
Models of Adjunction in Minimalist Grammars

Thomas Graf

Department of Linguistics
Stony Brook University
mail@thomasgraf.net
http://thomasgraf.net

Abstract. Three closely related proposals for adding (cyclic) adjunc-
tion to Minimalist grammars are given model-theoretic definitions and
investigated with respect to their linguistic and formal properties. While
they differ with respect to their linguistic adequacy, they behave largely
the same on a computational level. Weak generative capacity is not af-
fected, and while subregular complexity varies betweeen the three pro-
posals, it does not exceed the complexity imposed by Move. The closure
of Minimalist derivation tree languages under intersection with regular
tree languages, however, is lost.

Keywords: Minimalist grammars, adjunction, derivation trees, subreg-
ular tree languages, closure properties

Introduction

The distinction between arguments and adjuncts is recognized by a variety of
linguistic formalisms. Although a number of empirical properties have been iden-
tified — for instance, adjuncts can be freely iterated and dropped from sentences
— there is little consensus as to how adjuncts should be implemented. In the case
of Minimalist grammars (MGs; [12]), a formalization of contemporary Chom-
skyan syntax, at least three different mechanisms have been proposed: adjunc-
tion as category-preserving selection, adjunction as asymmetric feature checking
[3], and adjunction without feature checking [2].

This paper evaluates these three proposals with respect to their formal prop-
erties and linguistic adequacy. Building on [5, 6], I give a model-theoretic defini-
tion of each system in terms of constraints on Minimalist derivation trees and a
mapping from these derivations to derived trees. The linguistic adequacy of these
proposals is then evaluated with respect to a number of fundamental properties
of adjuncts such as optionality and iterability, extending previous observations
by Fowlie [2]. On the formal side, I compare Graf’s results on subregular com-
plexity of the derivation tree languages of standard MGs [5] to that of MGs with
adjunction.

As summarized in Tab. 1 and 2 at the end of the paper, only the imple-
mentation without feature checking satisfies all linguistic criteria, but it is also
the most complex, which is reflected by its higher subregular complexity. Fur-
thermore, the closure under intersection with regular tree languages enjoyed by

2

standard MGs [4, 9] is lost with all three variants of adjunction. Intuitively, this
is due to the optionality and iterability of adjuncts, which each implementation
needs to capture.

I proceed as follows: Section 1.1 recapitulates the constraint-based definition
of MGs in [5], while Sec. 1.2 lists some formal properties of standard MGs.
Sections 2.1–2.3 then look at each implementation of adjunction in greater detail.
Even though the discussion is not particularly technical, the reader is expected to
already be familiar with MGs and their constraint-based definition. All relevant
details can be found in [4–6].

1 Minimalist Grammars

1.1 Definition in Terms of Derivation Tree Languages

I follow [5, 6] in defining MGs in terms of their Minimalist derivation tree lan-
guages (MDTLs) and a mapping from derivation trees to derived trees. This
perspective will make it a lot easier later on to add adjunction operations to
MGs and reason about their generative capacity, “derivational” complexity, and
linguistic adequacy.

The definition of MDTLs is rather intuitive. Each lexical item (LI) is trans-
lated into a tree that corresponds to the contiguous subpart of the derivation
that the LI controls via its positive polarity features. These trees are called slices.
An MDTL is the largest set of trees that can be assembled from a finite number
of slices without violating any constraints imposed by the MG feature calculus.
As we will see in the next section, adding adjunction amounts to the introduction
of new slices and modifying the constraints that regulate their distribution.

We start by defining features in a modular way.

Definition 1. Let Base be a non-empty, finite set of feature names. Fur-
thermore, Op := {merge,move} and Polarity := {+,−} are the sets of
operations and polarities, respectively. A feature system is a non-empty set
Feat ⊆ Base×Op×Polarity.

Negative Merge features are called category features (denoted f), positive Merge
feature selector features (= f), negative Move features licensee features (−f),
and positive Move features licensor features (+f). In the following, ν(f), ω(f)
and π(f) denote the name, operation, and polarity of f , respectively.

Definition 2. Given a string alphabet Σ and feature system Feat , a (Σ,Feat)-
lexicon is a finite subset of Σ×{::}×{f | π(f) = +}∗×{f | ω(f) = merge, π(f) =
−} × {f | ω(f) = move, π(f) = −}∗.

The ordering restriction on features is actually a corollary of the Minimalist
feature calculus (see [4, 9]) and thus usually omitted. In anticipation of the
modifications brought about by adjunction in the next section, though, I opt for
explicitness over succinctness.

Next LIs are converted into slices in a top-down fashion:

3

Definition 3. Let Lex be a (Σ,Feat)-lexicon and Lex? := {σ :: f1 · · · fn? | σ ::
f1 · · · fn ∈ Lex}. Then the slice lexicon of Lex is slice(Lex) := {ζ(l) | l ∈ Lex?},
where ζ is given by

ζ(σ :: f1 · · · fi ? fi+1 · · · fn) :=



σ :: f1 · · · fn
if f1 · · · fi = ε

ζ(σ :: f1 · · · fi−1 ? fi · · · fn)
if π(fi) = −

move(ζ(σ :: f1 · · · fi−1 ? fi · · · fn))
if τ(fi) = move and π(fi) = +

merge(�, ζ(σ :: f1 · · · fi−1 ? fi · · · fn))
if τ(fi) = merge and π(fi) = +

This definition uses the functional representation of trees, i.e. f(t1, . . . , tn) de-
notes the tree whose root is labeled f and whose i-th daughter is the root of
tree ti, 1 ≤ i ≤ n. The symbol � indicates a possible tree substitution site: For
node u of tree s, s[u← t] is the result of substituting t for the subtree in s that
is rooted in u. This is also called a concatentation of s and t. For slices s and t,
s[u← t] is defined iff u is labeled �.

