the path of nodes
from a leaf of category I to the closest dominating node that is the mother of a node
of category C and stipulate that no node in this path may be both the mother of an
expletive and dominate an O-node belonging to the same path. This can easily be
made precise.

Start(X , x)↔ X (x)∧¬∃y[X (y)∧¬(x ≈ y)∧ y /∗ x]

End(X , x)↔ X (x)∧¬∃y[X (y)∧¬(x ≈ y)∧ x /∗ y]

IPdomain(X )↔∃!x[Start(X , x)]∧ ∃!x[End(X , x)]∧∀x[End(X , x)→ I(x)]∧

∀x
h

Start(X , x)→∃y
�

x / y ∧ C(y)∧¬∃z[y / z]
�

i

∧

∀x , y, z[X (x)∧ X (y)→ (x /∗ y ∨ y /∗ x)∧ (¬X (z)→¬(x / z ∧ z / y)]

Here the predicates I and C pick out the same lexical items as σI and σC did before.
Similarly, I use the predicate Exp in the statement of ψ to denote expletives. The
path condition on derivation trees is then approximated by ψ as follows.

ψ := ∀X
h

IPdomain(X )→¬∃x
�

X (x)∧∃y[x / y∧Exp(y)]∧∃z[X (z)∧O(z)∧x /∗z]
�

i

As in the case of Focus Economy, ψ by itself does not fully capture the constraint, but
over the set of derivation trees of the MG E it does.

The original transducer architecture (depicted in Fig. 8) differs from the revised
version (Fig. 9) in that while both yield the same output language, only the former
properly captures the relation between trees established by MOM. In the alternative,
no trees of the input are ever related to each other, there is no reference-set algorithm
to speak of; instead, it simply enforces a well-formedness condition on derivation



39 Thomas Graf

I
F

U

J Mod(ψ)

αα

α−1α−1

Figure 9: A different perspective on sMOM

trees. In fact, the removal and reinstantiation of features is redundant in this
approach. If we proceed as I proposed originally, on the other hand, the result is a
relation that will group trees into reference-sets and for each tree in reference-set
R return the optimal trees in R as its outputs. One might say that both models
capture the weak relational capacity of MOM insofar as they yield the correct output
language, but only the more elaborate model of Fig. 8 faithfully represents MOM’s
strong relational capacity, the actual transduction.

6.4 Empirical Evaluation

As discussed above, the transducer model of MOM accounts for simple expletive/
non-expletive alternations as in (15). Instead of going through another iteration
of the same basic argument, let us look at a more complex example that we have
encountered before, repeated here as (16).

(16) a. There was [a rumor [that a man was tDP in the room]] in the air.
b. [A rumor [that there was a man in the room]] was tDP in the air.

Recall that this was a problematic case for pre-Chomsky (2000) versions of MOM (i.e.
csuMOM and isuMOM), because in the absence of stratified numerations the INC
puts (16a) and (16b) in the same reference set, where they have to compete against
each other. Under a sequential construal of MOM, then, (16a) will block (16b) as it
opts for Merge rather than Move at the first opportunity.

Under the transducer conception of MOM (tMOM), on the other hand, (16) is a
straightforward generalization of the pattern in (15). The underspecified derivation
tree of both sentences is shown in Fig.10. When the underspecified derivation is
expanded to full derivations again, all four logical possibilities are available: there-
insertion in both CPs, Move in both CPs, there-insertion in the lower CP and Move
in the higher one, and Move in the lower CP and there-insertion in the higher one.
The last option is available because the transducer, which is in the “rewrite all
instances of O/there as O”-state qo after rewriting the label O/there as O, switches
back into the neutral state q∗ after encountering the CP headed by that. Thus
when it encounters the second O/there node in the higher CP, it can once again
choose freely how to rewrite it. Provided the four derivation trees obtained from the
underspecified derivation aren’t filtered out by the MG, they are in turn transformed
into the following derived structures, all of which are grammatical:

(17) a. There was a rumor that there was a man in the room in the air.



M

C O/there

M

was M

M

a M

rumor M

that O/there

M

was M

a man in the room

in the air

Figure 10: Underspecified Derivation Tree of (16a) and (16b)



41 Thomas Graf

b. There was a rumor that [a man]i was t i in the room in the air.
c. [A rumor that there was a man in the room]i was t i in the air.
d. [A rumor that [a man]i was t i in the room] j was t j in the air.

