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Abstract: It has been conjectured that all properties of language beyond recursion can be moti-

vated by interface requirements. One component in this setup is the parser, which is thought to give

rise to a preference for computational parsimony. I discuss a mathematical result on reference-set

computation, an (allegedly) non-parsimonious piece of machinery, that challenges this assump-

tion and suggests that syntax can sometimes “trick” the parser in order to escape its demands. If

reference-set constraints are construed as so-called tree transducers, they do not increase the power

of the syntactic machinery. This in turn entails that they can be expressed purely in terms of the

Minimalist feature calculus regulating Merge and Move, so it cannot be ruled out that syntax em-

ploys reference-set constraints, whereas the parser operates on their less demanding equivalents.

In order to demonstrate the viability of this approach for the kind of reference-set constraints found

in the literature, I give an implementation of Merge-over-Move.
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Introduction

A core assumption of the biolinguistic program is that all properties of syntax beyond recursion

are motivated by requirements imposed by other cognitive modules (Chomsky 2005; Hauser et al.

2002). This raises the question, though, whether these external factors merely restrict the shape

syntax may take or, rather, uniquely determine it. In other words, are there multiple ways syntax

may satisfy all interface requirements, or just one? The latter hypothesis is clearly the stronger

one and thus more intriguing. As I will argue in this paper, though, it is untenable. In particular, I

propose that syntax can trick the interfaces and avail itself of certain tools that conflict with their

demands.

My argument is based on a case-study pertaining to the relation between the computability

desiderata of the parser and the class of reference-set constraints (RCs; also known as trans-
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derivational constraints or global economy conditions) RCs differ markedly from standard well-

formedness conditions in that they depend on transderivational comparisons. Given a tree, they

determine its set of competitors — called its reference set — and pick from said set the opti-

mal tree(s) according to some economy metric. All other trees are filtered out. Among the RCs

proposed in the literature one finds the Accord Maximization Principle (Schütze 1997), Avoid

Structure (Rizzi 1997), Chain Uniformization (Nunes 2004), Focus Economy (Reinhart 2006),

Merge-over-Move (Chomsky 2000), Pronouns as Last Resort (Hornstein 2001), Rule I (Reinhart

2006), Rule H (Fox 2000), Scope Economy (Fox 2000), the Shortest Derivation Principle (Chom-

sky 1995), Situation Economy (Keshet 2010), and several more. Nonetheless it has been argued

that RCs are not part of narrow syntax due to the computational complexity of transderivational

comparisons; an abundance of candidates needs to be computed, the majority of which is subse-

quently discarded (Collins 1996; Jacobson 1997; Johnson and Lappin 1999). It seems, then, that

RCs are in conflict with the main requirement imposed by the parser, i.e. efficient computability,

whence syntax must eschew them.

When studied from a mathematical perspective, however, the transderivational component of

RCs turns out to be superfluous. Many RCs can be recast purely in terms of the Minimalist feature

calculus, which does not increase the grammar’s resource usage. This immediately implies that

syntax could in principle flout the parser’s demands by using RCs while the parser gets to operate

with the more economical alternative. As a consequence, there are two variants of narrow syntax

— with RCs and without them — that the interfaces have no reason to treat differently, contrary to

the strong hypothesis formulated at the outset that the shape of syntax is uniquely determined by

interface requirements.

My mathematical result hinges on the assumption that at least some RCs can be modelled by

so-called linear bottom-up tree transducers. In order to convince the reader of the applicability of

this formalism to linguistically motivated RCs, I give a rigorous implementation of Merge-over-

Move (MOM; Chomsky 1995, 2000), a principle demanding that when given a choice between

Merge and Move at some step in the derivation, Merge is to be preferred over Move unless this
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would cause the derivation to crash later on. The strategy I follow in the implementation of MOM

combines ideas that have been successfully used in Graf (2010a,b) to model two other RCs, the

Shortest Derivation Principle (SDP; Chomsky 1995) and Focus Economy (Reinhart 2006). Most

RCs in the syntactic literature can be viewed as a variation of one of these three constraints. The

Accord Maximization Principle, for instance, is obtained from the SDP by prefering longer deriva-

tions over shorter ones. Avoid Structure (Rizzi 1997) resembles the SDP in that it also prefers

simpler derivations but measures simplicity by the number of functional categories instead of the

number of movement steps. These kinds of changes are innocent from a technical perspective, so it

is safe to assume that linear bottom-up tree transducers do indeed provide a model for the majority

of syntactic RCs.

The paper is laid out as follows: Sec. 1 provides a gentle introduction to the formal tools that

form the basis of my argument, Minimalist grammars (MGs; 1.1) and linear tree transducers (1.2).

I also describe the general strategy for modelling RCs, and why RCs can be recast without their

transderivational component (1.3). After that, I work through a linguistically motivated example,

MOM (2). The transducer for this constraint is described in intuitive terms (2.2), with the actual

math relegated to the appendix. Interestingly, the most natural transducer implementation of MOM

suggests a minor tweak to the constraint that has the welcome side-effect of doing away with cer-

tain undergeneration problems of MOM and its reliance on structured numerations, as is discussed

in Sec. 2.3.

1 The Mathematical Argument

1.1 Minimalist Grammars

In an attempt to base my claims on as rigorous a foundation as possible, I use MGs (Sta-

bler 1997, 2011) as a formal model of Minimalist syntax. Actually, this is a slightly inaccurate

statement as there are many extensions of the MG formalism comprising a wide range of items

from the syntactician’s toolbox. Among them we find head movement, affix hopping, pied-piping,
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covert movement, sideward movement, Agree, phases, superiority conditions, islands constraints,

complexity filters and even Distributed Morphology. Surprisingly, though, all of them can be em-

ulated by a bare-bones variant of MGs that only uses Merge, Move and a strengthened version of

the Shortest Move Constraint (see Graf 2011, Kobele 2011, Stabler 2011 and references therein).