Given a slice lexicon slice(Lex), the free slice language FSL(slice(Lex)) is the
smallest set that contains every tree t that is the result of concatenating finitely
many s ∈ slice(Lex). The set of well-formed derivations is the largest subset of
the free slice language whose trees obey certain tree-geometric conditions. These
conditions correspond to constraints imposed by the Minimalist feature calculus.

An interior node m of ζ(l) is associated to feature fi on l iff m is the root
of ζ(σ :: f1 · · · fi ? fi+1 · · · fn). Two features f and g match iff they have iden-
tical names and operations but opposite feature polarities. An interior node m
matches a feature g iff the feature m is associated to matches g. Finally, the slice
root of LI l := σ :: f1 · · · fn is the unique node of ζ(l) reflexively dominating
every node in ζ(l).

Merge For every t ∈ FSL(slice(Lex)) and node m of t, if m is associated to
selector feature = f , then its left daughter is the slice root of an LI with
category feature f .

More succinctly, the selector features of an LI must be checked by an LI with a
matching category feature.

Final Let F ⊆ Base be a distinguished set of final categories. For every t ∈
FSL(slice(Lex)) and LI l, if the slice root of l is also the root of t, then the
category feature c of l is a final category, i.e. ν(c) ∈ F .

The conditions on move are only of ancillary importance to this paper. Con-
sequently, I content myself with the bare definitions and do not further explore
the reasoning behind them; the interested reader is referred to [5]. For every
t ∈ FSL(slice(Lex)) and LI l in t with string −f1 · · · − fn of licensee features,
n ≥ 0, the occurrences of l in t are defined as follows:

4

– occ0(l) is the mother of the slice root of l in t (if it exists).
– occi(l) is the unique node m of t labeled move such that m matches −fi,

properly dominates occi−1, and there is no node n in t that matches −fi,
properly dominates occi−1, and is properly dominated by m.

Intuitively, node m is an occurrence of LI l iff it denotes an operation that checks
one of l’s negative polarity features.

For t and l as before, and every node m of t:

Move There exist distinct nodes m1, . . . ,mn such that mi (and no other node
of t) is the ith occurrence of l, 1 ≤ i ≤ n.

SMC If m is labeled move, there is exactly one LI for which m is an occurrence.

With these four constraints we can finally define MDTLs: Given an MG G
with lexicon Lex , the MDTL of G is the largest L ⊆ FSL(Lex) such that every
tree in L satisfies the four constraints above. Equivalently, each constraint can be
taken to be the largest set of trees that satisfy the respective constraint, so that
G’s MDTL is the intersection of G’s free slice language and the tree languages
defined by Final, Merge, Move and SMC. Since all these tree languages are
regular, it follows that MDTLs are too.

As mentioned at the beginning of this section, MDTLs must be mapped
to derived tree languages. With the exception of move, this mapping is rather
simple. The following is an informal description of the standard translation from
derivation trees to multi-dominance trees (directed acyclic graphs), where the
phrasal root of an LI is the same as its slice root:

1. Linearize. Switch the order of siblings l and n if l is an LI whose mother
belongs to the slice of l.

2. Project. If n is a Merge node whose left daughter is an LI with at least one
selector feature, relabel it <. All other interior nodes are labeled >.

3. Add branches. For every LI l, add branches from the phrasal root of l to
each occi(l), i ≥ 1.

4. Delete features. Relabel every LI σ :: f1f2 · · · fn by σ.

These steps can be carried out by a tree-to-graph transduction Φgr that is de-
finable in monadic second-order logic (MSO). The mapping Φtr from derivations
to derived trees with traces is also MSO-definable. See [6, 11] for details.

Definition 4. A Minimalist Grammar is a 5-tuple G := 〈Σ,Feat ,Lex ,F ,R〉
such that

– Lex is a (Σ,Feat)-lexicon, and
– F ⊆ Base is the set of final features, and
– R is the set of regular tree languages Final, Merge, Move, SMC.

The MDTL of G is FSL(slice(Lex))∩
⋂

R∈RR. The tree language L(G) generated
by G is the image of its MDTL under the MSO transduction Φtr of [6]. Its string
language is the string yield of L(G).

5

1.2 Formal Properties of MGs

MGs are weakly equivalent to MCFGs [10]. That MGs are at most as powerful as
MCFGs actually follows from the fact that their string languages are the string
yield of the image of regular tree languages under an MSO-definable transduction
[11]. For the purpose of adding adjunction, this means that weak generative
capacity is preserved as long as MDTLs are still regular and the mapping to
derived trees is MSO-definable.

In [5], it is shown that MDTLs are actually subregular. They are definable in
first-order logic with proper dominance (abbreviated FO[<]), and homogeneous.

Definition 5 (Homogeneity). For s1, s2, t1, t2 arbitrary trees and L a regular
tree language, L is homogeneous iff t[u ← a(t1, t2)] ∈ L, t[u ← a(s1, t2)] ∈ L,
and t[u← a(t1, s2)] ∈ L jointly imply t[u← a(s1, s2)] ∈ L.
For MGs without movement (i.e. no LI with licensee features occurs in a well-
formed derivation), the MDTLs are also definable in first-order logic with im-
mediate dominance (FO[S]), closed under k-guarded vertical swap, and strictly
local.