The identity of numerations condition of the original version of MOM entails that
these four sentences belong to three distinct equivalence classes, one containing
(17a), one containing (17b) and (17c), and one containing (17d). MOM enriched
with stratified numerations, on the other hand, puts each sentence into its own
equivalence class. Only tMOM lumps them all together into one equivalence class,
which is the more plausible route to take, at least intuitively.

The very fact that Merge variants as well as Move variants can be obtained from
the same underspecified derivation indicates that the transducer version is less of
a relativized ban against Merge and more of a description of the set of possible
continuations of a derivation once a choice pro-Merge or pro-Move has been made.
This idea is actually what underlies the restatement of the transducer Path Condition
in MSO terms by the constraint ψ. Empirically, this has the welcome effect that we
do not run into the undergeneration problems that plague isMOM, and to a lesser
degree csMOM. Consider the following utterances.

(18) a. It seems that John was in the room.
b. * John seems it was in the room.

The derivation for either sentence starts out by assembling the small clause [John
[in the room]], which is subsequently merged with a T head (phonetically realized
by was). Now isMOM would enforce base-merger of it into the specifier of the TP,
rather than movement of John into said position. From there on, only ungrammatical
structures can be generated. Either John remains in situ and the derivation crashes
because of the unchecked case feature of John, or John moves over the expletive
into SpecTP of the matrix clause, in violation of the Shortest Move Condition. The
only grammatical alternative, (18a), cannot be generated because it is blocked by
isMOM. With tMOM one does not run into this problem, as it will generate both
sentences, but the second one will probably be filtered out by the MG itself because
of the illicit movement step. The csMOM variant alternates between the two options:
If (18b) is ungrammatical for independent reasons, (18a) does not have to compete
against it and will emerge as the winner, just as with the transducer model. If (18b)
is grammatical, it will block (18a), in line with isMOM.

This general theme is repeated in various configurations where other versions of
MOM undergenerate. Shima (2000) lists a number of cases where Merge-over-Move
makes false predictions and, in fact, something along the lines of a Move-over-Merge
principle seems to be required.

(19) a. It is asked [how likely tJohn to win]i John is t i.
b. * John is asked [how likely tJohn to win]i it is t i.

The assembly of [is [how likely John to win]] proceeds as usual. At this point, a
decision has to be made as to whether we want to move John into SpecTP or base-
merge the expletive instead. The isMOM variant once again picks the base-merger
route, so we end up with [it [is [how likely John to win]]. After this phrase is merged



A Tree Transducer Model of Reference-Set Computation 42

with asked and is, John moves into the specifier of the matrix TP to get its case
feature checked. Unless moving John is barred for independent reasons, (19b) will
be grammatical, so that (19a) will be blocked under both indiscriminate and cautious
construals of MOM. Thus we get the following contrast between different versions
of MOM. The variant isMOM always blocks (19a), csMOM blocks it only if (19b) is
grammatical, and tMOM never blocks it. So for both csMOM and tMOM we have to
make sure that our MG E contains some locality condition that rules out (19b). A
natural candidate would of course be the islandhood of [how likely John to win].

We also have to make further assumptions about E to rule out cases of superraising
like (20a) and multiple occurrences of there as in (20b). On a conceptual level, this
is a defensible move as the deviancy of those examples does not seem to be directly
related to MOM, and they are hardly ever discussed with respect to MOM in the
literature. However, if we really wanted to incorporate those restrictions into MOM,
at least the ban against double there can easily be accommodated by changing from
a “once you go O, you never go back” version of Path Condition to “once you choose,
it’s always O”. This is easily accomplished by replacing the rule O/there(q∗(x))→
q∗(M(there, x)) by the minimally different O/there(q∗(x))→ qo(M(there, x)).

(20) a. * A man seems there to be in the room.
b. * There seems there to be a man in the room.

Interestingly, at least German allows for multiple expletives to occur in a single
clause, even within the mittelfeld, which is usually considered a part of the TP.
Examples are given in (21) (my own judgments). As multiple expletives can be
hosted by German TPs, the contrast between German and English can’t be reduced
to the fact that German mandatorily requires SpecCP to be filled and thus has two
specifiers that may host expletives.

(21) a. Es/Da
it/there

scheint
seems

da
there

ein
a

Mann
man

im
in.the

Garten
garden

zu
to

sein.
be

b. Es/?Da
it/there

scheint
seems

da
there

ein
a

Mann
man

da
there

im
in.the

Garten
garden

zu
to

sein.
be

’There seems to be a man in the garden.’
c. Es/?Da

it/there
scheint
seems

da
there

ein
a

Mann
man

im
in.the

Garten
garden

da
there

zu
to

sein.
be

’There seems to be a man in the garden.’