Hence I will restrict my attention to these maximally simplified MGs.

Like the standard version of Minimalism predating the introduction of Agree in Chomsky

(2000), MGs construct phrase structure trees from lexical items (LIs) via the operations Merge

and Move, which in turn are triggered by features on those LIs. In contrast to early Minimalism,

however, MGs are more explicit about the nature of features and the structure of LIs in general.

First, there is a strict division between features that trigger Merge and features that trigger Move.

Second, features come in two polarities, which I indicate by superscripted + and −. Third, an LI

may carry several instances of the same feature. Finally, the features of an LI must be checked in

a prespecified order that may vary between LIs. A typical MG lexicon might look as follows.

men :: N− like :: D+ D+ V−

the :: N+ D− nom− ε :: V+ nom+ T−

what :: D− ε :: T+ C−

what :: D− wh− do :: V+ wh+ C−

The symbol before the double colon is the phonetic exponent of the LI; LIs marked with ε are

phonetically null. After the double colon we find a string of features associated with the LI, with

Merge features denoted by uppercase letters and Move features in lowercase letters. Negative

Merge features correspond to category features, while positive Merge features are selector features.

For instance, the selects a noun and is itself of category D. The verb like selects two DPs and is

of category V. Crucially, the cannot be merged with like unless it selects a noun first because

its first feature is N−, not D+. The category feature D+ remains inaccessible until the selector

feature N− is deleted by Merge. Move features behave similarly: negative Move features (licensee

features) mark the LI undergoing movement, positive Move features (licensor features) the target.

As usual, movement of an LI displaces the entire phrase rather than just the head. Once again,
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though, a feature cannot be operated on before all the features preceding it have been checked,

irrespective of their polarity and whether they trigger Merge or Move. Given this basic feature

calculus regulating Merge and Move, a tree is considered to be grammatical if all features have

been successfully checked off except the category feature of the highest LI, which must be a C-

head.

However, the number of configurations in which two features may enter a checking relation via

Move is severely reduced by the Shortest Move Constraint (SMC): at no point in a derivation may

two LIs have the same licensee feature as their first unchecked feature. The SMC entails that if

some LI has an active movement licensor feature, there is exactly one LI with a matching licensee

feature, otherwise the derivation crashes (there must be at least one matching feature, and the SMC

rules out that there is more than one). So this constraint is essentially a strengthened version of

Relativized Minimality (Rizzi 1990), with the side-effect that Move becomes deterministic. For

instance, the SMC can be invoked to block superiority violations such as What did you say who

bought t. Under the proviso that the feature string of both who and what is−D −wh, the derivation

crashes right after who is merged with bought what due to an SMC violation, since both wh-words

now have −wh as their first unchecked feature. Of course one has to ensure that who actually

carries −wh, and there are several constructions such as multiple wh-movement which seem to be

incompatible with the SMC’s strict interpretation of Relativized Minimality. Fortunately, though,

these issues have been adressed in the literature (see Gärtner and Michaelis 2010 and Graf 2011,

among others), so we need not worry about them here. The SMC, then, can be safely adopted as

a means for introducing a notion of locality into MGs and keeping Move as simple as possible by

making it deterministic.

A bare phrase structure produced by our example grammar that also involves wh-movement is

given in Fig. 1, together with its corresponding derivation tree. The derivation tree is almost iden-

tical to the bare phrase structure tree except that (I) LIs are given with their feature component, (II)

interior nodes are labeled by the name of the operation that applied at this stage in the derivation,

and (III) instances of Move are indicated only by the label, i.e. the affected subtree remains in the
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position where it was originally merged. The simplified representation is possible only because

movement is deterministic in MGs, thanks to the SMC — at no point in the derivation may there

be any ambiguity as to which constituent is targeted by an instance of Move. The reader is invited

to explicitly verify that both the SMC and MGs’ feature calculus are obeyed in the example tree.

Move

Merge

do
T+ wh+ C−

Move

Merge

ε

V+ nom+ T−
Merge

Merge

the
N+ D− nom−

men
N−

Merge

like
D+ D+ V−

what
D− wh−

CP

whatw C′

do TP

DPd

the men

T′

T VP

td V′

like tw

Figure 1: Bare phrase structures tree (right) and derivation tree (left) of a wh-question generated
by the example MG

1.2 Linear Tree Transducers

While MGs serve as a formally rigorous model of Minimalist syntax, RCs are best understood

in terms of linear bottom-up tree transducers (which I will henceforth refer to as “transducers”

for the sake of brevity). Transducers can be viewed as a particular kind of SPE- or Aspects-style

rewriting system. When handed a tree as its input, a transducer moves through said tree in a

bottom-up fashion, from the leaves towards the root, possibly relabeling nodes, deleting subtrees,

or inserting new structural material. Once it reaches the root, the end result of its modifications is

either thrown away or returned as an output tree, depending on whether the end result is deemed

well-formed. Sometimes there are several ways to manipulate an input tree, and in these cases the
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transducer might create multiple output trees. The connection between transducers and rewriting

systems brings about an intriguing shift in perspective regarding RCs: rather than filtering out

suboptimal trees in a rather arcane, non-local way, RCs rewrite them into optimal ones using what

may be considered a subclass of syntactic transformations.

