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Abstract

Domains play an integral role in linguistic theories. This paper com-

bines locality domains with current work on the computational complex-

ity of phonology. The first result is that if a specific formalism — Strictly

Piecewise (SP) grammars — is supplemented with a mechanism to enforce

first-order definable domain restrictions, its power increases so much that

it subsumes almost the full hierarchy of subregular languages. However,

if domain restrictions are based on linguistically natural intervals, one in-

stead obtains an empirically more adequate model. On the on hand, this

model subsumes only those subregular classes that have been argued to

be relevant for phonotactic generalizations. On the other hand, it excludes

unnatural generalizations that involve counting or elaborate conditionals.

It is also shown that SP grammars with interval-based domains are theo-

retically learnable unlike SP grammars with arbitrary, first-order domains.

Keywords: locality, phonological domains, first-order logic, tiers, sub-

regular hierarchy, strictly piecewise, learnability

1 Introduction

It has been known for a long time that the phonological systems of natural lan-

guages are finite-state in nature and thus generate regular languages (Johnson

1972; Kaplan and Kay 1994). However, this characterization is insufficent in the

sense that phonological dependencies instantiate much simpler patterns — the

∗I am greatly indebted to two anonymous reviewers and the editors of this issue. Their de-
tailed feedback led to major changes that, hopefully, have resulted in a much more accessible
and phonologically grounded paper. This paper has also profited tremendously from regular
discussions of subregular phonology with Alëna Aksënova, Hyunah Baek, Aniello De Santo, and
Chikako Takahashi.
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regular languages only provide an upper bound on phonological expressivity.

This realization has led to increased efforts in recent years to pinpoint the com-

putational nature of phonology more precisely (Heinz 2009, 2010; Graf 2010a,b;

Rogers et al. 2013; Chandlee 2014; Jardine 2016).

The aforementioned research relies on results presented by McNaughton

and Papert (1971), which are reviewed in Rogers and Pullum (2011). Phonolog-

ical considerations led to the study of two more subregular classes of languages

and their relation to those previously established (Rogers et al. 2010; Heinz et al.

2011). Taken together, this research shows how to divide the regular languages

into complexity classes, allowing the degree of pattern complexity to be un-

derstood with greater precision. A tentative consensus has emerged that the

Strictly Local (SL), Strictly Piecewise (SP), and Tier-based Strictly Local (TSL)

classes — and the grammars that generate languages in these classes — provide

reasonable approximations of natural language phonotactics. These classes are

among the least complex in the hierarchy and have cognitive interpretations

(Rogers et al. 2013).

However, the claims about the empirical suitability of these classes implic-

itly assumes that phonological generalizations apply uniformly across a given

domain, such as the word. Decades of research have established that phono-

logical generalizations are sometimes best understood as involving multiple

domains, with generalizations applying only within or across smaller or larger

ones. The literature is so extensive that only some highlights are provided here

(Rubach 2008,Selkirk 2011, Scheer 2012, and Shwayder 2015 provide recent sur-

veys). Kiparsky (1982) posits a major distinction between word-level and sentence-

level processes that is couched in terms of Lexical Phonology and its various do-

mains of rule application. Booij and Rubach (1984) argue that one also needs

a split between morphological and prosodic domains within words, whereas

Kaye (1995) proposes a more general system where words may be structurally

decomposed into subdomains, reminiscent of how syntactic trees are made up

from phrases of various sizes. In the other direction, there is also plenty of ev-

idence for phonological domains above the word level but below the sentence

level, such as intonational phrases (Selkirk 1984; Nespor and Vogel 1986). And

of course feet and syllables have proven indispensable in the analysis of stress

patterns (Hayes 1995). Given the central role of domains in phonology, it is im-

perative their study be part of the subregular analyses of phonology.

In this paper I show how domains increase the expressivity of the SP class.
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The first result establishes that if domains can be postulated freely, the result-

ing class — called Domain-Based SP (DBSP) — subsumes every subregular class

except the regular class itself. The second result shows that the increase in ex-

pressive power is much less pronounced if the domains must be natural from

a linguistic perspective. Specifically, smaller domains must delimit specific in-

tervals within a larger domain. I call the resulting class Interval-Based SP gram-

mars (IBSP).

There are many advantages to understanding phonotactic patterns in terms

of the IBSP class. The SL, SP and TSL classes are contained within IBSP so

any phonotactic pattern expressible with any of those grammars is express-

ible with an IBSP grammar. IBSP is more than the sum of these three classes,

however. This increased expressivity is useful to capture previously unbounded

tone plateauing, which is outside the SL, SP, and TSL classes. Also, the increased

expressivity of IBSP is much less than DBSP. IBSP excludes certain kinds of un-

natural phonotactic patterns that DBSP does not. Finally, IBSP is naturally pa-

rameterized in a way that permits learnabilty results. I conclude phonological

domains are thus a welcome and highly useful addition that unifies phonolog-

ically natural subregular regions — but they must be interval-based and not

arbitrary lest the formalism lose most of its restrictive force.

A clarification is in order regarding the scope of the paper. While some work

in the subregular literature has focused on the mappings from underlying forms

to surface forms (see Chandlee 2014, Chandlee et al. 2014, Chandlee et al. 2015,

and references therein), this paper and the subregular classes mentioned above

are about phonotactic generalizations, i.e. surface forms. The formalisms dis-

cussed here only need to be able to distinguish well-formed surface forms from

ill-formed ones; underlying representations are never considered. Nonetheless

I will sometimes describe certain phenomena such as tone plateauing as a pro-

cess. This is merely a convenient expository device, and only the surface forms

produced by these processes are pertinent to this paper.