If we assume that economy principles are universal, then any cross-linguistic variation
has to arise from other grammar-internal factors. From a transducer perspective,
though, there are no good reasons for such a stipulation. As long as language-
specific variants of a constraint all belong to the same transducer class, they are all
equally economic in a mathematical sense. In the case of Path Condition, the slight
modification proposed above has absolutely no effect on the runtime-behavior of the
transducer, nor is it in any tangible way less intuitive or less “Minimalist”. Reference-
set constraints must not be artificially kept away from matters of crosslinguistic
variation, because this is an empirical domain where they are in principle superior
to standard well-formedness conditions. This has not been noticed in the syntactic



43 Thomas Graf

literature yet — e.g. for Müller and Sternefeld (1996:491) “it is [. . . ] not clear
how a [reference-set; TG] constraint like Economy can be rendered subject to
parametrization” — but in contrast to well-formedness conditions these constraints
offer multiple loci of parametrization: the transductions α and β , and the definition
of the filter as well as at which point of the transduction it is applied. Now that our
formal understanding of reference-set constraints has finally reached a level where
at least such basic questions can be given satisfactory answers, the initial empirical
questions can be reapproached from a new angle that challenges the received wisdom
on when, where and how reference-set constraints should be employed.

7 Shortest Derivation Principle

In the last section, I left open how to formalize oMOM, the variant of MOM which
doesn’t weigh violations depending on how early they happen in the derivation. In
other words, oMOM simply counts the number of violations and picks the candi-
date(s) that incurred the least number of violations. This is very close in spirit to the
Shortest Derivation Principle (SDP) of Chomsky (1991, 1995a), which I (and many
authors before me) have also referred to as Fewest Steps.5 The SDP states that if
two convergent (i.e. grammatically well-formed) derivations are built from the same
lexical items, pick the one with the fewest operations. Usually, the set of operations
considered by the economy metric is assumed to comprise only Move, the reason
being that Merge is indispensable if all the lexical items are to be combined into a
single phrase marker. Naively, then, oMOM is but a variant of the SDP that doesn’t
penalize every instance of Move but only those where Merge would have been a
feasible alternative. Even though I will refrain from discussing oMOM any further
in this section and focus on the SDP instead, their close relation means that after
reading this and the previous section, the reader will be in possession of all the tools
required to formalize oMOM. In fact, I explicitly encourage the reader to draw at
least a sketch of the implementation to test their own understanding of the material.

Returning to the SDP, I will explore two variants of this principle, one being the
original proposal and the other one the result of extending the set of operations
that enter the economy metric to Merger of phonologically unrealized material such
as (certain) functional heads in the left periphery. The underlying intuition of this
extension is that covert material should be merged only if is required for convergence.
This would certainly be close in spirit to GB-analyses of English where main clauses
are TPs unless a CP is required as a landing site for wh-movement or possibly QR.
Curiously, this prima facie innocent modification has the potential to push the SDP
out of the realm of linear transductions: the SDP restricted to Move can be defined by
a linear transducer, whereas the SPD applied to Move and Merge of covert material
is not, unless restrictions on the distribution of silent heads are put into place.

5Technically, Fewest Steps is the original formulation and the SDP its more “minimalist” reformula-
tion that does away with representational machinery such as Form-Chain. This makes it a better fit for
MGs in the sense of Stabler and Keenan (2003), and for this reason I prefer the name SDP over the
better-known Fewest Steps.



A Tree Transducer Model of Reference-Set Computation 44

7.1 The Shortest Derivation Principle Explained

To give the reader a better feeling for the constraint I do as in the previous
sections and present a simple example first. It is a well-known fact that A-movement
in English exhibits freezing effects. While arguments may be extracted from a DP
in complement position, as soon as the DP A-moves to a higher position, usually
SpecTP, extraction is illicit — the DP’s arguments are frozen in place. This contrast is
illustrated in (22).

(22) a. Whoi did John take [DP a picture of t i]?
b. * Whoi was [DP j

a picture of t i] taken t j by John?

At first (22b) seems to be a mere instance of a CED-effect (Huang 1982) as in
(23), so whatever rules out the latter should also take care of (22b).

(23) * Whoi is [DP a picture of t i] on sale?

The corresponding derivation for this analysis of the ungrammaticality of (22b)
would be (24).

(24) a. [VP taken [DP j
a picture of whoi] by John]

b. [TP [DP j
a picture of whoi ] T [VP taken t j by John]]

c. [CP whoi was [TP [DP j
a picture of t i ] T [VP taken t j by John]]]

Notably, though, the DP in (22b) is not base-generated in subject position but in
object position, so in theory it should be possible to extract the wh-word from the DP
before it moves into subject position and thus becomes a barrier for movement in the
sense of Chomsky (1986). There are two distinct derivations that make use of this
loophole, the relevant stages of which are depicted in (25) and (26) below.