Even though the main body of this paper is deliberately light in notation and the actual math

confined to the appendix, transducers must be discussed in due detail to give the reader at least an

intuitive grasp of their capabilities. Table 1 on the following page depicts the rules of a transducer

for simple instances of wh-movement. Each consists of a left-hand side, a rewrite arrow, and a

right-hand side. The left hand side varies depending on whether the transducer is at a leaf node

or a non-terminal node. In the former case, it comprises only the label of said node, as in rules

(1) and (2). Otherwise, it specifies the label of the current node, plus special symbols called states

(by convention written as q plus some index) that immediately dominate the subtrees rooted by

the daughters of the current node. The state symbols are not part of the input tree but were added

by the transducer as a kind of temporary memory — when deciding which rewrite rule to apply,

a transducer may only consider (I) the node it is currently at, and (II) the state symbols said node

dominates. So rule (5), for instance, may be applied if and only if the current node is labeled TP,

its left daughter is q∗, and its right daughter is qwh.

The purpose of states is easier to fathom once one also takes the right-hand side and its interac-

tion with the left-hand side into account. On the right-hand side of rules (3), (4) and (5), the states

dominated in the left-hand side are gone. Instead, a new state was added on top of the new output

subtree. Similarly, the right-hand sides of rules (1) and (2) each contain a state dominating the leaf

node. This setup allows left-hand sides and right-hand sides to interact as follows in order to push

states upwards through the tree during the rewrite steps: First, the transducers reads the currents

node label and the states it dominates, if they exist. Depending on the applicable rewrite rules, it

may leave this part of the tree unaltered (rule (1)), change the label (rule (2)), insert new structure

(rule (5)), or delete a subtree (the last option is not featured in our example, but could easily be

obtained from, say, rule (4) by removing one of the two subtrees in the right-hand side). Irrespec-
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(1) σ→ q∗

σ

(3) σ

q∗

subtree 1

q∗

subtree 2

→ q∗

σ

subtree 1 subtree 2
(2) what→ qwh

twh

(4) σ

q∗

subtree 1

qwh

subtree 2

→ qwh

σ

subtree 1 subtree 2
(5) TP

q∗

subtree 1

qwh

subtree 2

→ q∗

CP

what C′

do TP

subtree 1 subtree 2

Table 1: Rules of a transducer for simplified wh-movement; only q∗ is a final state

tive of how the subtree is rewritten, though, the transducer must put a state symbol on top of it, i.e.

closer to the root. Note that this way of rewriting makes it necessary to traverse trees bottom-up.

One starts by rewriting leaves adding states on top of them, then one rewrites the mothers of the

leaves (which involves removing the old states and again adding a new one on top), after that the

next higher mothers, and so on, until one finally reaches the root. The transducer deems the output

tree well-formed only if the state dominating the root node is a final state. For each transducer one

has to specify in advance which states are final states.

Let us work through the example in Tab. 1 in greater detail now. As I mentioned in passing

before, the transducer is supposed to model very simple instances of wh-movement, similar to

the MG we encountered in the previous section (wh-movement was chosen because it should be

sufficiently familiar to all readers that they can fully focus their attention on the mechanics of the

transducer). Only two states are used, q∗ and qwh. The former reminds the transducer that it did
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not change anything in the subtree dominated by q∗ — we may call it the identity state — whereas

qwh signals that somewhere in the subtree it dominates, a wh-word was replaced by a trace.

The five rules of the transducer can now be paraphrased as follows. First, note that σ is used

as a shorthand for any label, so an instruction to rewrite σ as σ instructs the transducer to keep

the current label. Consequently, rule (1) tells the transducer that if it is at a leaf node, it should

leave said node unaltered and record this decision by adding the state q∗ on top. Rule (2), on the

other hand, allows for leaf nodes labeled what to be rewritten by wh-traces. Naturally we add the

state qwh this time. Crucially, the two rules are not in conflict, and the transducer may choose

freely between rule (1) and (2) whenever it encounters a leaf labeled what (since σ matches any

label). Hence the transducer creates several output trees for inputs with wh-words, some with

wh-in-situ and some with wh-movement. Rule (3) and (4) are fairly unremarkable insofar as

they merely ensure that the transducer does not manipulate non-terminal nodes and that qwh is

percolated upwards as necessary. If we did not take care to carry along qwh at every step of the

rewriting process, then the transducer would “forget” that it had replaced a wh-word by a trace

earlier on. That is to say, it would merely remove wh-words rather than displace them. Finally,

rule (5) tells the transducer to add a CP with the wh-word on top of a TP if rule (2) was applied at

some earlier point. Note that if qwh is a final state, rule (5) need never apply since output trees in

which the transducer failed to switch back from qwh into q∗ before reaching the root node would

also be considered acceptable. Hence only q∗ may be a final state if we want wh-words to be

reinserted into the tree after they have been replaced by traces.

A transduction using all five rules is given in Fig. 2 on the following page. Except for deletion,

it shows off all the capabilities of transducers that will be needed for RCs, in particular relabelings,

the insertion of new material, and the ability to use states to both memorize limited amounts of

structural information and decide whether output trees should be accepted or discarded.
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DP
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DP
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qwh
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do TP
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T′
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(1),(2) (4)

(1),(4)

(1),(1),(3)

(5)

Figure 2: Example of transduction for simple wh-movement
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1.3 Putting it All Together

So far we have seen MGs as a formalization of Minimalist syntax and transducers as a poten-

tial mathematical model of RCs, but it is still unclear how the two combine to reveal something

fundamental about RCs. The answer, albeit building on highly technical insights (Engelfriet 1975;

Graf 2011; Kobele 2011), is simple: if a transducer is used like an RC to rewrite suboptimal deriva-

tions of a given MG G into optimal ones, then the set of these optimal derivations is exactly the

set of well-formed derivations of some other MG G′. This implies that RCs that can be modelled

by transducers do not increase the power of the MG formalism, and consequently they can be

expressed purely in terms of the feature calculus driving Merge and Move.