The paper is laid out as follows. Section 2 familiarizes the reader with the

phonologically important subregular classes SL (2.1), SP (2.2), and TSL (2.3).

Their formal commonalities and empirical differences are briefly outlined in

Sec. 2.4. Building on these observations, I show in Sec. 3.1 that enriching SP

grammars with locality domains allows for an elegant account of several prob-

lematic phenomena, but at the cost of severe overgeneration. Limiting domain

restrictions to precisely defined intervals, on the other hand, keeps generative
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capacity in check (3.2). Section 3.3 explains why this limitation is also essential

for learnability.

2 Subregular Phonotactics

The later sections of this paper require the reader to be familiar with the subreg-

ular classes SL, SP, and TSL and how they are defined as fragments of first-order

logic. I only present the essentials here. Readers familiar with first-order logic

and these subregular classes can skip ahead to Sec. 2.4, where I contrast the

three from an empirical perspective. Readers interested in a thorough exposi-

tion of first-order logic are invited to consult the textbooks Ebbinghaus et al.

(1996) and Enderton (2001). For the subregular classes and how they relate to

phonotactics, readers are referred to the overview presented in Heinz (2015) or

Heinz (2010). Technical treatments of these classes are given in Rogers et al.

(2013) and Heinz et al. (2011).

2.1 Strictly Local Grammars

In the subregular approach to phonology the simplest model of phonotactics

is provided by strictly local grammars. A strictly k -local (SL-k ) grammar is a

finite set of k -grams, each one of which is a description of an illicit sequence of

segments. Consider for instance the strictly 2-local grammar {oV,CC, VV,Cn}.
Here o and n denote the left and right edge of the string, respectively. This

grammar forbids all words that start with a vowel (oV), or contain two adjacent

consonant (CC) or two adjacent consonants (VV), or end in a consonsant (Cn).

In other words, this grammar describes a language with a CV syllable template.

It essentially forbids certain substrings of length 2.

Note that C and V are used for the sake of brevity. If the language in ques-

tion has only the vowels [a], and [u], plus two consonants [p] and [k], the set of

sequences that violate the CV template could be compiled out into 12 bigrams.1

(1)

oa pp aa pn
ou pk au kn

kp ua

kk uu

We can increase the length of the k -grams to capture phonotactic general-

izations with an extended locality domain. Consider a markedness constraint
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against intervocalic voiceless fricatives. An SL-3 grammar {VFV} accomplishes

this where V stands for any vowel and F for any voiceless fricative. An SL-2

grammar is insufficient. Banning bigrams VF and FV does not succeed because

either one is fine as long as F is not both immediately followed and immediately

preceded by vowels. Therefore a grammar that operates with bigrams is either

too permissive or too restrictive, only trigrams are large enough to correctly cap-

ture this markedness constraint.

SL grammars can be recast in terms of formulas of first-order logic, and this

logical perspective is important for the remainder of the paper, in particular

Sec. 3. I refrain from giving a full exposition of first-order logic here — a purely

intuitive treatment suffices for our purposes. One may think of the grammar for

intervocalic voicing above as a single constraint that can be expressed directly

in first-order logic:

For all segments x1, x2, x3 ∀x1, x2, x3

�

if x1 is immediately followed by x2 x1 S x2

and ∧

x2 is immediately followed by x3 x2 S x3

then →

they are not labeled V, F, and V, respectively. ¬
�

V (x1)∧ F (x2)∧V (x3)
�

�

In the formula above, the usage of x1 S x2 to indicate that x2 immediately follows

x1 is motivated by the mathematical convention to call x2 the successor of x1. As

discussed next, replacing S by another relation yields a very different formalism

(Rogers et al. 2013).

2.2 Strictly Piecewise Grammars

SL grammars — despite their simplicity — provide a reasonable model of local

dependencies in phonology, including those created by iterated processes such

as progressive vowel harmony. But they provably cannot regulate dependencies

that involve two segments that may be arbitrarily far apart. An example of that

is sibilant harmony in Samala, as discussed in Heinz (2015) based on data from

Applegate (1972). In Samala, no word may contain both [s] and [S], irrespective

of how far the two are apart. Suppose one wanted to account for this with an

SL-k grammar. This grammar would need to ban all k -grams that contain both
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[s] and [S]. For example, with k = 3 the grammar would include CsS, CSs, SCs,

sCS, sSC, SsC, and all the counterparts where consonants are replaced by vowels.

But such an SL-k grammar enforces sibilant harmony only as long as the two

sibilants are separated by at most k −2 segments. If they are farther apart, they

do not belong to the same k -gram and hence they are outside the grammar’s

purview. Therefore long distance processes are beyond the capabilities of SL.

A simple way of accounting for such unbounded dependencies is to main-

tain the k -gram approach but change how k -grams are interpreted. In an SL

grammar the bigram sS indicates that s must not be immediately followed by S.

But if we switch from immediately follow (the relation S ) to follow at any dis-

tance (the precedence relation ≺), k -grams enforce unbounded dependencies

instead of local ones. Under this interpretation, the strings sS and Ss are sub-

sequences of length 2, and as such any string containing either subsequence is

considered ill-formed. Grammars where k -grams enforce such unbounded de-

pendencies are called Strictly k -Piecewise (SP-k ; Rogers et al. 2010).