(25) a. [VP taken [DP j
a picture of whoi] by John]

b. [CP whoi was [TP T [VP taken [DP j
a picture of t i ] by John]]]

c. [CP whoi was [TP [DP j
a picture of t i ] T [VP taken t j by John]]]

(26) a. [VP taken [DP j
a picture of whoi] by John]

b. [VP whoi taken [DP j
a picture of t i] by John]

c. [TP [DP j
a picture of t i ] T [VP whoi taken t j by John]]

d. [CP whoi was [TP [DP j
a picture of t i ] T [VP taken t j by John]]]

The first derivation can be ruled out on grounds of the extension condition, which
bans countercyclic movement. The second, however, seems to be well-formed,
provided that extraction of the wh-phrase is licensed by feature checking (in a phase-
based approach, this could be handled by an EPP/OCC-feature, for instance). So we
erroneously predict that (22b) should be grammatical.

Collins (1994) solves this puzzle by recourse to the SDP. Note that (24) and
(25) involve one movement step less than (26). So if (26) has to compete against
at least one of the two, it will be filtered out by the SDP. The filtering of (24) and
(25), respectively, is then left to the subject island constraint and the ban against



45 Thomas Graf

countercyclic movement (whatever their technical implementation might be in our
grammar).

The reader may be wondering why non-convergent derivations are suddenly parts
of the reference-sets. From a formal perspective, there is little reason to argue against
this shift in perspective; as we will see in a second, it changes nothing about our
general procedure. However, from a linguistic point of view this point is definitely
worth elaborating. The answer is that earlier in this section I allowed myself a small
degree of sloppiness when explaining convergence, as the derivations above are
in fact convergent. For even though all well-formed derivations are by definition
convergent, the latter is not true in general. Convergence means that all items from
the numeration were merged correctly and that no feature was left unchecked, while
well-formedness also implies that no other constraints were violated.

7.2 A Model of the Shortest Derivation Principle

The SDP features interesting extensions of the constraints seen so far. As it
punishes every single instance of Move, it is indeed a counting constraint, in contrast
to Focus Economy and MOM, which relied on surprisingly simple well-formedness
conditions on somewhat peculiar paths. Moreover, it involves two cycles of under-
specification and filtration rather than one, and those two cycles furthermore happen
to interlock in a non-trivial way. Nonetheless the formalized version of SDP actually
uses the simplest transducers of all in this paper, so it should be easy to fathom for
everyone who has already mastered Focus Economy and MOM.

As with MOM, we start out with the set of derivation trees of some MG E . And
as we did before, we immediately strip away all the features except the category
feature, which is preserved so that distinct trees with identical string components
won’t be put in the same reference set later on.

Definition 39. Remove Features is the deterministic (one-state) relabeling that maps
each l :=




σ :: f1, . . . , fbase, . . . , fn
�

∈ LexE to l ′ := σ fbase
, where fbase is the base feature

of l. The set of these simplified lexical items is denoted by Λ.

In the next step, we have to ensure that two derivations wind up in the same
reference set if and only if they differ merely in their number of movement steps. To
this end, we first define a transducer that deletes all unary branches (i.e. branches
representing Move) from the derivation, and then another one which arbitrarily
reinserts unary branches. This will generate derivations that were not present at
the stage immediately before we removed all instances of Move, but as the reader
might have guessed, this can easily be fixed by following our own example set in the
previous section and use the input language as a filter — only this time the “input
language“ isn’t the derivation language of E but the language serving as the input to
the transducer that removed all movement nodes, i.e. the output language of Remove
Features. The result of these three transductions and the filtration is a transduction
that relates only those (feature-free) derivations that are built from the same lexical
items.