Definition 6 (Vertical swap). Let t be the concatenation of trees t1, t2, t3, t4,
t5 such that for 1 < i ≤ 5, the root of ti is immediately dominated by some node
ni−1 of ti−1. The vertical swap of t between t2 and t4 is the result of switching
t2 and t4 in t such that the roots of t2, t3, t4, t5 are immediately dominated by
n3, n4, n1, and n2, respectively. The vertical swap is k-guarded iff it holds that
t2 and t4 are identical up to depth k, and so are t3 and t5.

Definition 7 (Strictly local). Given a tree t over alphabet Σ, its k-augment is
the result of adding nodes n1, . . . , nk above the root and below each leaf such that
ni immediately dominates ni+1, 1 ≤ i < k and each ni has the distinguished label
� /∈ Σ. A k-factor of t is a subtree of t that has been truncated at depth k. That
is to say, if s is a subtree of t with m nodes n1, . . . nm that are labeled l1, . . . , lm,
respectively, and properly dominated by k−1 nodes, then s[n1 ← l1] · · · [nm ← lm]
is a k-factor of t. The set of k-factors of t is denoted Fk(t). A regular tree
language L over alphabet Σ is strictly local iff there is some k ∈ N and finite
set S of trees over Σ ∪ {�} with depth at most k such that t ∈ L iff Fk(t

′) ⊆ S,
where t′ is the k-augment of t.

These properties are interesting because they tell us something about the com-
plexity of the constraints imposed by the feature calculus. Closure under k-
guarded vertical swaps implies local threshold testability, while homogeneity is
equivalent to recognizability by a particular kind of deterministic top-down tree
automaton. Strict locality tells us that no dependency is unbounded.

2 Three Models of Adjunction

2.1 Category Preserving Selection

The simplest model of adjunction is naturally one that does not require any
modifications to the formalism. Taking inspiration from Categorial Grammar,

6

adjuncts can be implemented as LIs whose category feature has the same fea-
ture name as their selector feature. For example, the VP-adjunct quickly would
correspond to quickly :: =V V. Such cases of selection are category preserving.
This model was first discussed in [2], but it has been part of the general “MG
folklore” for a long time.

Linguistic Properties Despite its simplicity, this account captures several
properties of adjuncts. Since an LI can only be selected once all its positive
polarity features have been checked — which corresponds to projection in the
derived tree — category preserving LIs may only select LIs that have already
projected their full structure. Consequently, adjuncts are correctly predicted to
adjoin only to maximal projections.

The category preserving nature of adjuncts in this model also entails that
adjuncts are optional with respect to Merge. If an LI can select an adjunct a,
then it can also directly select the LI l that a adjoins to as both have the same
category feature. Category preservation also implies that multiple adjuncts can
adjoin one after another, that is to say, adjuncts are iterable.1

Certain important aspects of adjuncts are missed, though. First of all, nothing
in this system rules out the existence of adjuncts that adjoin to multiple phrases
at the same time. Consider an entry with two identical selector features, e.g.
quickly :: =V =V V. This LI could be used to generate a structure where two
VPs are simultaneously modified by a single adverb occurring between them,
yet no such structures are attested.

Another problem is posed by ordering effects. These can of course be handled
via subcategorization in the familiar fashion: if adjunct a cannot precede adjunct
b, then a does not select b, nor are there LIs c1, . . . , cn such that a selects c1, ci
selects ci+1 (1 ≤ i < n), and cn selects b (cf. [2]). However, since these categories
must be pair-wise distinct, the LIs are not category-preserving. Hence they are
not necessarily optional or iterable. As was already pointed out by Fowlie [2],
these properties can be enforced globally in the lexicon, but the cost is lexical
redundancy that hides the important generalizations.

Movement is also challenging. Since the adjunct selects the phrase it suppos-
edly adjoins to, it is not included in the phrase projected by the latter. So if the
adjoinee undergoes movement, the adjunct is left behind, just like a complement

1 Notice that these properties break down as soon as movement is involved — removal
of an adjunct that contains a licensee feature might render the derivation ill-formed,
and having multiple instances of such an adjunct may trigger SMC violations. How-
ever, if movement out of adjuncts is prohibited by something like the Adjunct Island
Constraint, for which there is a lot of empirical support, then problems arise only
where the adjunct itself undergoes movement. Displacement of adjuncts, though,
might not involve movement at all and may simply be an instance of a phrase or
LI being base-generated in a different position than where it is interpreted. For this
reason — and because all conceivable accounts of adjunction have similar problems
reconciling movement with optionality [7] — I will ignore movement dependencies
in the remainder of this paper as far as optionality and iterability are concerned.

7

DP that undergoes movement leaves behind the VP containing it. This can be
fixed by i) instantiating the licensee features on lexical heads (suggested by an
anonymous reviewer), or ii) adding a limited form of pied-piping to the mapping
from derivation trees to derived trees such that if l undergoes movement, the
movement branches connect the occurrences of l to the slice root of the highest
adjunct of l, rather than the slice root of l itself.

