
Sanskrit n-Retroflexion is Input-Output Tier-Based Strictly Local

Thomas Graf
Department of Linguistics
Stony Brook University

Stony Brook, NY 11794, USA
mail@thomasgraf.net

Connor Mayer
Department of Linguistics

University of California, Los Angeles
Los Angeles, CA 90046, USA
connormayer@ucla.edu

Abstract

Sanskrit /n/-retroflexion is one of the most
complex segmental processes in phonology.
While it is still star-free, it does not fit in any
of the subregular classes that are commonly
entertained in the literature. We show that
when construed as a phonotactic dependency,
the process fits into a class we call input-
output tier-based strictly local (IO-TSL), a
natural extension of the familiar class TSL.
IO-TSL increases the power of TSL’s tier pro-
jection function by making it an input-output
strictly local transduction. Assuming that /n/-
retroflexion represents the upper bound on
the complexity of segmental phonology, this
shows that all of segmental phonology can
be captured by combining the intuitive notion
of tiers with the independently motivated ma-
chinery of strictly local mappings.

1 Introduction

Subregular phonology seeks to identify proper
subclasses of the finite-state languages and trans-
ductions that are sufficiently powerful for nat-
ural language phenomena (see Heinz 2018 and
references therein). In addition to establishing
tighter bounds on cross-linguistic variation, many
of these subclasses are also efficiently learnable in
the limit from positive text (Heinz et al., 2012; Jar-
dine and McMullin, 2017).

Sanskrit /n/-retroflexion, also called nati, is
noteworthy because it has been known for a long
time to be subregular but to occupy a very high po-
sition in the subregular hierarchy when construed
as a phonotactic dependency (Graf, 2010; Jardine,
2016). Its singularly high complexity stems from
the combination of a locally specified target (/n/
immediately before a sonorant) with both a non-
local trigger (a preceding retroflex) and three in-
dependent blocking effects, one of which is it-
self subject to blocking. Established classes such

as strictly local (SL) and its extension tier-based
strictly local (TSL; Heinz et al., 2011) cover a
wide range of phonological phenomena, yet they
provably cannot enforce the phonotactic condi-
tions of nati.

However, as we show in this paper, nati can be
handled by a natural extension of TSL. In TSL,
a tier projection function masks out all segments
that do not belong to some specified subset of the
alphabet. This allows for simple non-local depen-
dencies to be regulated in a local fashion. More in-
volved patterns can be accommodated by increas-
ing the complexity of the tier projection. In order
to capture nati, the projection function has to con-
sider two factors when choosing whether or not to
project a symbol: I) the local context in the string,
and II) which symbols are already on the tier. This
makes it a special case of input-output strictly lo-
cal maps, which is why we call this extended ver-
sion of TSL input-output TSL (IO-TSL).

IO-TSL is a natural extension of TSL — it sub-
sumes it as a special case and expands on re-
cent proposals to make tier projection structure-
sensitive. De Santo and Graf (2017) propose input
strictly local maps to handle certain cases noted
as problematic for TSL in McMullin (2016), and
similar proposals are made in Baek (2017) and
Yang (2018) for phonology and Vu et al. (2018)
for syntax. Mayer and Major (2018), on the other
hand, suggest based on Graf (p.c.) that backness
harmony in Uyghur is TSL with output strictly lo-
cal tier projection; Graf and Shafiei (2018) apply
the same idea to syntax. Input-output strictly local
projection merely combines these two extensions.

The paper is laid out as follows. We first intro-
duce TSL (§2.1) and subsequently generalize it to
IO-TSL (§2.2), some properties of which are dis-
cussed in §2.3. The empirical facts of nati are pre-
sented in §3 based primarily on Ryan (2017), fol-
lowed by our IO-TSL analysis in §4.

2 Defining IO-TSL

2.1 TSL
Throughout the paper, we use ε to denote the
empty string, S∗ for the Kleene closure of S, and
S+ for S∗ without the empty string. We use Sk to
denote the proper subset of S∗ that only contains
strings of length k, and we write sk as a shorthand
for {s}k.

Let Σ be some fixed alphabet and s ∈ Σ∗.
The set fk(s) of k-factors of s consists of all the
length-k substrings of ok−1snk−1, where o,n /∈
Σ and k ≥ 1.