A Tree Transducer Model of Reference-Set Computation 46

Definition 40. Remove O is the deterministic ltdtt R , where ΣR := Λ∪ {M , O} ,Ω :=
ΣR \ {O} ,Q =Q′ :=

�

q
	

, and ∆R consists of the rules below:

σ→ q(σ) M(q(x), q(y))→ q(M(x , y))

O(q(x))→ q(x)

Definition 41. Insert O is the non-deterministic ltdtt I , where ΣI := ΩR , ΩI := ΣR ,
Q = Q′ :=

�

q
	

, and ∆I contains the rules below, with O≤n denoting n-many unary
O-labeled branches or less for some fixed, non-negative n:

σ→ q(σ) M(q(x), q(y))→ O≤n(M(x , y))

One strong restriction of Insert O is that at any node in the derivation tree it can
only insert a finite number of movement steps. This is so because a transducer may
only have finitely many rules and after every step in the transduction the transducer
has to move one step up in the input tree, so it cannot remain stationery at one
point and keep inserting one unary branch after another until it finally decides to
move on. A transducer with such capabilities is said to have ε-moves, and such
transducers do not share the neat properties of their standard brethren. However,
the restriction to only finitely many unary branches per rewrite-step is immaterial for
MGs. This follows from the simple observation that since the number of features per
lexical item is finite, and so is the lexicon itself, there is a longest string of features
for each grammar. The length of this string dictates how many movement steps
may be licensed by a single lexical item, and thus there is an upper bound on the
number of movement steps between any two instances of Merge. If we are dealing
with more specialized types of Move such as Sidewards Movement (Nunes 2004;
Drummond 2010), countercyclic movement or asymmetric checking, the argument
may not go through without further assumptions, but for a canonical MG, the limits
of the transducer are inconsequential because they are also limits of the grammar.6

The composition of Remove Features, Remove O and Insert O will be our reference-
set algorithm. The next step, then, is the definition of the economy metric. But
for this not much more work is needed, because the metric is already given by
Insert O. The transducer all by itself already defines relGEN

1 (see Def. 10 on page 11),
the ranking of all output candidates relativized to those candidates that compete
against each other, so all we have to do is follow Jäger’s procedure as outlined in
Sec. 2. Recall the basic intuition: the transducer defines a relation < on the output
candidates such that o < o′ iff o′ is the result of applying the transducer to o. Given
this relation, a few nifty regular operations are enough to filter out all elements that
are not minimal with respect to <, i.e. the suboptimal candidates. The result will be
a transduction mapping, as desired, inputs to the derivation tree(s) over the same
lexical items that contain(s) the fewest instances of Move — it only remains for us to
reinstantiate the features, which is taken care of by the inverse of Remove Features.

The overall architecture of the SDP model is depicted in Fig. 11 on the facing
page. Switching back for a second into the OS perspective, it is also easy to see that

6That countercyclic movement poses a challenge is somewhat unsatisfying insofar as it surfaces in
Collins’s analysis of (25). Fortunately, though, his general argument goes through even if only (25) is
taken into account.



47 Thomas Graf

both type-level optimality and output joint preservation are satisfied (if it weren’t for
the removal of features, the OS would even be endocentric), thereby jointly implying
global optimality.

I
F

U

U

J

R

J

− f− f

−O +O+O

+O+O

+ f+ f

Figure 11: Architecture of the SDP

The astute reader may point out that my implementation of the SDP, while tech-
nically correct, leads to both underapplication and overapplication of the intended
principle. Overapplication is caused by the indiscriminate removal of features, in
particular movement-licensors as are involved in topicalization, wh-movement and
(possibly) scrambling. As a consequence, these kinds of movement will appear
redundant to the SDP and lose out to the derivation that involves only standard
A-movement. This is easily fixed by “blacklisting” these features such that they have
to be preserved by Remove Features.

Underapplication, on the other hand, is due to the lack of a transduction that
would remove covert material whose only purpose is to host a movement-licensor
feature. So if, say, a topicalization feature is always introduced by the category
Topic à la Rizzi (1997, 2004), a derivation hosting this functional element will never
compete against a derivation without it. For topicalization, this is actually a welcome
result and presents an alternative for avoiding overapplication. In general, though,
this must be regarded as a loophole in the SDP that needs to be fixed lest the
principle can be deprived of any content by assigning every movement feature its
own functional category. A solution is readily at hand: Extend Remove O and Insert O
such that they may also remove or insert certain functional elements, just like MOM’s
Underspecify may remove instances of expletive there that can later be reinserted by
Path Condition.

While the parametrization of Remove Features poses no further problems irrespec-
tive of the MG involved, extending Remove O and Insert O to functional categories
will produce the correct results only if our initial grammar does not allow for re-



A Tree Transducer Model of Reference-Set Computation 48

cursion in the set of categories that the transducer should remove. In other words,
there has to be an upper limit on the number of removable categories that can be
merged subsequently before non-removable material has to be merged again. This is
because of the previously mentioned inability of linear transducers to insert material
of unbounded size. On a linguistic level, the ban against recursion in the functional
domain is fairly innocent as even highly articulated cartographic approaches give
rise only to a finite hierarchy of projections.