The first-order logic perspective reveals the close parallel between SL and

SP. Both use the same template for formulas but use different relations. Just

consider the SL and SP formulas for the set {sS, Ss}. They are identical modulo

the relation that holds between x1 and x2.2

(2) a. ∀x1, x2

�

x1 S x2→¬
�

s(x1)∧ S(x2)
�

∧¬
�

S(x1)∧ s(x2)
�

�

b. ∀x1, x2

�

x1 ≺ x2→¬
�

s(x1)∧ S(x2)
�

∧¬
�

S(x1)∧ s(x2)
�

�

While the SL interpretation of {sS, Ss} only enforces harmony under adjacency,

the SP interpretation applies harmony across the entire string.

2.3 Tier-Based Strictly Local Grammars

Most attested dependencies that hold within a phonological word are either SL

or SP, but some require even more power. While there are several ways those

outliers could be handled, a natural approach from a linguistic perspective are

Tier-based Strictly Local (TSL) grammars (Heinz et al. 2011). TSL grammars

are SL grammars with a tier projection mechanism (cf. Goldsmith 1976 and

Vergnaud 1977) that creates new locality relations. The SL grammar then re-

stricts the arrangement of tier-adjacent segments rather than string-adjacent

segments. Whether a segment ends up on the tier (a TSL grammar has only one

tier) depends solely on whether its label is listed in the so-called tier alphabet

— the structural surroundings of a segment are irrelevant.
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A particularly clear demonstration of how TSL differs from SL and SP is pri-

mary word stress (Heinz 2014). It is a general property of phonological words

that they have exactly one syllable carrying primary stress. Now consider a lan-

guage where primary stress can be an unbounded number of syllables away

from any word edge, e.g. because it sometimes falls on the rightmost heavy syl-

lable, which may be close to the middle of the word. Under such circumstances,

neither SL nor SP can guarantee the presence of stress.

Consider two words of the formσσ · · ·σσ́σ · · ·σσ andσσ · · ·σσσ · · ·σ, where

σ denotes unstressed syllables and σ́ stressed ones. The first word obeys the

requirement for exactly one primary stress, whereas the latter only contains

unstressed syllables and thus violates it. The first word contains the bigrams

oσ, σσ, σσ́, σ́σ, and σn. The second word only contains oσ, σσ, and σn.

But note that all these bigrams are also part of the first string. Since an SL-2

grammar can only forbid illicit strings by forbidding certain bigrams, the string

without primary stress can be marked as ungrammatical by banning at least

one of its bigrams. But then the well-formed string with exactly one primary

stress would be ruled out, too. For the very same reason, the grammar cannot

generate σσ · · ·σσ́σ · · ·σσ without also generating σσ · · ·σσ́σ · · ·σσ́σ · · ·σσ.

These counterexamples generalize to arbitrary SL-k grammars, showing the in-

sufficiency of SL grammars for primary stress.

SP grammars improve on this as they can rule out words with two primary

stresses. The strictly 2-piecewise grammar {σ́σ́}prevents a stressed vowel from

being followed by another stressed vowel, and thus no word can contain more

than one primary stress. However, this captures only one half of the require-

ment that words have exactly one primary stress, it still remains to ensure that

every word has at least one primary stress. SP grammars are incapable of doing

that because all the subsequences of σσ · · ·σσσ · · ·σσ are also subsequences

of σσ · · ·σσ́σ · · ·σ. As in the case of SL, one cannot exclude the latter and still

generate the former, and this holds for all SP-k grammars. Neither SL nor SP

grammars, then, can enforce the presence of at least one primary stress.

A TSL grammar solves the challenge by positing a stress tier. This tier con-

tains all segments, and only those, that carry primary stress (in other words, the

tier alphabet consists of all possible instances of σ́). By convention the word

edges are part of the tier, too. Now if a word contains no primary stress at all,

the primary stress tier will be empty. If it contains at least two primary stresses,

then the primary stress tier contains at least two segments. The only licit config-
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uration on the tier is oσ́n— a word with exactly one primary stress. These tier

dependencies are SL-2 because we just have to forbid on (no primary stress)

and σ́σ́ (more than one primary stress).

The example shows how TSL grammars are endowed with a mechanism for

creating new locality domains so that non-local dependencies become local.

These domains take the form of tiers, which ignore all segments that do not

belong to a specified type T . The logical formulas for this example highlights

this:

(3) a. ∀x1, x2

�

x1 ST x2→¬
�

o (x1)∧n(x2)
�

∧¬
�

σ́(x1)∧ σ́(x2)
�

�

b. x1 ST x2↔ x1 ≺ x2 ∧T (x1)∧T (x2)∧¬∃z
�

x1 ≺ z ∧ z ≺ x2 ∧T (z )
�

The formula in (3a) looks exactly like an SL formula, except that S is replaced

by ST , which is defined in (3b) to hold between two segments iff they are both

projected onto the tier T and no segment between them is also present on this

tier. Tiers thus replace S with ST , a restricted version of the precedence relation

≺.

Adding a restricted version of ≺ to SL in order to obtain TSL increases ex-

pressivity of the system in a desirable way. Another approach, however, is to

introduce local domains to SP. This is exactly the idea pursued in Sec. 3.

2.4 Relations Between the Three Classes

SL, TSL, and SP carve out different, but overlapping subregular regions.

SL and SP are incomparable. This means there exist patterns which belong

to both classes, and some which only belong to one and not the other. TSL prop-

erly subsumes SL because any SL grammar can be modeled with a TSL grammar

which puts every element on the tier.

Like SL, TSL is incomparable to SP. We already saw in the previous section

that the restriction to exactly one primary stress per word is TSL but not SP. In

the other direction, circumambient processes (Jardine 2016) constitute SP pat-

terns that are not TSL. Circumambient processes have an interval-like nature:

between two segments x and y , all z must have a specific shape.