It still needs to be shown, though, that RCs can be implemented as transducers. To this end,

I produce a transducer for MOM in the next section. The procedure I use exploits a fact about

transducers proved by Engelfriet (1975). Given two linear transducers α and β , we can concatenate

them into a single linear transducer τ such that for I and O the sets of inputs and outputs of α ,

respectively, applying τ to I yields the same set as applying β to O. The reverse is also true: every

transducer τ that rewrites a set I of trees as set O can be split into two transducers α and β such

that applying α to I yields a set Z, which in turn is rewritten as O by β . So transducers can be

concatenated or spliced arbitrarily often and in any conceivable way, the end result of the rewriting

procedure will always be the same. This is helpful for our purposes because it allows for RCs to

be defined in a piece-wise manner, breaking them into small, easily understood parts that can then

be recombined into one big transducer representing the constraint as a whole.

This has already been accomplished for Focus Economy and the Shortest Derivation Principle

(Graf 2010a,b), which constitute special cases of the following model. In order to capture an RC,

one defines four transducers that are meant to apply serially one after the other. The first one

maps each tree to an underspecified structure that implicitly encodes the commonalities of all trees

belonging to the same reference set. The second one turns these underspecified structures into fully

specified derivation trees again. So when these two transducers are executed one after another, each

tree in the input language is rewritten as the trees in its reference set. The third transducer then
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implements the economy metric by rewriting suboptimal trees as optimal ones. So if the first

three transducers are run in series, every tree in the input language is rewritten as an optimal tree

(if there are several, all of them will be generated). Finally, the fourth transducer discards all

trees that weren’t already included in the input language to prevent accidental overgeneration. In

the remainder of this paper, I demonstrate that a strategy along these lines also works for MOM,

although the details differ notably from those for Focus Economy and the Shortest Derivation

Principle.

2 A Practical Example: Implementing Merge-over-Move

2.1 Merge-over-Move Explained

Modelling MOM is complicated by the fact that there are multiple versions of the constraint,

which are seldom carefully teased apart in the literature. Before we can discuss the transducer

implementation (Sec. 2.2) and evaluate its faithfulness and empirical adequacy (Sec. 2.3), then,

some variant must first be agreed upon as the measuring rod.

All definitions of MOM seek to formalize the following intuition: if at some point in a deriva-

tion we are allowed to choose between Merge and Move as the next step of the derivation, Merge

is preferable to Move. This idea can be used to account for some puzzling contrasts involving

expletives.

(1) a. There seems to be a man in the garden.

b. * There seems a man to be in the garden.

c. A man seems to be in the garden.

Recall that in the Minimalist framework of Chomsky (1995), we start out with a multiset of LIs

— the numeration — that are enriched with interpretable and uninterpretable features, the latter

of which have to be erased by the operation of feature checking. Under such a conception, (1a)

and (1c) are easy to derive. Consider (1c) first. It starts out with the numeration {seems, to, be,

a, man, in, the, garden} (ignoring phonetically null functional categories). Multiple applications
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of Merge yield the phrase [TP to be a man in the garden]]. At this point, the Extended Projection

Principle (EPP) demands that the specifier of the infinitival TP be filled by some phrase. The only

item left in the numeration is seems, which cannot be merged in SpecTP. Hence we are stuck with

moving the DP a man into SpecTP, yielding [TP a man to be tDP in the garden]. Afterwards, the

TP is merged with seems and the DP is once again moved, this time into the specifier of seems to

check the case feature of the DP and satisfy the EPP.

Things are slightly more involved for (1a). Here the numeration initially consists of {there,

seems, to, be, a, man, in, the, garden}. Once again we start out by merging items from the numera-

tion until we arrive at [TP to be [DP a man in the garden]]. Now there are two possible continuations:

(I) Merger of there, which is later followed by moving there into the specifier of seems and thus

yields the grammatical (1a), or (II) first moving a man into the specifier of to be and subsequently

merging there with seems a man to be in the garden, which incorrectly produces the ungrammatical

(1b). MOM rectifies this overgeneration problem by barring movement of a man into the specifier

of to be due to the existence of a more economical option, namely merging there. At the same

time, MOM does not block (1c) because it involves no choice between Merge and Move.

Depending on the conditions under which MOM is thought to apply, two variants can be dis-

tinguished. The indiscriminate version (iMOM) always prefers Merge over Move. As a result, it

picks the most economical derivation, even if said derivation will eventually crash. The cautious

version (cMOM), on the other hand, follows the original proposal of Chomsky (1995) in that only

convergent derivations can be chosen. Both iMOM and cMOM use the Identity of Numerations

Condition (INC) for determining a derivation’s reference set, i.e. the set of derivations it competes

with. The INC states that the reference set of a derivation d contains all the derivations that can be

built from the same numeration as d, and only those.

Evidently cMOM has a distinctly global flavor to it: if MOM is evaluated at every step of the

derivation, i.e. before the derivation is completed, then the only way to predict which competing

derivations will crash later on — and thus must be discarded for the comparison — is via a filter

based on unlimited look-ahead or reference-set computation. The iMOM variant, by contrast,
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provides a strictly local alternative. It contains not even a modicum of global economy, as it

simply prefers Merge over Mover whenever there is a locally licensed choice between the two, no

matter what the eventual outcome.

For simple cases like (1) both MOM variants make the right predictions. However, there are

cases where they behave differently (Shima 2000).

(2) a. It is asked [how likely tJohn to win]i John is ti.

b. * John is asked [how likely tJohn to win]i it is ti.