The first solution quickly leads to massive redundancy in the lexicon and once
again misses generalizations. Suppose our grammar contains the LIs l1 := s ::
c − f and l2 := t :: c. If licensee features are instantiated on empty heads instead,
the lexicon would contain the LIs l′1 := s :: c, l′2 := t :: c, and f := ε :: = c c − f.
So if l1 moves together with an adjunct a, this corresponds to l1 being selected
by a, which in turn is selected by the actual mover f . But keep in mind that
l2 should not be allowed to move, so the corresponding l′2 must not be selected
by f . This can only be guaranteed by changing the category of l′2 to, say, c′.
However, every LI except f that selects an LI of category c must still be able to
select l′2, so for each one of them we have to create a new variant whose selector
feature is =c′ instead of =c. Not only does this unnecessarily increase the size
of the lexicon, the fact that l1 and l2 have the same adjuncts is purely accidental
in this revised grammar.

The second option avoids the lexical blow-up by enabling the transduction
to pied-pipe adjuncts. But since adjuncts differ from non-adjuncts only in that
they are category preserving, this may cause problems when non-adjuncts are
also category preserving — for instance in the analysis of serial verb constructions
in [1], where each verb except the most deeply embedded one has the feature
component =V V. This actually highlights a more fundamental problem of this
approach: adjuncts do not form a natural class since arguments may have the
same feature make-up.

The inability to consistently distinguish arguments from adjuncts can also be
seen in the case of recursive adjunction, i.e. adjunction to an adjunct. Without
tricks, category-preserving selection cannot handle such configurations. Suppose
that b adjoins to a, which is an XP-adjunct and therefore has category feature
X. In order to adjoin to a, LI b must have selector feature =X, and by category
preservation it also has category X. But then b is an XP-adjunct just like a. So
a phrase like very red car only has a structure where very modifies car rather
than red.

As pointed out by an anonymous reviewer, this can be handled via empty
heads, but the proposed solution serves only to highlight the fact that arguments
cannot be separated from adjuncts in this system. Suppose that very :: adv and
red :: a are selected by the empty head ε :: = a =adv a, and this complex phrase
is then combined with car :: n by the empty head ε :: = n =a n. Then we obtain
the structure [[very [ε red]] [ε car]], which is reasonably close to the intended
[[very red] car]. But now consider cases where the adjunct follows the noun,
e.g. my cousin twice removed. Here the empty head should be ε :: = a =n n.
This very feature template also arises in the standard DP-analysis of English
possessor phrases such as John’s car, where the possessive marker is given by

8

’s :: = n =d d. Yet this structure is not assumed to involve adjuncts of any kind.
We see, then, that adjuncts cannot be reliable identified with a specific type of
feature component.

Formal Properties While modeling adjunction as category preserving selec-
tion has some important drawbacks from a linguistic perspective, it has the
advantage of being compatible with the standard MG formalism. Consequently,
all formal properties of MDTLs are unaffected. Only closure under intersection
with regular tree languages can be lost under very specific assumptions. The
proofs in [4, 9] rely on the ability to subscript category and selector features
with specific states of a tree automaton. In many cases, an LI will have different
state-suffixes on its selector and category features. As a result an LI may no
longer be category preserving after its features have been suffixed with states.
Hence, if suffixation must respect category preservation, then the class of MDTLs
is no longer closed under intersection with regular tree languages. Or the other
way round: the property of being an adjunct is not preserved under intersection
with regular tree languages.

Example 1. Consider the regular tree language that includes a tree t iff t contains
at most three LIs whose phonetic exponent is quickly. If the LI l for quickly
must be category preserving, then irrespective of how its features are altered,
one instance of l can always be selected by another one. Hence if the MDTL
contains a tree with at least one instance of quickly, it also contains trees with
more than three of them.

2.2 Asymmetric Feature Checking

A very different implementation of adjunction was presented by Frey and Gärt-
ner [3]. Adjuncts are now formalized as LIs whose category feature c has been
replaced by an adjunction feature ≈ a. An LI l with feature ≈ a can adjoin to any
LI l′ of category a. Crucially, the adjunction operation is asymmetric in that it
only checks the adjunction feature of l, whereas the category feature on l persists,
thereby allowing for multiple LIs to adjoin to it. This partial feature persistence
of adjunction sets it apart from Merge, which always checks the relevant features
of both the selector and the selectee. In addition, it is the phrase being adjoined
to that projects, rather than the adjunct itself. An example derivation with the
corresponding derived tree is given in Fig. 1.2

Definition Only a few things have to be altered in our definition of MDTLs to
incoporate Frey and Gärtner’s version of adjunction. First, adjunction features
must be added to the feature system and restricted to be in complementary
distribution with category features. To this end, Def. 1 is revised such that
Op := {merge,move, adjoin}, and the defintion of LI is altered accordingly:
2 A related system is developed by Hunter in [8], who uses the same feature checking
mechanism but a different type of Minimalist derivations. As far as I can tell, my
observations about Frey and Gärtner’s system apply to Hunter’s, too.

9

Merge

ε :: =T CMerge

Merge

ε :: =V TMerge

quickly :: ≈VMerge

Merge

before :: =D ≈Vdawn :: D

left :: V

Alucard :: D

<

>

<

>

>

left<

dawnbefore

quickly

ε

Alucard

ε

Fig. 1. Left: derivation tree with adjunction as asymmetric feature checking; Right:
corresponding derived tree

Definition 8. Given a string alphabet Σ and feature system Feat , a (Σ,Feat)-
lexicon is a finite subset of Σ×{::}×{f | π(f) = +}∗×{f | ω(f) ∈ {merge, adjoin} ,
π(f) = −} × {f | ω(f) = move, π(f) = −}∗.

The only change from Def. 2 is that the unique category feature may be replaced
by an adjunction feature of negative polarity.