Conclusion

I showed that despite claims to the contrary, reference-set constraints aren’t com-
putationally intractable — in fact, many of them do not even increase the expressivity
of the underlying grammar. The route towards this result was rather indirect. I first
introduced controlled OSs as a formal model for reference-set constraints, focusing
on the subclass of output joint preserving OSs, which is general enough to accommo-
date most reference-set constraints. For this class I then gave a new characterization
of global optimality and used it to argue that in general, reference-set constraints
are globally optimal. The shift in perspective induced by controlled OSs also made it
apparent that out of the other four conditions which together with global optimality
jointly guarantee that an OS stays within the limits of linear tree transductions, two
are almost trivially satisfied by reference-set constraints, with the only problematic
areas being the power of GEN and the rankings induced by the constraints on the
range of GEN. This highlights how surprisingly restricted reference-set constraints are
in comparison to optimality systems, even though the latter seem to struggle with
reference-set like conditions such as output-output correspondence (Benua 1997;
Potts and Pullum 2002).

In order to demonstrate that GEN and the evaluation metric do not pose a problem
either, I exhibited formally explicit implementations of three different reference-set
constraints: Focus Economy, Merge-over-Move, and the Shortest Derivation Principle.
The general approach followed a strategy of underspecification-and-filtration (Fig. 8)
based on the following insights:

• A reference-set algorithm is likely to be computable by a linear transducer
if there is a data-structure (e.g. derivation trees) such that all members of a
reference-set can be uniquely described by this structure.

• Neither the mapping from inputs to underspecified structures nor the one
from underspecified structures to output candidates may require insertion of
material of unbounded size.

• The economy metric may be implemented as a well-formedness condition on
underspecified structures, an instruction for how to turn those structures into
output candidates, or a relation over underspecified structures computable by
a linear transducer.

My estimate so far is that all reference-set constraints are compatible with the
underspecification strategy, and that all syntactic reference-set constraints also adhere



49 Thomas Graf

to condition 2. Combined with the positive results obtained in this paper, this suggest
that reference-set constraints are significantly better behaved than is usually believed.
The overall picture that emerges is that of reference-set constraints as an unexpectedly
undemanding kind of linguistic constraint.

One important issue had to be left open, though, namely the closure properties
of Minimalist surface tree and derivation tree languages, in particular with respect
to linear transductions and intersection with regular tree languages. Even though
it has no immediate bearing on the formal models in this paper (the constraints
can be emulated by conditions on the distribution of features in an MG), a lack
of closure under these operations, in particular closure of Minimalist derivation
tree languages under intersection with regular sets, would likely prove a severe
impediment to the applicability of the underspecification-and-filtration strategy. But
even then everything wouldn’t be lost since closure under intersection with any
regular language is arguably a more general property than what we actually need.

Acknowledgments

I am greatly indebted to Ed Stabler and Uwe Mönnich as well as the two anony-
mous FG2010-reviewers for their motivational comments and helpful criticism. The
research reported herein was supported by a DOC-fellowship of the Austrian Academy
of Sciences.

References

Aoun, Joseph, Lina Choueiri, and Norbert Hornstein. 2001. Resumption, movement
and derivational economy. Linguistic Inquiry 32:371–403.

Benua, L. 1997. Transderivational identity: Phonological relations between words.
Doctoral Dissertation, UMass.

Castillo, Juan Carlos, John E. Drury, and Kleanthes K. Grohmann. 2009. Merge over
move and the extended projection principle: MOM and the EPP revisited. Iberia
1:53–114.

Chomsky, Noam. 1986. Barriers. Cambridge, Mass.: MIT Press.

Chomsky, Noam. 1991. Some notes on economy of derivation and representation. In
Principles and parameters in comparative grammar, ed. Robert Freidin, 417–454.
Cambridge, Mass.: MIT Press.

Chomsky, Noam. 1995a. Categories and transformations. In The minimalist program,
chapter 4, 219–394. Cambridge, Mass.: MIT Press.

Chomsky, Noam. 1995b. The minimalist program. Cambridge, Mass.: MIT Press.

Chomsky, Noam. 2000. Minimalist inquiries: The framework. In Step by step: Essays
on minimalist syntax in honor of Howard Lasnik, ed. Roger Martin, David Michaels,
and Juan Uriagereka, 89–156. Cambridge, Mass.: MIT Press.



A Tree Transducer Model of Reference-Set Computation 50

Chomsky, Noam. 2001. Derivation by phase. In Ken Hale: A life in language, ed.
Michael J. Kenstowicz, 1–52. Cambridge, Mass.: MIT Press.