The assembly of [is [how likely John to win]] proceeds as usual. Subsequently, a decision has to

be made as to whether one wants to move John into SpecTP or base-merge the expletive instead.

The iMOM variant picks the base-merger route, so we end up with [it [is [how likely John to win]].

This means that iMOM will always block the grammatical (2a), irrespective of how the derivation

continues.

The behavior of cMOM is more refined. Assume that base-merger of it is favored, yielding

[it [is [how likely John to win]]. After this phrase is merged with asked and is, John must move

into the specifier of the matrix TP to get its case feature checked. This is when the implicit look-

ahead of cMOM comes into play. Unless moving John is barred for independent reasons, the

derivation for (2b) won’t crash, so the initial choice of merging it rather than moving John won’t

be discarded by cMOM. As a result, (2b) incorrectly blocks (2a). However, if (2b) is illicit for

independent reasons — say, because moving John out of [how likely John to win] constitutes an

island violation — then cMOM won’t consider base-merger of it a viable alternative to Move and

only (2a) is generated.

There are also cases where both variants make the wrong predictions (Wilder and Gärtner

1997).

(3) a. There was [a rumor [that a man was tDP in the room]] in the air.

b. [A rumor [that there was a man in the room]] was tDP in the air.

Both sentences are assembled from the same numeration, so (3b) should block (3a), since the for-
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mer converges and violates MOM at a later derivational step than the latter. In order to account for

such cases, Chomsky (2000) stratifies numerations such that each CP has its own subnumeration.

In the case at hand, (3a) is built from the numeration {{there, was, a, rumor, in, the, air}, {that,

was, a, man, in, the, room}}, and (3b) from the minimally different {{was, a, rumor, in, the, air},

{that, there, was, a, man, in, the, room}}. By the INC, then, derivations built from the former do

not belong to the same reference set as derivations generated from the latter.

So now another parameter of MOM must be taken into account. A restricted version of MOM

(rMOM) is part of a grammar where every CP has its own numeration. An unbounded version

(uMOM) belongs to a grammar with one big, unstructured numeration for the entire sentence. In

this system, cuMOM is the version of MOM introduced in Chomsky (1995), iuMOM is its local

counterpart, and crMOM is the modification put forward in Chomsky (2000). Out of these three

alternatives, crMOM is arguably superior with respect to empirical coverage, whence it will be the

starting point for the transducer implementation.

2.2 A Transducer Model of MOM

The general strategy for modelling MOM is slightly altered from the schema I outlined in

Sec. 1.3. Just as described there, I first give a transducer that rewrites derivations as a certain kind

of underspecified tree. The idea is that the latter provides an abstract encoding of the former’s

reference set. These underspecified trees are then immediately turned into optimal derivations (in

contrast to the original schema, which posits some intermediate steps). By mapping all derivations

to underspecified trees from which only optimal derivations can be obtained, every derivation that

is suboptimal with respect to MOM is filtered out — or more precisely, rewritten as an optimal

one.

Every variant of MOM, though, poses one major difficulty for transducers, namely the defin-

tion of reference sets via the INC. Consider the utterance John loves Mary. Depending on how

we interpret the notion of “identity of numerations” invoked by the INC, John loves Mary might

have the same numeration as Mary loves John, so they should be in the same reference set. But
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the underspecification format I propose cannot encode both derivations in a single tree. In fact, no

transducer can map a given tree to the counterpart in which subject and object have been switched

unless there is an upper bound on their respective size; this is called the inability to perform local

rotations. Since DPs can be nested and may contain CPs, natural language arguments have un-

bounded size, so if the INC is an indispensable part of MOM, one would expect local rotations to

be unavoidable, too. This is not the case.

Consider (1) again. MOM’s objective is to explain why (1b) is ungrammatical, and it does so

by using a metric that makes it lose out against (1a). The grammaticality of (1c), on the other hand,

follows from the fact that its numeration differs from that of (1a) and (1b), whence it also belongs

to a different reference set by the INC. But identity of numerations is a rather indirect encoding of

the relationship that holds between (1a) and (1b). A simpler and more intuitive condition emerges

when we look at their derivation trees (see Fig. 3). Modulo the feature specifications of the LIs,

the only difference between the derivation trees of (1a) and (1b) is the timing of Move and there-

Merger. Switching the positions of these two operations in the derivation does not constitute an

instance of local rotation because the size of the moved subtree is at most 2 (Merge plus its left

daughter there) and hence finitely bounded.

Merge

C Move

Merge

seems Merge

there Merge

to be Merge

Merge

a man

Merge

in Merge

the garden

Merge

C Merge

there Merge

seems Move

Merge

to be Merge

Merge

a man

Merge

in Merge

the garden

Merge

C Move

Merge

seems Move

Merge

to be Merge

Merge

a man

Merge

in Merge

the garden

Figure 3: Derivation trees of (1a), (1b) and (1c); features are omitted
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Recall that we want the transducer to eventually rewrite the suboptimal (1b) as the optimal

(1a). As we just saw, this does not involve local rotations, contrary to what one would expect if

the INC was the weakest working solution. But if the INC is indeed ill-suited to defining reference

sets, what should supplant it? There are in fact infinitely many alternatives that all yield the same

behavior. In my opinion, though, the most elegant solution is to give up the original partition of

reference sets and make (1c) a competitor of (1a) and (1b).