A concrete instance is unbounded tone plateauing, which requires that no

low tone L may occur between two high tones H, no matter how far apart those

two high tones are. From the perspective of SP, this amounts to blocking HLH.

TSL, on the other hand, cannot accommodate this dependency. Since both high

tones and low tones are involved, both must be projected on the tier. There is
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no set of k -grams that can be used to forbid ill-formed sequences like HLn H for

all n > 1. This is because sequences like HLn and Ln H are well-formed for every

n ≥ 0, including cases where n ≥ k . But for such a large n , an SL-k grammar

will also generate HLn H because no local constraint is violated — the two high

tones are so far apart that the grammar cannot “see” the H· · ·H configuration.

Although unbounded tone plateauing is SP, there is something unsatisfac-

tory about the way SP accounts for it. Remember that the SP grammar sim-

ply rejects every string where L follows H and is itself followed by H, no mat-

ter how far apart the three are and what occurs between them. This constraint

picks out the correct strings only if we assume a one-to-one relation between

strings and phonological words. If strings consist of multiple words in some

phrase then SP grammars cannot enforce this constraint. To see why, consider

the string o$HLL$LLH$n, where $ is used for the word edge marker to clearly

distinguish it from the string edge markerso andn. This string does not violate

tone plateauing thanks to the intervening word boundary, yet the SP grammar

counts the string as ill-formed because it contains the subsequence HLH — the

word boundary is not taken into account. Thus, unbounded tone plateauing is

only SP if the dependencies are restricted to word domains.

The next section explores this point more carefully. I first show that arbitrary

first-order domain restrictions on SP grammars are actually not restrictions at

all. Then I show that once domains are restricted to intervals so that they more

closely resemble phonological proposals, a more appealing picture emerges. A

key result is that SL and TSL reduce to special cases of SP grammars operating

on interval domains. Then, instead of an SL class for local processes, an SP

class for non-local processes, and a TSL class for a little bit of both, there is one

unified grammar that combines SP grammars with locality domains.

3 Adding Locality Domains

3.1 Domain-Based Strictly Piecewise Grammars

Let us now look at one way an SP grammar can be limited to a domain (3.1.1).

We will see why this takes the expressivity of the resulting formalism beyond

what appears to be needed for phonology (3.1.2).
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3.1.1 Definition and Examples

Intuitively, confining an SP-k dependency between segments x1, x2, . . . , xk to a

specific locality domain D means that the dependency must be satisfied only

if all xi are inside D (1≤ i ≤ k ). From the perspective of first-order logic, this is

tantamount to making D the antecedent of an implication.

Definition 1 (Domain-Based SP). A domain-based strictly k -piecewise (DBSP-

k ) grammar is a tuple G := 〈P, D 〉, where P is a strictly k -piecewise grammar

and D is a formula of first-order logic (without any free variables).3 We call D

the domain requirement of P or simply the domain. A string s is generated by G

iff the first-order formula below is true in s :

∀x1, . . . , xk [D →
∧

p∈P

¬φp ]

Here φp denotes the first-order equivalent of the labeling information inher-

ent in the strictly piecewise k -gram p (cf. Sec. 2.1). For instance, the bigram ab

corresponds to the formula a (x1)∧ b (x2). The big and operator acts as a short-

hand for multiple conjunctions. Assuming that the grammar contains only the

bigrams oa, aa, and an, the expanded formula would be:

∀x1, x2[D →¬(o(x1)∧a(x2))∧¬(a(x1)∧a(x2))∧¬(a(x1)∧n(x2))]

Due to the structure of the formula in Def. 1, the conditions enforced by the

SP grammar need to be met by positions x1, . . . , xk only if the domain require-

ment D is satisfied. Note that D can be any first-order formula, so it need not

even mention the variables x1, . . . , xk . Furthermore, the formulas for SL, SP, and

TSL are instances of the template above where D is a conjunction of statements

of the form xi R x j , with R set to S , ≺, or ST (cf. (2) and (3a)).

DBSP grammars solve the aforementioned problem of SP grammars with

unbounded tone plateauing. The problem with the SP account in Sec. 2.4 is

that it fails whenever the ban against HLH subsequences applies to domains

that are larger than a single word. Consider the DBSP-3 grammar G := 〈P, W 〉
where the SP grammar P only contains the trigram HLH . The domain restric-

tion W guarantees that P only applies within words (I assume that word edges
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are explicitly marked by $):

W := ∃l , r
�

l ≺ x1 ∧
∧

1≤i<3

xi ≺ xi+1 ∧ x3 ≺ r ∧$(l )∧$(r )∧¬∃z [$(z )∧ l ≺ z ∧ z ≺ r ]
�

This formula encodes a simple statement: x1, x2, and x3 must occur between

word edge markers l and r that are not separated by another word edge marker

z . In other words, x1, x2, and x3 must belong to the smallest interval spanned by

two $ markers. This is the first-order expression for a word domain. The DBSP

grammar ∀x1, x2, x3[W →¬φHLH ] then says that the three positions are subject

to the requirement enforced by the trigram HLH only if condition W holds.