Definition 1. A stringset L ⊆ Σ∗ is strictly k-
local (SL-k) iff there is some G ⊆ (Σ∪ {o,n})k
such that L = {s ∈ Σ∗ | fk(s) ∩G = ∅}.

Intuitively, G defines a grammar of forbidden
substrings that no well-formed string may con-
tain. The class SL of strictly local stringsets is⋃

k≥1 SL-k.

Example 1. The string language (ab)+ is gener-
ated by the grammar G := {on,ob, aa, bb, an}
and thus is SL-2. For instance, aba is illicit
because f2(aba) ∩ G = {an} 6= ∅, whereas
f2(abab) ∩G = ∅.

For every T ⊆ Σ−{ε}, a simple tier projection
πT is a transduction that deletes all symbols not in
T :

πT (σu) :=

ε if σu = ε

σπT (u) if σ ∈ T
πT (u) otherwise

Definition 2. A stringset L ⊆ Σ∗ is tier-based
strictly k-local (TSL-k) iff there exists a T ⊆ Σ−
{ε} and an SL-k languageK ⊆ T ∗ such that L :=
{s ∈ Σ∗ | πT (s) ∈ K}. It is TSL iff it is TSL-k
for some k.

TSL languages are string languages that are SL
once one masks out all irrelevant symbols.

Example 2. Consider all strings over {a, b, c} that
contain exactly one b and exactly one c. This
language is TSL-3: let T := {b, c}, and K :=
{bc, cb}, which is an SL-3 language (the reader is
invited to write down the grammar for K). The
licit string aabac, for instance, is first projected to
bc, which is a member of K. The illicit aaba , on
the other hand, is projected to b /∈ K.

2.2 IO-TSL
The power of TSL can be increased by changing
the nature of the tier projection π. In particular,

it can be generalized to strictly local maps (Chan-
dlee, 2014). Due to space constraints, we immedi-
ately define input-output strictly local projections
without discussing the earlier work on subregular
mappings on which our idea builds. The interested
reader should consult Chandlee (2014, 2017) and
Chandlee and Heinz (2018).

An (i, j)-context c is a 4-tuple 〈σ, b, a, t〉 with
σ ∈ Σ, t a string over Σ ∪ {o} of length j − 1,
and a and b strings over Σ ∪ {o,n} of combined
length i−1. The context specifies that σ should be
projected whenever both of the following hold: it
occurs between the substrings b (look-back) and a
(look-ahead), and the tier constructed so far ends
in t. The value of i determines the size of the input
window, which includes the look-ahead and look-
back spans, as well as the symbol itself. The value
of j indicates how far back along the tier we can
look, including the current symbol. Given a set of
contexts c1, c2, . . . , cn, we call it an (i, j)-context
set C(i, j) iff for every cm (1 ≤ m ≤ n) there are
im ≤ i and jm ≤ j such that cm is an (im, jm)-
context.

Note that in a context set C(i, j), i and j re-
fer to the maximum input and output window sizes
considered by any (i, j)-context. The individ-
ual (i, j)-contexts may vary in size within these
bounds. This is merely a matter of notational con-
venience and does not affect generative capacity.

Definition 3. Let C be an (i, j)-context set. Then
the input-output strictly (i, j)-local (IOSL-(i, j))
tier projection πC maps every s ∈ Σ∗ to π′C(oi ?
sni,oj), where π′C(ub ? σav, wt) is

ε if σav = ε,
σπ′C(ubσ ? av, wtσ) if 〈σ, b, a, t〉 ∈ C,
π′C(ubσ ? av, wt) otherwise.

for σ ∈ Σ and a, b, t, u, v, w ∈ (Σ ∪ {o,n})∗.
The first argument to π′C is the input string, with

? as a diacritic to mark the position up to which
the string has been processed. The second argu-
ment contains the symbols that have already been
projected. A schematic diagram of the projection
function πC that arises from π′C is shown in Fig. 1.