Compare the derivations of (1a) and (1b) to that of (1c). The former are essentially the result

of non-deterministically replacing one instance of Move in the derivation tree of (1c) by merger

with expletive there. Strikingly, though, rewriting the lower occurrence of Move yields the gram-

matical (1a), whereas rewriting the structurally higher occurrence gives rise to the ungrammatical

(1b). Suppose then, that we have an underspecified representation of all three derivations which is

identical to (1c) except that the two instances of Move are replaced by a new symbol �. Now if we

have a transducer that may rewrite � as Move or merger of there, then all three derivations can be

obtained from the underspecified tree. However, if we furthermore require that � must be rewritten

as Move if some other � has already been rewritten as Move earlier on, then only (1a) and (1c) are

possible outputs. The derivation for (1b) will never be generated — speaking in terms of RCs, it

is filtered out as suboptimal with respect to MOM. From a linguistic perspective, MOM has been

reduced to a local well-formedness condition on derivation trees: Move must not derivationally

dominate an instance of there-merger.

The idea just outlined is captured as follows (see the appendix for a more rigorous description):

First, our input language is the set of derivation trees of some MG. Then we use a transducer α to

map each input derivation to some underspecified tree. For the sake of clarity, α is decomposed

into two smaller transducers, Remove Features and Underspecify.

Remove Features strips away all features from the LIs except their category features. This step

is indispensable because every instance of Merge or Move is tied to specific features in an MG, so

any two derivations that differ with respect to the timing of Merge and Move also differ in the fea-

ture make-up of their LIs. Unless all those features are removed, derivations that should compete
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with respect to MOM won’t be mapped to the same underspecified tree. Category features are kept

to ensure that two non-competing derivations with homophonic LIs have distinct underspecified

representations. Note that since Remove Features involves only relabeling of leaf nodes, it can

easily be carried out by a transducer.

Underspecify has slightly more work to do, but only inside TP, where it deletes expletive there

and rewrites the corresponding Merge node as �. Move nodes in this domain are also rewritten

as �. States must be used to detect which nodes must be rewritten or deleted. If a leaf’s label is

an LI of category T, C or simply there the transducer adds the state qt , qc, or qthere on top of it,

respectively. Otherwise it inserts the neutral state q∗. The state qt is percolated until a sister with

state qc is encountered, which indicates the beginning of the CP. The transducer has several rules

for interior nodes, but only two of them do any actual work. The first one rewrites Move-nodes

dominating the state qt as �, i.e. TP-internal Move nodes are relabeled �. The second one applies

to Merge-nodes dominating states qt and qthere. This configuration indicates a TP-internal Merge-

site of expletive there, so we delete the subtree deleted by qthere and change the label from Merge

to �. As Underspecify involves only relabelings and deletion of subtrees, it too is a transducer as

defined in Sec. 1.2.

The underspecified trees created by α are then turned into fully specified ones again by the

transducer β . As we saw in our discussion of (1a)–(1c), β only recovers the optimal derivations and

thus enforces MOM. Just as with α , the workload of β is distributed over two smaller transducers,

Path Condition and Restore Features.

Path Condition is the essential step that captures MOM’s economy metric. Upon encountering

a �, it may rewrite it as Move or Merger of there, but with the added condition that once a �

node has been replaced by Move, all remaining instance of � in the same TP have to be rewritten

as Move, too. Formally, this is handled by having the transducer switch between three different

states: q∗, qmove, and qc. The first one is the default and merely encodes that no � has been

rewritten as a Move node yet. For any � dominating q∗, the transducer may freely choose between

Move or Merger of there. Once it opts for the former, though, it must project the state qmove, and
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every � dominating this state must be rewritten as Move. The only way for the transducer to stop

percolating qmove and switch back into q∗ is for it to reach a CP, which is encoded by the state

qc. This dependency on qc “resets the transducer” for each CP and thus avoids overapplication of

MOM, similar to the subnumerations of Chomsky (2000).

Two example runs of Path Condition are given in Fig. 4 and 5. Note how the transducer is

locked into state qmove in Fig. 5 after rewriting the lower instance of � as Move and consequently

must also rewrite the higher instance as Move, making it impossible to generate the derivation tree

for the ungrammatical There seems a man to be in the garden. These examples also illustrate that

only relabelings and insertions of finitely-bounded subtrees are employed, which — as we saw

with our toy transducer for wh-movement — are no problem for a transducer.

The last element of our chain of transducers is Restore Features, which undoes the effects

of Remove Features, unsurprisingly. This is a non-deterministic process, though, and thus may

overgenerate. For instance, the MG on page 4 allows for what to be reinstantiated with or without

a wh− feature. Hence Restore Features generates many ill-formed derivation trees that have to be

filtered out later on. The required mechanism also takes care of another source of overgeneration.

The non-deterministic rewriting of � by Path Condition allows for two occurrences of � to be

rewritten as there, which yields the (derivation tree of the) ungrammatical there seems there to be

a man in the garden. Both kinds of overgeneration are prevented by discarding all derivation trees

that aren’t licensed by the original grammar. Formally, this is handled by intersecting the output

language of β with the input language of α , which can also be done by a transducer.

2.3 Empirical Evaluation

As I will show now, the transducer conception of MOM (tMOM) not only performs just as

well as crMOM (Chomsky 2000), it is also less prone to undergeneration. The examples in Fig. 4

and 5 already demonstrate that tMOM successfully accounts for simple expletive/non-expletive

alternations as in (1). So let us look at the more complex scenario in (3), repeated here as (4),

which prompted the introduction of stratified numerations in the first place.
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(4) a. There was [a rumor [that a man was tDP in the room]] in the air.

b. [A rumor [that there was a man in the room]] was tDP in the air.

Recall that this was a problematic case for pre-Chomsky (2000) versions of MOM (i.e. cuMOM

and iuMOM); in the absence of stratified numerations the INC puts (4a) and (4b) in the same

reference set, and as a result (4a) blocks (4b).

Under tMOM, on the other hand, (4) is a straightforward generalization of the pattern in (1).