The full first-order sentence for G with W andφHLH expanded is given here

to illustrate how the different pieces of the grammar are combined into a single

formula:

∀x1, x2, x3

�

∃l , r
�

l ≺ x1 ∧
∧

1≤i<3

xi ≺ xi+1 ∧ x3 ≺ r ∧$(l )∧$(r )∧¬∃z [$(z )∧ l ≺ z ∧ z ≺ r ]
�

→

¬
�

H (x1)∧ L (x2)∧H (x3)
�

�

In this way DBSP grammars can require constraints to hold only within certain

domains.4

3.1.2 Overgeneration: DBSP = Star-Free

While the ability of DBSP to handle unbounded tone plateauing is welcome, it

comes at the price of massive overgeneration: the class of DBSP languages is ex-

actly the class of star-free languages. A language is star-free iff it can be defined

in first-order logic (McNaughton and Papert 1971). While star-free-ness may

be a necessary condition on phonotactic patterns, they are arguably not a nec-

essary one because phonologically outrageous dependencies can be expressed

with first-order logic as shown in (4).

(4) Take any a string that contains both a vowel V as its last segment and a

sibilant S such that either S is word-initial or the string contains exactly

seven consonants. Then intervocalic voicing is enforced iff the voicing

value of S (+/−) is the opposite of V’s value for round plus S’s value for

anteriority (where x + y =− iff x 6= y ).
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Consequently, the equivalence of DBSP and the star-free languages entails that

locality domains allow for the generation of very unnatural patterns.

However, an even stronger result holds: every star-free language is DBSP-1.

So no matter how much one constrains the SP component of a DBSP grammar,

the domain restrictions can always make up for any loss of expressivity obtained

by weakening the SP grammar.

Theorem 1. A string language L is DBSP-1 iff L is star-free.

The proof of this equivalence exploits the permissive definition of domain

restrictions. Recall from Sec. 3.1.1 that a DBSP grammar only requires domain

restrictions to be first-order formulas. The domain restriction D is then in-

serted into a general template ∀x1, . . . , xk [D →
∧

p∈P ¬φp ]. But this procedure

is so general that D can be used to impose arbitrary constraints as long as they

are first-order definable. And the star-free languages are exactly those that can

be defined by arbitrary first-order definable constraints.

Proof. That DBSP ⊆ Star-Free is a corollary of all DBSP languages being first-

order definable. So we only need to show that Star-Free⊆DBSP.

Let L be some star-free language. Then there is some first-order formula

φL (without free variables) such that all and only strings in L satisfy φL . Now

it holds for any given string w that it satisfies φL iff it satisfies ∀x1[¬φL → ⊥],
where⊥ is a shorthand for some formula that is always false. This bi-implication

holds because I) φL contains no free variables that can be bound by ∀x1, and

II) by the definition of implication, a proposition p is true iff ¬p → ⊥ is true.

Observe in addition that the SP-1 grammar containing only the unigramo gen-

erates the empty language, which means that no string satisfies ∀x1[¬o (x1)].

Putting all of this together, we conclude that L is generated by the DBSP-1 gram-

mar G :=



¬φL ,{o}
�

. Since L was arbitrary, every star-free language is DBSP-

1.

Even though arbitrary domain restrictions grant SP grammars too much power,

this does not force us to forgo them completely — instead, we should tighten

our notion of what domain restrictions may look like.

3.2 Interval-Based Strictly Piecewise Grammars

While mathematically correct, the proof of Thm. 1 seems to violate the spirit of

what phonological locality domains are about. Instead of picking out certain
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substructures within which a constraint applies, the domain restriction acts as

the constraint while the SP grammar is trivialized to a nonsensical ban against

left word edges. Moreover, it is certainly not the case that any first-order for-

mula is a possible phonological domain. Looking once more at our treatment

of tone plateauing in Sec. 3.1.1, our primary interest is not to define tightly in-

terwoven conditionals as in the outrageous example (4), but rather to delineate

specific intervals within a string — and this intuition is also the foundation of

phonological notions like feet, syllables, words and sentences, and so on. As I

show next, a proper formalization of intervals (3.2.1) does indeed go a long way

to fix the overgeneration problems of DBSP (3.2.2).

3.2.1 Introducing k -Intervals

SP constraints which apply within phonologically motivated intervals must spec-

ify three items (cf. Jensen 1974; Odden 1994). First, the edges of the interval

must be specified, e.g. that the left and right edges are labeled $ in the domain

W presented earlier. Second, the interval must contain a given number of posi-

tions, which are subject to the constraints of the SP grammar. So an interval for

an SP-k grammar contains k such positions, denoted by x1, . . . , xk in the first

order formulas. Finally, there is an additional stipulation on what the remain-

der of the interval may look like. All these requirements can be represented by

an extension of k -grams that I call k -vals (short for k -interval).

The advantage of k -vals is that they provide a much more readable speci-

fication of complex first-order formulas such as W . Consider once more the

DBSP grammar 〈P, W 〉, which forbids HLH subsequences within individual words.

We can depict W as a 3-val that requires the edges to be labeled $, contains three

open slots that are subject to the SP grammar, and ensures that no other mate-

rial within this interval (the fillers) is labeled $.

(5) 3-val for W

$ $

¬$

These k -vals are more constrained than arbitrary first-order formulas as we

may only specify the number and shape of open slots, the labels of the edges,

and what the other positions in the interval may look like. Nonetheless k -vals

are still remarkably flexible. In fact, they are so flexible that SP grammars with
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k -vals as domain restrictions subsume SL and TSL grammars.

Every SL-k grammar can be reinterpreted as an SP grammar with a k -val

that forbids any fillers. Assuming that every node must be labeled l1 or l2 or l3,

and so on, this is tantamount to the demand that no filler is labeled l1 or l2 or

l3, and so on. Take as a concrete example the SL-2 grammar from (1), which

generates words with a CV syllable template over the sound inventory a, u, p,

k. An SP grammar with exactly the same bigrams describes the very same CV

syllable template if it is coupled with the 2-val in (6).