The next step is to assign adjuncts an interpretation in terms of deriva-
tion trees. That is to say, both the translation from LIs to slices and the well-
formedness conditions on MDTLs need to be amended. Def. 3 is extended to
cover one more case: merge(�, ζ(σ :: f1 · · · fi−1 ? fi · · · fn)) if τ(fi) = adjoin.
Note that even though adjuncts do not project in the derived tree, in the deriva-
tion tree the adjunction step belongs to the slice of the LI with the adjunction
feature. So from a derivational perspective adjunction looks very similar to Merge
(we do not even introduce a new label to distinguish the two).

A simple modification of the constraint Merge suffices to regulate the dis-
tribution of adjuncts.

Merge For every t ∈ FSL(slice(Lex)) and node m of t, if m is associated to
selector feature = f or adjunction feature ≈ f , then its left daughter is the
slice root of an LI with category feature f or adjunction feature ≈ f .

The only difference to the original definition is the presence of the two disjuncts
“or adjunction feature ≈ f ”. The first disjunct allows Merge to be triggered by
adjunction features, too. The second one allows for configurations where a phrase
has multiple adjuncts, as in Fig. 1. In this case, only the Merge node of the lowest
adjunct is the mother of the slice root of an LI with category feature f . For a
higher adjunct a, however, the slice root belongs to an LI b with an adjunction
feature ≈ f . As long as the two adjunction features are the same, though, it
follows by induction that there is some LI further down that both a and b adjoin
to.

This completely characterizes the adjunction operation on a derivational
level, so it only remains for us to modify the mapping from derivations to derived

10

trees. Two steps must be altered. Linearize now distinguishes two cases where
siblings are switched around:

Linearize Switch the order of siblings l and n if
– l is an LI whose mother belongs to the slice of l, or
– the mother of l is a Merge node associated to an adjunction feature.

In the definition of Add branches, the phrasal root of LI l is now defined as
either the slice root of the highest adjunct of l or the slice root of l if the former
does not exist. Without this change, our model-theoretic definition would differ
from Frey and Gärtner’s in that adjuncts would be stranded if the phrase they
adjoin to undergoes movement (a problem already encountered with the category
preservation model).

The change to how phrasal roots are determined also solves a minor problem
in the definition of Final, which is no longer adequate because the slice root of
the head of a tree may no longer be the root of the tree. However, its phrasal
root still is, so it suffices to replace “slice root” by “phrasal root” in Final.

Formal Properties Considering how little needs to be changed in the defini-
tions, it is hardly surprising that most formal properties of MGs also hold after
the introduction of a dedicated adjunction mechanism. The revised version of
Merge only adds a few disjunctions, wherefore it is still MSO-definable and
defines a regular tree language. The new clause in Linearize is also easily ex-
pressed in MSO, as is the new definition of phrasal root (cf. Sec. 2.2 of [6]). So
both MDTLs and their mapping to derived trees are still MSO-definable, which
entails that this variant of MGs generates at most MCFLs, and consequently
adjunction has no effect on weak generative capacity.

Even the subregular complexity of MDTLs is unaffected. For MGs without
Move, they are still strictly local since the domain for Merge comprises only
two slices. This also implies that adding adjunction to MGs with movement does
not negatively affect their definability in FO[<]. Finally, they are homogeneous
and therefore can be recognized by lrDTDAs.

Lemma 1. Let G be an MG with adjunction as asymmetric feature checking.
Then G’s MDTL is homogeneous.

Proof. Recall that a tree language L is homogeneous iff t[u← a(t1, t2)] ∈ L and
t[u ← a(s1, t2)] ∈ L and t[u ← a(t1, s2)] ∈ L jointly imply t[u ← a(s1, s2)] ∈ L.
We are only interested in subtrees whose root a is a Merge node associated to
an adjunction feature. All other cases are already covered by the homogeneity
proof for standard MDTLs in [5].

Let t[≈ f] and t[= f] denote that the head of t has ≈ f and = f as its first
feature, respectively, whereas t[f] indicates that there is an LI l in t whose first
unchecked feature is f and every Merge node properly dominating the slice root
of l is the slice root of an LI with feature ≈ f . Then t[u← a(t1, t2)] ∈ L only if
ti[f] and tj [≈ f] for i 6= j ∈ {1, 2}. Assume w.l.o.g. that i = 1 and j = 2. Then
it must also be the case that s1[f], and s2[≈ f] or s2[= f], so that a(s1, s2) is

11

well-formed with respect toMerge. Furthermore, we know that s1 and t1 on the
one hand and s2 and t2 on the other have the same unchecked licensee features
since substituting one for the other preserves well-formedness. It follows that
t[u← a(s1, s2)] ∈ L.

As in the case of category-preserving selection, the status of closure under
regular intersection is not entirely straight-forward. Simply applying the suffixa-
tion strategy of [4, 9] is insufficient. Once again this is illustrated by the regular
tree language in example 1, which contains only trees with at most three oc-
currences of quickly. If one instance of quickly can adjoin to a given LI l, then
arbitrarily many instances of it may adjoin to l. Hence there can be no MG G
whose MDTL contains trees with up to three occurrences of a, but not more
than that.