Chomsky, Noam, and Morris Halle. 1968. The sound pattern of English. New York:
Evanston.

Collins, Chris. 1994. Economy of derivation and the generalized proper binding
condition. Linguistic Inquiry 25:45–61.

Collins, Chris. 1996. Local economy. Cambridge, Mass.: MIT Press.

Drummond, Alex. 2010. Fragile syntax and sideward movement. Ms., University of
Maryland.

Engelfriet, Joost. 1975. Bottom-up and top-down tree transformations — a compari-
son. Mathematical Systems Theory 9:198–231.

Fox, Danny. 1995. Economy and scope. Natural Language Semantics 3:283–341.

Fox, Danny. 2000. Economy and semantic interpretation. Cambridge, Mass.: MIT
Press.

Frank, Robert, and Giorgio Satta. 1998. Optimality theory and the generative
complexity of constraint violability. Computational Linguistics 24:307–315.

Gärtner, Hans-Martin. 2002. Generalized transformations and beyond: Reflections on
minimalist syntax. Berlin: Akademie-Verlag.

Grodzinsky, Yosef, and Tanja Reinhart. 1993. The innateness of binding and corefer-
ence. Linguistic Inquiry 24:69–102.

Gécseg, Ferenc, and Magnus Steinby. 1984. Tree automata. Budapest: Academei
Kaido.

Heim, Irene. 1998. Anaphora and semantic interpretation: A reinterpretation of
Reinhart’s approach. In The interpretive tract, ed. Uli Sauerland and O. Percus,
volume 25 of MIT Working Papers in Linguistics, 205–246. Cambridge, Mass.: MIT
Press.

Heim, Irene. 2009. Forks in the road to Rule I. In Proceedings of NELS 38, 339–358.

Hopcroft, John E., and Jeffrey D. Ullman. 1979. Introduction to automata theory,
languages, and computation. Reading, Mass.: Addison Wesley.

Hornstein, Norbert. 2001. Move! A minimalist theory of construal. Oxford: Blackwell.

Huang, C.-T. James. 1982. Logical relations in Chinese and the theory of grammar.
Doctoral Dissertation, MIT.

Johnson, David, and Shalom Lappin. 1999. Local constraints vs. economy. Stanford:
CSLI.



51 Thomas Graf

Joshi, Aravind. 1985. Tree-adjoining grammars: How much context sensitivity is
required to provide reasonable structural descriptions? In Natural language parsing,
ed. David Dowty, Lauri Karttunen, and Arnold Zwicky, 206–250. Cambridge:
Cambridge University Press.

Jäger, Gerhard. 2002. Gradient constraints in finite state OT: The unidirectional and
the bidirectional case. In More than words. A festschrift for Dieter Wunderlich, ed.
I. Kaufmann and B. Stiebels, 299–325. Berlin: Akademie Verlag.

Karttunen, Lauri. 1998. The proper treatment of optimality in computational phonol-
ogy. Manuscript, Xerox Research Center Europe.

Kepser, Stephan, and Uwe Mönnich. 2006. Closure properties of linear context-free
tree languages with an application to optimality theory. Theoretical Computer
Science 354:82–97.

Keshet, Ezra. 2010. Situation economy. Natural Language Semantics 18:pp–pp.

Kobele, Gregory M. 2006. Generating copies: An investigation into structural identity
in language and grammar. Doctoral Dissertation, UCLA.

Kobele, Gregory M. 2010. Without remnant movement, MGs are context-free. In
MOL 10/11, ed. Christian Ebert, Gerhard Jäger, and Jens Michaelis, volume 6149
of Lecture Notes in Computer Science, 160–173.

Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An automata-
theoretic approach to minimalism. In Model Theoretic Syntax at 10, ed. James
Rogers and Stephan Kepser, 71–80. Workshop organized as part of the Europen
Summer School on Logic, Language and Information, ESSLLI 2007, 6-17 August
2007, Dublin, Ireland.

Kolb, Hans-Peter, Jens Michaelis, Uwe Mönnich, and Frank Morawietz. 2003. An op-
erational and denotational approach to non-context-freeness. Theoretical Computer
Science 293:261–289.

Michaelis, Jens. 1998. Derivational minimalism is mildly context-sensitive. Lecture
Notes in Artificial Intelligence 2014:179–198.

Michaelis, Jens. 2001. Transforming linear context-free rewriting systems into
minimalist grammars. Lecture Notes in Artificial Intelligence 2099:228–244.

Müller, Gereon, and Wolfgang Sternefeld. 1996. A-bar chain formation and economy
of derivation. Linguistic Inquiry 27:480–511.