The underspecified tree of both sentences is shown in Fig.6. When it is expanded to full derivations

again, all four logical possibilities are available: (I) there-insertion in both CPs, (II) Move in both

CPs, (III) there-insertion in the lower CP and Move in the higher one, and (IV) Move in the lower

CP and there-insertion in the higher one. The last option is available because the transducer, which

is in the “rewrite all instances of � as Move”-state qO after rewriting the label � as Move, switches

back into the neutral state q∗ after having passed through the CP headed by that. Thus when it

encounters the second � node in the higher CP, it can once again choose freely how to rewrite it.

Provided the four derivation trees obtained from the underspecified derivation aren’t filtered out by

the original MG, the following sentences are generated, all of which are grammatical:

(5) a. There was a rumor that there was a man in the room in the air.

b. There was a rumor that [a man]i was ti in the room in the air.

c. [A rumor that there was a man in the room]i was ti in the air.

d. [A rumor that [a man]i was ti in the room] j was t j in the air.

It is worth mentioning that tMOM differs from all other variants in how it groups these sentences

into reference sets. The INC of the unstratified cuMOM and iuMOM entails that these four sen-

tences belong to three distinct equivalence classes, one containing (5a), one containing (5b) and

(5c), and one containing (5d). The crMOM variant with its stratified numerations, on the other

hand, puts each sentence into its own equivalence class. Only tMOM lumps them all together into

one equivalence class, which is the most intuitive route to take.
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Merge

C �

Merge

was Merge

Merge

a Merge

rumor Merge

that �

Merge

was Merge

a man in the room

in the air

Figure 6: Underspecified Derivation Tree of (4a) and (4b)

Moreover, tMOM avoids certain undergeneration problems plaguing all other MOM variants,

including crMOM (Shima 2000).

(6) a. It is asked [how likely tJohn to win]i John is ti.

b. * John is asked [how likely tJohn to win]i it is ti.

Recall from our discussion in the previous section that iMOM always discards (6a), whereas

c(r)MOM only does so if the derivation for (6b) does not crash (and the two even have identi-

cal stratified numerations). But tMOM never blocks it, because the grammaticality of the Merge

variant has no bearing on the availability of the Move variant. This is so because tMOM is less

of an economy-based dispreference for Move and more of a description of the set of possible con-

tinuations of a derivation once a choice pro-Merge or pro-Move has been made. The sequence of

Merge and Move nodes in (6a) forms a licit pattern — Move is never followed by Merge inside a

TP-domain — and thus tMOM will never filter out this derivation. It is striking that even though
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this deviation from crMOM was prompted by the desire to keep tMOM as simple as possible (a

completely faithful implementation of crMOM is possible, but would require parts of the Shortest

Derivation Principle transducer of Graf 2010b), it actually is better behaved empirically.

Despite this small advantage, though, the behavior of tMOM still closely resembles that of

crMOM. In particular, tMOM also fails to mark (6b) as ungrammatical. So both cMOM and

tMOM require that the initial MG contains some locality condition that rules out (2b) in order to

make the correct predictions. A natural candidate would be the islandhood of [how likely John to

win].

Further assumptions about the input grammar must also be made to rule out cases of superrais-

ing like (7a) and multiple occurrences of there as in (7b).

(7) a. * A man seems there to be in the room.

b. * There seems there to be a man in the room.

On a conceptual level, this is a defensible move as the deviancy of these examples does not seem

to be directly related to MOM. However, if we really wanted to incorporate such restrictions

into MOM, at least the ban against double there can easily be accommodated by changing from

a “once you opt for Move, you have to stick with it” version of Path Condition to the stricter

“once you have rewritten a �, all higher occurrences of � in this CP must be rewritten as Move”

(this is accomplished by replacing the rule �(q∗(x))→ q∗(Merge(there,x)) in the appendix by the

minimally different �(q∗(x))→ qo(Merge(there,x))).

2.4 Technical Summary

RCs can be implemented using a tree rewriting formalism called (linear bottom-up tree) trans-

ducers. Transducers may relabel nodes, delete subtrees, or insert new subtrees of bounded size.

They do so by traversing the tree from the leaves towards the root, inserting special state symbols

at each step that serve as a storage for a limited amount of information about the subtree they

dominate. Modelling RCs as transducers means that suboptimal derivations aren’t filtered out but
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rather turned into optimal ones. In the case of MOM, this is handled by a cascade of transducers

that first turns derivations into an underspecified format omitting, in the TP domain, Move nodes

and merger of there. Crucially, derivations that are competing with respect to MOM all share the

same underspecified representation. After that, underspecified representations are turned into fully

specified derivations again, but the transducer carrying out this rewrite step is constrained in such

a way that only optimal derivations can be obtained this way. More precisely, no TP may contain

a Move node that is dominated by a there-Merge node in the same TP. This implementation of

MOM has several empirical advantages over the versions proposed in the literature. More impor-

tantly, though, transducers do not increase the power of Minimalist syntax as formalized in Stabler

(1997, 2011). Consequently, MOM and other RCs can be reimplemented using only Merge, Move,

and the feature calculus, so there is an equivalent but computationally more parsimonious way of

ruling out the illicit structures.