It is possible, however, to switch from asymmetric feature checking to stan-
dard symmetric Merge using category-preserving selection without changing the
shape of the derivation tree — both are just instances of Merge. To the ex-
tent that this is a licit step, closure under regular intersection would once again
hold if adjunct status need not be preserved. But even though the derivation
trees would be identical, the derived structures are not: an adjunct in Frey and
Gärtner’s system does not project, whereas a category-preserving head does.
And since we already saw in the discussion of the category-preservation account
that not every instance of category-preserving selection constitutes adjunction, a
derivation with adjunction cannot be uniquely recovered from an isomorphic one
with selection. This illustrates once again that closure under regular intersection
can be obtained only if LIs may lose their adjunct-status.

Linguistic Properties Just like the category preservation approach, the im-
plementation of adjunction as asymmetric feature checking captures several core
properties of adjuncts. Since category features are unaffected by adjunction, ad-
juncts are correctly predicted to be optional and iterable (modulo movement de-
pendencies). In addition, adjunction features behave similar to selector features
in that they are checked by category features. An LI therefore can be adjoined
to only after it has discharged all its positive polarity features, i.e. projected a
full phrase in the derived tree, which rules out X′-adjuncts.

In contrast to the category preservation approach, Frey and Gärtner’s im-
plementation also behaves correctly with respect to Move — an adjunct moves
together with the phrase it is adjoined to. Admittedly this has to be explicitly
stipulated in the definition of phrasal root, but the clear division between ad-
junction and selection in the feature system means that this modification does
not bring about any unexpected side-effects. Another welcome property is that
thanks to the limit to one adjunction feature, adjoining to multiple phrases at
once is impossible.

But Frey and Gärtner’s approach is not without shortcomings, either. Since
adjunction features replace category features, adjuncts lack category features
and thus cannot be adjoined to. So just like the category preservation imple-
mentation, asymmetric feature checking cannot assign the correct structure to

12

very red car. Even empty heads only solve the problem if one treats the adjuncts
as arguments of an unpronounced adjunct, which defeats the purpose of having
an explicit argument-adjunct distinction in the system.

Ordering effects are also unaccounted for. Since adjunction to an LI l with
category feature f can be triggered only by the feature ≈ f , all adjuncts of l have
said category feature. From this it follows immediately that these adjuncts may
adjoin in any given order and Merge will still be satisfied. Fowlie [2] sketches
a workaround based on a Cinque-style hierarchy of empty heads, each of which
serves as an adjunction site for adjuncts of a particular type. Still, the order is
enforced by selection rather than the adjunction mechanism itself, which reintro-
duces many problems of treating adjunction as selection, for instance regarding
phrasal projection and the interaction with movement.

2.3 Adjunction Hierarchies

A third approach has been recently proposed by Fowlie in [2]. Fowlie’s primary
interest is to reconcile optionality with ordering effects. Technically this is an
easy task if one uses standard selection: if LI l has selector feature =c, and LIs
of category c may be adjoined to by adjuncts a1, . . . an as long as each ai is
structurally lower than aj , 1 ≤ i < j ≤ n, then we have n additional versions of
l where =c has been replaced by =x, where x is the category feature of some ai,
1 ≤ i ≤ n. But this solution comes at the price of a significantly larger lexicon.

Fowlie proposes to put a partial order R on the set of categories instead.
Moreover, there are no adjunction features; adjunction of a to l has no effect on
the feature make-up of either LI and may take place as long as

– for ca and cl the category features of a and l, respectively, and α : Base→
℘(Base) a map from categories to sets of categories that may adjoin to them,
it must hold that ca ∈ α(cl), and

– ca 6R cl, and
– for every LI b of category cb that adjoined to l before a, ca 6R cb.

Notice that x 6R y is compatible with y 6R x and y R x. This is used by Fowlie
to make a distinction between order-insensitive and order-sensitive adjuncts,
respectively, with the former being linearized to the right of the adjoinee and
the latter to the left (the split is motivated by empirical observations). For the
sake of simplicity I ignore this distinction in what is to follow.

Definition While a literal implementation of the formalism in [2] is tedious
because of the way non-local information is passed around via feature pairs, this
mechanism can safely be ignored for a model-theoretic definition. As a matter
of fact, this is preferable from a formal perspective since local book-keeping of
non-local information could obscure the subregular complexity of adjunction in
derivation trees. Without Fowlie’s feature pairs, the feature system is exactly
the one of standard MGs. Consequently, all modifications take place on the level
of derivation trees and the mapping to derived trees.

13

For derivation trees, a viable strategy is to insert Adjoin nodes at arbitrary
points and then filter out the illicit derivations created this way. Technically,
this is achieved by a minimal change in the definition for slice lexicons such
that slice(Lex) := {ζ(l) | l ∈ Lex∗}∪{adjoin(�1,�2)}. As a result, the free slice
language not only contains combinations of lexical slices, but also trees where
binary branching adjoin nodes occur in random positions (but not within lexical
slices).

For movement, the presence of adjunction nodes causes no problems because
the constraints Move and SMC are non-local. But Merge was stated under
the assumption that the left daughter is the slice root of an LI with the matching
category feature. Adjunction destroys this local relation. In the system of Frey
and Gärtner, this could still be worked around due to the feature-driven nature of
adjunction. An LI with feature ≈ f could only adjoin to LIs of category f . But
this isn’t necessarily the case in this system, where α−1 — which determines
for every category the categories it may adjoin to — is not guaranteed to be
a function. Prepositional phrases, for example, can adjoin to both nouns and
verbs. So if a Merge node is associated to feature =N and its left daughter
is a node indicating adjunction of a PP, it is still unclear whether a matching
feature N can be found further down the tree. But suppose that we always
interpret adjoin nodes in a fashion such that the adjoinee is found along the left
branch and the adjunct along the right branch. Suppose m left-dominates n iff
m properly dominates n and there is no z such that z is properly dominated by
m, reflexively dominates n, and has a left sibling. Then the following definition
will do the trick:

Merge For every t ∈ FSL(slice(Lex)) and node m of t, if m is associated to
selector feature = f , then the highest node that is left-dominated by m and
not labeled adjoin is the slice root of an LI with category feature f .