Nakamura, Masanori. 1997. Object extraction in Bantu applicatives: Some implica-
tions for minimalism. Linguistc Inquiry 28:252–280.

Nunes, Jairo. 2004. Linearization of chains and sideward movement. Cambridge,
Mass.: MIT Press.



A Tree Transducer Model of Reference-Set Computation 52

Potts, Christopher. 2002. Comparative economy conditions in natural language
syntax. Paper presented at the North American Summer School in Logic, Language,
and Information 1, Workshop on Model-Theoretic Syntax, Stanford University
(June 28), June 2002.

Potts, Christopher, and Geoffrey K. Pullum. 2002. Model theory and the content of
OT constraints. Phonology 19:361–393.

Prince, Alan, and Paul Smolensky. 2004. Optimality theory: Constraint interaction in
generative grammar. Oxford: Blackwell.

Reinhart, Tanya. 2006. Interface strategies: Optimal and costly computations. Cam-
bridge, Mass.: MIT Press.

Rezac, Milan. 2007. Escaping the person case constraint: Reference-set computation
in the φ-system. Linguistic Variation Yearbook 6:97–138.

Rizzi, Luigi. 1997. The fine-structure of the left periphery. In Elements of grammar,
ed. Liliane Haegeman, 281–337. Dordrecht: Kluwer.

Rizzi, Luigi. 2004. Locality and left periphery. In The cartography of syntactic
structures, ed. Adriana Belletti, volume 3, 223–251. New York: Oxford University
Press.

Rogers, James. 1997. “Grammarless” phrase structure grammar. Linguistics and
Philosophy 20:721–746.

Rogers, James. 1998. A descriptive approach to language-theoretic complexity. Stanford:
CSLI.

Shieber, Stuart M. 2004. Synchronous grammars as tree transducers. In TAG+7:
Seventh International Workshop on Tree Adjoining Grammar and Related Formalisms,
88–95.

Shieber, Stuart M. 2006. Unifying synchronous tree adjoining grammars and tree
transducers via bimorphisms. In Proceedings of the 11th Conference of the European
Chapter of the Association for Computational Linguistics (EACL-2006), 377–384.

Shieber, Stuart M., and Yves Schabes. 1990. Synchronous tree adjoining grammars.
In Proceedings of the 13th International Conference on Computational Linguistics,
253–258.

Shima, Etsuro. 2000. A preference for move over merge. Linguistic Inquiry 375–385.

Stabler, Edward P., and Edward Keenan. 2003. Structural similarity. Theoretical
Computer Science 293:345–363.

Sternefeld, Wolfgang. 1996. Comparing reference-sets. In The role of economy
principles in linguistic theory, ed. Chris Wilder, Hans-Martin Gärtner, and Manfred
Bierwisch, 81–114. Berlin: Akademie Verlag.



53 Thomas Graf

Szendrői, Kriszta. 2001. Focus and the syntax-phonology interface. Doctoral Disser-
tation, University College London.

Thomas, Wolfgang. 1997. Languages, automata and logic. In Handbook of formal
languages, ed. Gregorz Rozenberg and Arto Salomaa, volume 3, 389–455. New
York: Springer.

Toivonen, Ida. 2001. On the phrase-structure of non-projecting words. Doctoral
Dissertation, Stanford, CA.

Wartena, Christian. 2000. A note on the complexity of optimality systems. In Studies
in optimality theory, ed. Reinhard Blutner and Gerhard Jäger, 64–72. Potsdam,
Germany: University of Potsdam.

Wilder, Chris, and Hans-Martin Gärtner. 1997. Introduction. In The role of economy
principles in linguistic theory, ed. Chris Wilder, Hans-Martin Gärtner, and Manfred
Bierwisch, 1–35. Berlin: Akademie Verlag.

Affiliation

Thomas Graf
Department of Linguistics
University of California, Los Angeles
tgraf@ucla.edu

mailto:tgraf@ucla.edu

	Introduction
	1 Preliminaries and Notation
	2 Traditional Perspective on Optimality Systems
	3 Controlled Optimality Systems
	4 Transduction Preserving Operations
	5 Focus Economy
	5.1 Focus Economy Explained
	5.2 A Model of Focus Economy

	6 Merge-over-Move
	6.1 Merge-over-Move Explained
	6.2 Properties of Merge-over-Move
	6.3 A Model of sMOM
	6.4 Empirical Evaluation

	7 Shortest Derivation Principle
	7.1 The Shortest Derivation Principle Explained
	7.2 A Model of the Shortest Derivation Principle

	Conclusion