(6) 2-val for emulating an SL-2 grammar

¬a ¬u ¬p ¬k ¬$

This 2-val can only match intervals where the two empty open slots are adjacent

to each other. As a result, the long-distance dependencies of the SP-2 grammar

are limited to adjacent segments, making it behave exactly like an SL-2 gram-

mar.

So far our k -vals have displayed a certain asymmetry in that fillers are always

restricted, edges are sometimes restricted, and empty slots are never restricted.

Eliminating these asymmetries allows us to also emulate standard SP grammars

and, more interestingly, TSL grammars. The inclusion of SP is straight-forward:

if the k -val puts no restrictions on any segments, then SP grammars operate

uninhibited.

(7) 3-val for emulating an SP-3 grammar

TSL arises from a k -val format that is only slightly more complicated than

that for SL. In the case of SL, we wanted to prevent any segments from inter-

vening between open slots. For TSL, we allow fillers as long as they are not part

of the tier alphabet T . On the flip side, the open slots are restricted to members

of the tier alphabet — or the other way round, they must not be segments that

are not members of the tier alphabet.

(8) 2-val for emulating a TSL-2 grammar
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¬t (t ∈ T )

¬s (s /∈ T )

This largely exhausts the range of options for k -vals. For the sake of gen-

erality I also allow the left and right edge to be associated with different prop-

erties so that an interval may span from, say, a vowel to a specific consonant.

But this minor extension does not change the general fact that k -vals are ex-

tremely impoverished in comparison to arbitrary first-order formulas. In fact,

each component of a k -val amounts to a ban against specific labels. Such bans

are SL-1 (or equivalently, SP-1), which is the weakest class in the whole sub-

regular hierarchy. So k -vals define locality domains by a combination of the

weakest conceivable grammars, yet when they are added on top of SP gram-

mars they are surprisingly expressive and subsume SP, SL, and TSL while also

handling circumambient processes correctly.

3.2.2 Formal Definition and Generative Capacity

With the intuition firmly established, the formal definition of interval-based SP-

k (IBSP-k ) should be much easier to grasp, and it will also be straight-forward

to prove that there are DBSP languages that are not IBSP. This strongly sug-

gests that IBSP currently offers the best solution to integrate domain restric-

tions with phonotactic patterns: it subsumes the phonologically natural classes

SL, SP, and TSL, and it also captures circumambient dependencies, yet it re-

mains much more restrictive than DBSP.

I first define k -vals as a combination of four SL-1 grammars,two of which re-

strict the edges, one the open slots, and one the fillers. Each k -val corresponds

to a first-order formula.

Definition 2 (k -val). A k -interval, or simply k -val, is a 5-tuple



k ,Gl ,Gr ,Go ,G f

�

such that k ≥ 1 and each G is an SL-1 grammar that specifies, respectively, the

left edge, right edge, open slots, and the fillers. The corresponding k -val formula

(with free variables x1, . . . , xk ) is

∃l , r
�

∧

g∈Gl

¬g (l )∧
∧

g∈Gr

¬g (r )∧
∧

1≤i≤k

∧

g∈Go

¬g (xi )∧ l ≺ x1 ∧ xk ≺ r∧

∀z
�

�

(l ≺ z ∧ z ≺ x1)∨ (xk ≺ z ∧ z ≺ r )∨
∨

1≤i<k

(xi ≺ z ∧ z ≺ xi+1)
�

→
∧

g∈G f

¬g (z )
�

�
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For any empty G ,
∧

g∈G ¬g (x ) is always satisfied.

The overly powerful class DBSP is pruned down to the linguistically more plau-

sible class interval-based SP by limiting the domain restrictions to k -val formu-

las.

Definition 3. A DBSP-k grammar is interval-based SP-k (IBSP-k ) iff its domain

restriction D is a k -val formula.

Thanks to our previous observations in (6)–(8) we already know that IBSP

contains all languages that are SL, SP, or TSL. But IBSP also goes slightly be-

yond those classes because it can still express the domain restriction W and

thus accounts for circumambient processes in a straight-forward manner.

Theorem 2. IBSP ) SL∪SP ∪TSL

Proof. It suffices to show that SL, SP, and TSL are each subsets of IBSP. That

inclusion is proper is witnessed by unbounded tone plateauing in a string with

multiple words.

SP⊆ IBSP: For empty Gl , Gr , Go , and G f , the corresponding k -val formula

reduces to ∃l , r [l ≺ x1 ∧ xk ≺ r ]. This domain formula D is always satisfied be-

cause we may freely assume the presence of a sufficient number of string edge

markers o and n to satisfy the existence of l and r . So D →
∧

p∈P ¬φp equals

1→
∧

p∈P ¬φp , which is equivalent to
∧

p∈P ¬φp . As P may be any arbitrary SP

grammar, every SP grammar has an equivalent IBSP grammar.

SL⊆ IBSP: It suffices to show that k -vals allow us to define S in terms of ≺.

LetΣbe some fixed alphabet of segments. Suppose Gl , Gr and Go are empty, but

G f :=Σ. Then the ∀z [. . .→
∧

g∈G f
¬g (z )] part of the k -val formula is false when-

ever some z satisfies the antecedent of the implication, wherefore the k -val for-

mula holds only if no such z exists. But for any x and y , x ≺ y ∧¬∃z [x ≺ z ∧z ≺
y ] holds iff x S y . Thus the k -val formula reduces to ∃l , r [l S x1 ∧

∧

1≤i<k xi S

xi+1 ∧ xk S r ]. Again we may freely assume the existence of l and r , so that D

is simply
∧

1≤i<k xi S xi+1. But then ∀x1 . . . xk [D →
∧

p∈P ¬φp ] is the formula of

some SL-k grammar P . As P is arbitrary, every SL grammar has an equivalent

IBSP grammar.