This takes care of Merge nodes, but it still remains for us to regulate the
distribution of adjoin nodes. The first step is to determine the arguments of
each adjunction step, i.e. the adjoining phrase and the phrase being adjoined to.
If adjuncts cannot be adjoined to, this is very easy. For then the right daughter
is the slice root of the adjunct, and the slice root of the phrase being adjoined to
is the highest Merge node that is left-dominated by the adjoin node (once again
left-dominance is used to account for the fact that there may be other adjoin
nodes along the path). Somewhat surprisingly, though, allowing adjuncts to be
adjoined to is an easy process once left-dominance has been defined.

First, an adjunction node m is an adjunction occurrence of LI l in derivation
tree t iff m is the lowest node in t that properly dominates the slice root of l
but does not left-dominate the slice root of l. Second, an adjunction node m is
associated to category feature c iff m is an adjunction occurrence of LI l with
category feature c.

Adjoin For every t ∈ FSL(slice(Lex)) and node m of t, if m is associated to
category feature cm, then
– the highest Merge node in t left-dominated by m is the slice root of an

LI l with category feature cl, and

14

– cm ∈ α(cl), and
– for every node n that is properly dominated by m, reflexively dominates
l, and is associated to category feature cn, it holds that cm 6R cn.

As with Frey and Gärtner’s system, we also have to make changes to the
mapping from derivations to derived trees.

Linearize Switch the order of siblings l and n if
– l is an LI whose mother belongs to the slice of l, or
– the mother of l is an adjunction node.

The phrasal root of an LI l (referenced in Add Branches is now the highest
adjunction node n such that n properly dominates the slice root of l and no
Merge properly dominated by n properly dominates the slice root of l. Once
again Final is easily adapted to the new system by replacing “slice root” by
“phrasal root”.

Figure 2 gives an example of what derivations with multiple adjunctions look
like in this system, and what kind of structures they yield.

Merge

ε :: =T CMerge

Merge

ε :: =V TAdjoin

quickly :: AdvAdjoin

Adjoin

right :: AdvMerge

before :: =D Pdawn :: D

left :: V

Alucard :: D

1

12

2

3

3

<

>

<

>

>

left>

<

dawnbefore

right

quickly

ε

Alucard

ε

Fig. 2. Left:derivation tree with recursive adjunction, suffixes indicate adjunction oc-
currences; Right: corresponding derived tree

Formal Properties As with the previous model the changes in the definitions
are innocuous enough to see that the formal properties of MDTLs are mostly
unaffected. The major change is the introduction of left-dominance, which can
easily be defined in first-order logic with proper dominance. The function α and
the relation R are both finite by virtue of Minimalist lexicons being finite, so they,
too, are first-order definable. From all this it follows that both the MDTLs and
their mapping to derived trees are MSO-definable and weak generative capacity
is not increased.

15

The definability of MDTLs in FO[<] is not endangered either, because the
non-local dependencies established by adjunction are no more complex than
those regulating Move. For MGs without movement, however, adjunction does
increase subregular complexity significantly. First of all, the dependence on left-
dominance, an unbounded relation, means that MDTLs are no longer strictly
local. This can only be avoided by banning adjunction to adjuncts, which al-
lows for an unbounded number of adjoin nodes to occur between an LI and its
adjunction occurrence. But even then α and R have to be chosen very care-
fully to ensure that MDTLs are strictly local: the category of a phrase must be
predictable from the categories of its adjuncts, which is not the case for nat-
ural language (very, for example, is freely iterable and may be an adjunct of
adjectives or adverbs).

Without strong restrictions on α and R, MDTLs are not even homogeneous
or closed under k-guarded vertical swap.

Lemma 2. The MDTLs of MGs with hierarchical adjunction are not closed
under k-guarded vertical swap.

Proof. Consider a grammar containing (at least) the following items:

b :: b a :: = b a b :: = b b

Furthermore, F := {a, b}, α(a) = α(b) = {b}, and b 6R b. Let d be the derivation
tree merge(merge(b :: b, b :: = b b), a :: = b a), and let dn be the derivation
where n instances of b :: b adjoin to each LI in d. Then for every k ∈ N
there is some n such that dn can be factored into t1, t2, t3, t4, t5, where every
subtree consists of adjunction nodes and instances of b :: b, and t2 contains
a :: = b b and the corresponding Merge node at some depth f > k, t3 contains
b :: = b b and the corresponding Merge node at some depth g > k, and t4
contains the original b :: b at some depth h > k. Removing the adjuncts from the
k-guarded vertical swap of dn between t2 and t4 yields the ill-formed derivation
tree merge(merge(b :: b, a :: = b a),b :: = b b), whence the k-guarded vertical
swap is not contained in the grammar’s MDTL.

Lemma 3. The MDTLs of MGs with hierarchical adjunction are not homoge-
neous.

Proof. Consider the following grammar:

a :: a b :: b c :: c d :: d

Suppose F := {a, b}, α(a) := {c, d} and α(b) := {c}. Now let a = adjoin,
t1 := a :: a, t2 := c :: c, s1 := b :: b, and s2 := d :: d. Then a(t1, t2), a(t1, s2),
and a(s1, t2) are all well-formed derivations, but a(s1, s2) is not.