Example 3. Let Σ := {a, b, c} and consider the
tier projection that always projects the first and
last symbol of the string, always projects a, never
projects c, and projects b only if the previous sym-
bol on the tier is a. This projection is IOSL-(2,2).
The context set contains all the contexts below,
and only those:

u b1 · · ·· · ·Input: bl σ a1 · · · ai−1−l v · · ·

w t1· · · · · ·Tier: tj−1

j

i

Figure 1: The projection function πC . Grey cells indi-
cate symbols in the input and tier strings that are con-
sidered when deciding whether to project σ.

• 〈σ,o, ε, ε〉 for all σ ∈ Σ,

• 〈σ, ε,n, ε〉 for all σ ∈ Σ,

• 〈a, ε, ε, ε〉,

• 〈b, ε, ε, a〉.

The first two of these contexts ensure that any seg-
ment is projected if it occurs at the beginning of
the string or the end of the string. The third con-
text ensures that a is always projected as all occur-
rences of a will be trivially preceded and followed
by ε in the input and preceded on the tier by ε. The
final context ensures that b is projected regardless
of what precedes or follows in the input, but only if
the previous symbol on the tier is a. Given the pre-
vious constraints, this is equivalent to saying that
b is only projected if it is the first b encountered
after seeing an a earlier in the string.

Definition 4. A stringset L ⊆ Σ∗ is input-
output tier-based strictly (i, j, k)-local (IO-TSL-
(i, j, k)) iff there exists an IOSL-(i, j) tier pro-
jection πC and an SL-k language K such that
L := {s ∈ Σ∗ | πC(s) ∈ K}. It is IO-TSL iff it
is IO-TSL-(i, j, k) for some i, j, and k.

Note that TSL-k is identical to IO-TSL-
(1, 1, k), which shows that IO-TSL is indeed a
generalization of TSL.

2.3 Some properties of IO-TSL
It is fairly easy to show that IO-TSL languages are
definable in first-order logic with precedence and
hence star-free. We conjecture that IO-TSL is in
fact a proper subclass of the star-free languages.

Conjecture 1. IO-TSL (Star-Free.

Consider the star-free string language L :=
aL′a∪bL′bwhere L′ is (d+cd+ed+)+. In order to
ensure the long-distance alternation of c and e, one
has to project every c and every e, and in order to

ensure the matching of the first and last segment
those have to be projected too. But then the set
of well-formed tiers is a(ce)+a ∪ b(ce)+b, which
is not in SL because it violates suffix substitution
closure (cf. Heinz, 2018). Hence L is not IO-TSL
(although it is in the intersection closure of TSL).
A fully worked out proof would have to show that
all other IOSL tier projections fail as well.

Like most subregular language classes, IO-TSL
is not closed under relabeling. This follows from
the familiar insight that (aa)+, which isn’t even
star-free, is a relabeling of the SL-2 language
(ab)+. We state a few additional conjectures with-
out further elaboration.

Conjecture 2. IO-TSL is not closed under inter-
section, union, relative complement, or concate-
nation.

Conjecture 3. IO-TSL is incomparable to the fol-
lowing classes:

• locally threshold testable languages (LTT),

• locally testable (LT),

• piecewise testable (PT),

• interval-based strictly piecewise (IBSP;
Graf, 2017, 2018)

• strictly piecewise (SP; Rogers et al., 2010)

If correct, these properties of IO-TSL would
mirror exactly those of TSL, further corroborating
our claim that IO-TSL is a very natural generaliza-
tion of TSL.

That said, IO-TSL is a fair amount more com-
plex than TSL. In the next section, we discuss the
empirical facts of Sanskrit /n/-retroflexion that
motivate the introduction of this additional com-
plexity.

3 Sanskrit n-retroflexion

Sanskrit /n/-retroflexion, also called nati, has
been studied extensively throughout the history
of linguistics, and has received particularly close
scrutiny within generative grammar. The notori-
ous complexity of the phenomenon is the product
of the interaction of multiple (individually sim-
ple) conditions: long-distance assimilation (§3.1),
blocking by preceding coronals (§3.2), mandatory
adjacency to sonorants (§3.3), blocking by pre-
ceding plosives (§3.4), and blocking by following
retroflexes (§3.5).

Even a cursory look at the previous literature
is beyond the scope of this paper, so we refer the
reader to Ryan (2017) for a detailed literature re-
view and analysis of the phenomenon. We draw
data from Müller (1886), Hansson (2001), and
Ryan (2017) and use the transcription conventions
from Ryan (2017). Page numbers for the sources
are indicated in the table captions of the data.