TSL⊆ IBSP: Let Σ be some fixed alphabet of segments and T ⊆ Σ our tier

alphabet. Suppose Gl and Gr are empty, Go := Σ−T , and G f := T . Varying the

proof for SL, we see that x ≺ y ∧∀z [x ≺ z ∧ z ≺ y →
∧

g∈G f
¬g (z )] iff x ≺T y .

Again l and r can be assumed freely, so that∀x1 . . . xk [D →
∧

p∈P ] is the formula

of some arbitrary TSL-k grammar P .
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star-free = domain-based strictly piecewise

interval-based
strictly piecewise

tier-based
strictly local

strictly local strictly piecewise

Figure 1: Proper inclusion relations between the subregular classes discussed
in this paper

In fact, the existence of circumambient patterns such as tone plateauing is

now completely expected because it merely involves co-opting mechanisms of

the grammar that are already employed to restrict SP dependencies to the word

domain, capture SL and TSL patterns, and so on. And these mechanisms are

remarkably weak: k -vals define locality domains with a combination of SL-1

grammars, which define the arguably weakest class of formal languages in the

subregular hierarchy. Yet when these intervals restrict SP constraints they fur-

nish a surprising degree of expressivity.

While more expressive than these other subregular grammars, IBSP gram-

mars are still incapable of generating many unattested patterns. This can be

inferred from the fact that they are strictly weaker than DBSP grammars.

Theorem 3. DBSP ) IBSP

Proof. That IBSP is included in DBSP follows immediately from its definition.

It remains to show that there are DBSP patterns that are not IBSP. This is wit-

nessed by the language L := $s a ∗s ∪ z a ∗z $, where segments at the word edges

must be either s or z , whereas all other segments are a . This language is first-

order definable and thus DBSP, but it is not IBSP. In order to rule out strings of

the form $a ∗s a ∗s a ∗$, an IBSP grammar needs a k -val with Gl = Gr := {s , z , a }
and G f := {$, s , z , a }. But we already saw in the previous proof that IBSP reduces

to SL if G f :=Σ, and L is not SL.

The DBSP language used in the proof is a formal counterpart to the unat-

tested process of first-last harmony (see Lai 2015 for details). IBSP fails to cap-

ture first-last harmony because it cannot integrate the local dependency of word
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edge adjacency with the non-local harmony constraint. It is known that first-

last harmony is locally testable, a generalization of SL. So first-last harmony is

still a fairly simple pattern, but the limitations of IBSP explain why it nonethe-

less does not seem to arise in phonology.

Its inability to integrate local with non-local information also ensures that

IBSP captures the old adage that “languages do not count”. Consider the lan-

guage L that contains only strings with at most one instance of an. For an IBSP

account, we might try to use the word domain W and forbid anan. But this will

also rule out strings where a and n are not adjacent. If we forbid fillers in order to

ensure adjacency, then only adjacent instances of an are disallowed. So a word

may contain multiple instances of an as long as they are far away from each

other. The same problem arises if we take a or n to be one of the word edges:

as soon as adjacency is enforced, we can no longer enforce the long-distance

dependency of at most one an in the whole word domain. A similar argument

can be used to show that the variant of L that contains at least two instances of

an is not IBSP. This kind of arbitrary counting is impossible with IBSP. Where

counting effects seem to obtain, as with primary stress assignment, they have

to be so simple that they can be captured via purely structural means, e.g. tier

projection.

As a hypothesis about the computational nature of phonotactics, then, IBSP

predicts that there should be no attested patterns that integrate and local and

long-distance dependencies in the manner suggested by the previous exam-

ples. This does not seem to be entirely true; at least one counterexample is

discussed in Heinz (2007) and McMullin (2016). McMullin (2016) explains that

sibilant harmony in Samala, which was briefly discussed in Sec. 2.2 as an ex-

ample of an SP pattern, can overrule a general ban against string adjacent sn,

sl, and st. That is to say, sequences like sn are forbidden unless there is another

s somewhere to the right of n. De Santo and Graf (2017) take this pattern as the

motivation to enhance TSL grammars with a more powerful, structurally condi-

tioned tier projection mechanism. While these grammars correctly capture this

interaction between a local and a non-local dependency, IBSP is once again in-

capable of doing so. The reason is exactly the same as before: in order to enforce

adjacency for some segments in the locality domain, we have to enforce adja-

cency for all segments, which makes it impossible to handle the long-distance

dependency correctly.

To sum up, IBSP is incomparable with many subregular language classes
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and thus less expressive than DBSP. For the most part the limited expressivity

of IBSP is a good thing, but a minor extension will be needed in the future to

handle cases like the example from Samala where local and non-local informa-

tion interact. This also includes several suprasegmental phenomena such as

tone spreading in Copperbelt Bemba (Jardine 2016) and certain stress patterns

(Baek 2017).5 Nonetheless IBSP grammars offer an insightful and empirically

viable unification of all phonologically interesting subregular classes posited so

far — a unification that is grounded in locality domains, one of the most natural

of linguistic concepts.