Closure under intersection with regular tree languages is also lost. Admittedly
our standard example — the regular language of trees that contain at most three
instances of quickly — can be accommodated in this system (use three different
categories ci for quickly, such that 1 ≤ i ≤ 3 and cj may adjoin to ci iff j > i). But

16

we still run into problems with its dual, the regular language of trees that contain
at least three instances of quickly. Since adjuncts are completely decoupled from
the feature checking mechanism, they are not required in order for a derivation
to be well-formed, wherefore the presence of even one instance of quickly cannot
be enforced.

Linguistic Properties The hierarchical approach improves significantly on
both previous proposals, to the extent where it passes all criteria discussed in this
paper: optionality, iterability, recursive adjunction, correct behavior with respect
to Move, the ability to capture ordering effects, and the prohibition against X′-
level adjunction. It should be noted, though, that some properties do not fall
out naturally under the model-theoretic perspective and are simply a matter of
how we phrase our definitions. The interaction with Move, for example, depends
purely on the how phrasal root is defined, and hence could easily be altered. It
would also be a rather easy technical exercise to allow for X′-level adjunction.
In addition, some properties depend on the choice of R. If R is reflexive, for
instance, then adjuncts cannot be iterated because the condition cm 6R cn in
Adjoin would be trivially violated. Optionality, however, is a robust property
of this system thanks to the decoupling of adjunction and feature checking.

Conclusion

An overview of the formal and linguistic properties of the three models of ad-
junction are given in Tab. 1 and 2. The emerging picture is that all accounts
capture the most basic properties of adjuncts — optionality, iterability, the lack
of X′ adjuncts — but diverge once one considers other aspects such as adjunction
to adjuncts, the interaction with Move, and ordering effects. Only Fowlie’s hier-
archical approach performs well across the board, but does so at the expense of
increasing the subregular complexity of MDTLs, even with respect to standard
MGs. Loss of homogeneity and closure under k-guarded vertical swap, however,
are unavoidable in any implementation of adjunction where adjuncts are iter-
able and can adjoin to phrases with different categories, both of which seem to
be empirical necessities. Similarly, closure under intersection with regular tree
languages is incompatible with the optionality of adjuncts.

Bibliography

[1] Collins, C.: Argument sharing in serial verb constructions. Linguistic In-
quiry 28, 461–497 (1997)

[2] Fowlie, M.: Order and optionality: Minimalist grammars with adjunction.
In: Kornai, A., Kuhlmann, M. (eds.) Proceedings of the 13th Meeting on
the Mathematics of Language (MoL 13). pp. 12–20 (2013)

[3] Frey, W., Gärtner, H.M.: On the treatment of scrambling and adjunction in
minimalist grammars. In: Proceedings of the Conference on Formal Gram-
mar (FGTrento). pp. 41–52. Trento (2002)

17

Cat. Preserv. Asymm. Checking Hierarchical
no X′ adjuncts X X X

optional X X X
iterable X X X

recursive ∼ ∼ X
no double adjunction X X

ordering effects X ∼ X
correct projection X X

Table 1. Linguistic properties of adjunction implementations

Cat. Preserv. Asymm. Checking Hierarchical Move
strictly local X X
vertical swap X X
homogeneous X X X

FO[S] X X
FO[<] X X X X
reg ∩ X

preserves gen. capacity X X X NA
Table 2. Formal properties of adjunction implementations (without Move)

[4] Graf, T.: Closure properties of minimalist derivation tree languages. In:
Pogodalla, S., Prost, J.P. (eds.) LACL 2011. Lecture Notes in Artificial
Intelligence, vol. 6736, pp. 96–111. Springer, Heidelberg (2011)

[5] Graf, T.: Locality and the complexity of minimalist derivation tree lan-
guages. In: de Groot, P., Nederhof, M.J. (eds.) Formal Grammar 2010/
2011. Lecture Notes in Computer Science, vol. 7395, pp. 208–227. Springer,
Heidelberg (2012)

[6] Graf, T.: Local and Transderivational Constraints in Syntax and Semantics.
Ph.D. thesis, UCLA (2013)

[7] Graf, T.: The syntactic algebra of adjuncts. In: Proceedings of CLS49 (to
appear)

[8] Hunter, T.: Deriving syntactic properties of arguments and adjuncts from
neo-davidsonian semantics. In: Ebert, C., Jäger, G., Michaelis, J. (eds.) The
Mathematics of Language. Lecture Notes in Computer Science, vol. 6149,
pp. 103–116. Springer, Heidelberg (2010)

[9] Kobele, G.M.: Minimalist tree languages are closed under intersection with
recognizable tree languages. In: Pogodalla, S., Prost, J.P. (eds.) LACL 2011.
Lecture Notes in Artificial Intelligence, vol. 6736, pp. 129–144 (2011)

[10] Michaelis, J.: Transforming linear context-free rewriting systems into min-
imalist grammars. Lecture Notes in Artificial Intelligence 2099, 228–244
(2001)

[11] Mönnich, U.: Grammar morphisms (2006), ms. University of Tübingen
[12] Stabler, E.P.: Derivational minimalism. In: Retoré, C. (ed.) Logical Aspects

of Computational Linguistics, Lecture Notes in Computer Science, vol. 1328,
pp. 68–95. Springer, Berlin (1997)