Conclusion and Further Discussion

This paper started with a very general question — how much influence do the interfaces have on

the shape of narrow syntax — and used RCs to debunk the strongest possible hypothesis, namely

that syntax is uniquely determined by interface requirements. The foundation of the argument is a

mathematical theorem that at least some RCs can be emulated by the Minimalist feature calculus

combined with Merge and Move, which contradicts the assumption in the literature that RCs are

computationally costly, whence they should be in violation of interface requirements. In order to

demonstrate that this subclass of RCs contains constraints from the syntactic literature, I showed

how MOM can be implemented using the relevant formal tools (Minimalist grammars and linear

tree transducers). In sum, there are syntactic RCs that can be recast with less demanding machin-

ery, so it cannot be ruled out that said RC is used by syntax while the component that imposes the

stringent computability demands gets to operate with the local correspondent. It is conceivable,

then, that syntax tricks the interfaces whenever it can conceal its offenses against their require-

ments.
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Appendix

I adopt the definition of MGs and Minimalist derivation tree languages (MDTLs) given in

Graf (2011). As shown there and in (Kobele 2011), MDTLs are (almost) closed under linear tree
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transductions, which entails that the image of an MDTL under a linear tree transduction is itself an

MDTL (given a suitable refinement of the feature calculus).

The standard definition of linear bottom-up tree transducers is given below. The reader is

referred to Engelfriet (1975) for further details, in particular for the rather cumbersome definition

of the tree translations realized by a given transducer.

Definition 1. A linear (bottom-up) tree transducer (lbutt) is a 5-tuple A := 〈Σ,Ω,Q,Q′,∆〉, where

Σ and Ω are finite ranked alphabets, Q is a finite set of states, Q′ ⊆ Q the set of final states, and ∆

is a set of productions of the form f (q1(x1), . . . ,qn(xn))→ q(t), where f ∈ Σ is a symbol of rank

n, q1, . . . ,qn,q ∈ Q, t is a tree with labels drawn from Ω∪{x1, . . . ,xn}, and each xi occurs at most

once in t.

For the sake of succinctness (but to the detriment of readability), I adopt the following nota-

tional conventions for tree transducer productions:

• α{x,y} is to be read as “αx or αy”.

• αa...z(βa′...z′, . . . ,ζa′′,...,z′′) is to be read as “αa(βa′, . . . ,ζa′′) or . . . or αz(βz′, . . . ,ζz′′)”.

Example. The production σ(qi j{a,b}(x),q jkc(y))→ q{a,c}(σ(x,y)) is a schema defining eight pro-

ductions:

σ(qi(x),q j(y))→ qa(σ(x,y)) σ(qi(x),q j(y))→ qc(σ(x,y))

σ(q j(x),qk(y))→ qa(σ(x,y)) σ(q j(x),qk(y))→ qc(σ(x,y))

σ(qa(x),qc(y))→ qa(σ(x,y)) σ(qa(x),qc(y))→ qc(σ(x,y))

σ(qb(x),qc(y))→ qa(σ(x,y)) σ(qb(x),qc(y))→ qc(σ(x,y))

I now turn to the implementation of MOM by decomposing it into four linear transducers. I

assume that the input to MOM is given by the MDTL L of some MG G with lexicon Lex. The first

transduction to apply is Remove Features. As this transducer only relabels leaf nodes, I omit a full

definition.
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Definition 2. Remove Features is the deterministic (one-state) transducer that maps each LI l :=

σ :: γcδ ∈ Lex to l′ := σc, where c is a category feature and both γ and δ are strings of features.

The set of these simplified LIs is denoted by Λ.

Even though the definition of an MG allows for an LI to have several category features or

none at all, no such LI can ever appear in a well-formed derivation tree (cf. Graf 2011; Kobele

2011). Hence Remove Features is well-defined. If for some reason multiple category features (or

their absence) are indispensable, the transduction can be extended such that each LI is subscripted

by the n-tuple of its n category features. In either case, the map defined by Remove Features is

many-to-one, so Λ is finite by virtue of the finiteness of Lex.

Definition 3. Underspecify is the lbutt U , where ΣU := Λ∪{Merge,Move}, ΩU := ΣU ∪{�},

Q := {q∗,qc,qt ,qthere}, Q′ := {q∗}, and ∆U consists of the rules below. I use the following nota-

tional conventions:

• σc and σt denote any LI l ∈ Λ whose category feature is C or T, respectively,

• the symbol “there” refers to any expletive l ∈ Λ involved in MOM (usually just there, but

possibly also it),

• σl denotes any LI which does not fall into (at least) one of the categories described above,

• as derivation trees aren’t linearly ordered, rules for binary branching nodes are given for only

one of the two possible orders (namely the one that reflects the linear order in the derived

structure).

σl → q∗(σl) Merge(qc∗(x),qt∗(y))→ q∗(Merge(x,y))

σt → qt(σt) Merge(qt(x),q{t,∗}(y))→ qt(Merge(x,y))

there→ qthere(there) Merge(qthere(x),q{t,∗}(y))→ qt(�(y))

σc→ qc(σc) Move(q∗(x))→ q∗(Move(x))

Move(qt(x))→ qt(�(x))
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Definition 4. Path Condition is the lbutt P , where ΣP := ΩU , ΩP := ΣU , Q := {q∗,qc,qmove},

Q′ := {q∗}, and ∆P contains the rules below (the same notational conventions apply):

σl → q∗(σl) Merge(qc{c,∗}(x),qmove{c,∗}(y))→ q∗(Merge(x,y))

σt → q∗(σt) Merge(q{move,∗}(x),qmove(y))→ qmove(Merge(x,y))

σc→ qc(σc) Move(q∗(x))→ q∗(Move(x))

�(q∗(x))→ q∗(Merge(there,x))

�(q{move,∗}(x))→ qmove(Move(x))

Definition 5. Restore Features is the non-deterministic transducer computing the inverse of the

transduction defined by Remove Features.

Let id be the identity function over L (which is guaranteed to a be a linear tree transduction).

Now we define τ as the composition of Remove Features, Underspecify, Path Condition, Restore

Features, and id. The image of L under τ consists of all trees that are optimal with respect to

MOM, and only those.
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