3.3 Learnability

The large gap in expressivity between DBSP and IBSP highlights the restricted

nature of locality domains in phonology, but it is also an essential factor for

learnability. It is a well-known fact that the star-free language are not learnable

in the limit from positive text (a corollary of them properly subsuming the class

of finite languages, Gold 1967). Consequently, the expressively equivalent class

DBSP cannot be learned in the limit from positive text, either.

However, IBSP-k is learnable for any fixed choice of k . This learnability

claim is trivial once one realizes that there can be only finitely many distinct

languages in this class for any choice of k . There are only finitely many SP-k

grammars because with an alphabet of size n there are n k distinct k -grams and

thus 2(n
k ) distinct grammars. The number of distinct k -vals is similarly limited

to (2n )4 = 24n because a k -val consists of four unigram grammars. As a result,

the number of IBSP-k languages is at most 2(n
k ) ·24n . While this number is enor-

mous, Gold (1967) proved that every finite language class is learnable, no matter

how large it is.

Theorem 4. IBSP-k is learnable in the limit from positive text.

This still leaves open whether IBSP-k is efficiently learnable from just a small

amount of data. I suspect that this strong condition holds mainly because IBSP

treats locality domains as combinations of SL-1 dependencies, which are ef-

ficiently learnable in isolation. More generally SL-k and SP-k are efficiently

learnable as well, and so is even TSL (Jardine and Heinz 2016; Jardine and Mc-

Mullin 2016). The methods there may be applicable to this case as well. Finally,

I also expect that phonologically motivated naturalness conditions (clustering

segments into classes, minimum prominence demands for interval edges, and
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so on) greatly prune down the number of possible k -vals, tremendously reduc-

ing the amount of required data.

Even if my conjecture turns out to be false, the fact that IBSP is learnable

whereas DBSP is not confirms the long-held belief that UG-restrictions on lo-

cality domains aid learnability (Heinz 2007, 2009, 2010). A child that comes al-

ready equipped with the assumption that dependencies involve k elements and

may only be relativized to locality domains of a specific shape can successfully

learn any language in the hypothesis space.

Conclusion

The main insight of this paper is that locality domains simplify our current pic-

ture of subregular phonology rather than complicate it. IBSP grammars unify

the SL, TSL and SP classes by amplifying SP grammars with interval-based do-

main restrictions. There are a number of welcome consequences to introducing

these locality domains:

(9) a. Overgeneration is largely curbed by ruling out unnatural dependen-

cies involving counting or elaborate conditionals.

b. Undergeneration is mostly avoided since all strictly piecewise, strictly

local, and tier-based strictly local languages can still be generated.

c. Circumambient patterns such as tone plateauing arise in a natural

fashion from the ability to define domain restrictions.

d. Many blocking effects can be accommodated, too.

e. The internal structure of the language space is still sufficiently lim-

ited to allow for learning in the limit from positive text.

This paper constitutes but a first step towards a more thorough exploration

of how locality domains may be effectively incorporated into the study of sub-

regular patterns in language. Formally, establishing an abstract characteriza-

tion of the IBSP class will help in identifying phonotactic patterns that do and

do not belong to this class. Empirically, since the domains within which phono-

logical processes apply have been studied by linguists for many years, attempts

to further generalize and refine these findings can draw from numerous ideas in

the literature. Careful exploration of the formal ramifications of such modifica-

tions should yield an even tighter characterization of natural language phono-

tactics and might also prove fruitful in other areas such as syntax and morphol-
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ogy.6 It will also be interesting to see whether the expressivity gap between seg-

mental and suprasegmental phonology noted by Jardine (2016) can now be de-

rived from linguistic assumptions about their respective locality domains.

Notes

1Alternatively, our representations could operate with feature bundles instead of segments,

so that V and C are abbreviations of [−cons] and [+cons], respectively.
2The definition of SP grammars in Rogers et al. (2010) also stipulates that no k -gram of an

SP grammar may contain any edge markers. While this has mathematical advantages, I do not

adopt this additional restriction in an effort to maintain the parallel between SL and SP.
3The symbol := is commonly used in mathematics to indicate an assignment of a specific

value to a named variable. It should not be confused with =, which denotes equality of two

distinct symbols or objects.
4This is not the only DBSP grammar that can account for unbounded tone plateauing over

domains larger than a word. Generally, it is possible to obtain a different description of tone

plateauing that trades a slightly more complicated domain restrictor for a simpler SP grammar.

For instance, instead of blocking HLH subsequences within words, a DBSP grammar can be

written which bans any instance of L between two high tones that are not separated by a word

edge or another high tone. The details are left to the reader.
5 Another empirically relevant shortcoming of IBSP is its inability to enforce multiple un-

related dependencies in parallel. For instance, it is impossible for a single IBSP grammar to

ensure that a word contains exactly one primary stress and obeys sibilant harmony. The limita-

tion to the word domain means that the edges are limited to $, so sibilants and segments with

primary stress must both go in the open slots. But then two segments with primary stress may

be separated by an unbounded number of sibilants, which makes it impossible to ensure that

at least one primary stress is present in the word. Therefore each process requires its own IBSP

grammar. A more powerful class of multi-IBSP that handles all those dependencies in parallel

would be easy to define as it simply amounts to the intersection closure of IBSP, which is still

properly contained by DBSP.
6For example, Graf and Heinz (2015) argue that syntax can be regarded as tier-based strictly

local at a sufficiently high level of abstraction. This finding relies on simplifying assumptions

about movement, though, that are slightly at odds with the current thinking in Minimalist syn-

tax. Interval-based strictly piecewise grammars may offer enough headroom to capture syn-

tactic dependencies in a more general setting.
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