3.1 Base pattern

The central aspect of nati is simple: underlyingly
anterior /n/ becomes retroflex [ï] when it is pre-
ceded in the word by a non-lateral retroflex contin-
uant (one of /õ/, /õ

"
/, /õ

"
:/, or /ù/). The retroflex trig-

ger can occur arbitrarily far to the left of the nasal
target. Tables 1 and 2 respectively show the alter-
nations in the instrumental singular suffix /-e:na/
when attached to roots without and with a trigger.
Triggers, blockers, and targets are bolded in all ta-
bles.

Form Gloss
ká:m-e:na ‘by desire’
ba:ï-e:na ‘by arrow’
mu:ãH-e:na ‘by the stupid (one)’
jo:g-e:na ‘by means’

Table 1: Forms with no nati (Ryan, 2017, p. 305)

Form Gloss
naõ-e:ïa ‘by man’
manuùj-e:ïa ‘by human’
õa:gHaV-e:ïa ‘by the Rāghava’
puùpaugH-e:ïa ‘by the heap of flowers’
bõaHmaïja ‘kind to Brahmans’
niùaïïa ‘rested’
akùaïVat ‘having eyes’

Table 2: Basic nati examples (Ryan, 2017, p. 305 and
Müller, 1886, p. 44)

Viewing nati as a phonotactic phenomenon
rather than a mapping from underlying represen-
tations to surface forms, we can formalize it as the
constraint that no [n] may appear in the context
R · · · , where R is a non-lateral retroflex contin-
uant. This does not constitute an analysis, but it
clarifies the formal character of the process. As we
will see in the remainder of this section, though,
the context is in fact much more complicated than
just R · · · .

3.2 Unconditional blocking by intervening
coronals

If a coronal segment (including retroflexes) oc-
curs between the trigger and the target, then nati is
blocked. The only exception to this is the palatal
glide /j/ (cf. Table 2) — this is an important point
that we will return to in §4.3. Crucially, [ï] it-
self is a coronal blocker, meaning the assimilation
process only affects the first in a series of eligible
targets. An exception to this is geminate /nn/ se-
quences, where both instances of /n/ undergo nati
(cf. Table 2; this complication will also be dis-
cussed in §4.3). Examples of nati blocked by an
intervening coronal are shown in Table 3. Leaving
aside geminates for the moment, the illicit context
for [n] now becomes RC∗ , where C matches [j]
and all segments that are not coronals.

Form Gloss
õáth-e:na ‘by chariot’
gaõuã-e:na ‘by Garud

˙
a’

põa-ïina:ja ‘lead forth’
Vaõï-ana:nam no gloss

Table 3: Intervening coronal blocking (Hansson, 2001,
p. 227 and Ryan, 2017, p. 305)

3.3 Mandatory adjacency to sonorant

Next, the /n/ must be immediately followed by
a non-liquid sonorant to undergo nati. More pre-
cisely, the following symbol must be a vowel, a
glide, /m/, or /n/ itself (Whitney, 1889). No other
nasals can occur following /n/ due to independent
phonotactic constraints in the language (Emeneau,
1946). Like the special status of /j/ and gemi-
nates, this will become important in §4.3 but can
be ignored for now.

Examples of cases where nati is blocked by the
following sound, or lack thereof, are shown in Ta-
ble 4. Again updating the illicit context for [n], we
get RC∗ S, where S is a vowel, glide, /m/, or
/n/.

Form Gloss
bõaHman ‘brahman’
tõ
"
=n=t-te ‘split (3Pl middle)’

caõ-a-n-ti ‘wander (3Pl)’

Table 4: Blocking when no non-liquid sonorant follows
(Hansson, 2001, p. 229 and Ryan, 2017, p. 318)

3.4 Conditional blocking by preceding velar
and labial plosives

In addition to coronals blocking when they inter-
vene between the trigger and the target, velar and
labial plosives can also block nati, but only when
two conditions are met at the same time: I) the
plosive occurs immediately before the target, and
II) a left root boundary √ intervenes between the
target and trigger. Left root boundaries are gener-
ally omitted for clarity when they occur at the left
edge of a word. Table 5 shows that left root bound-
aries alone are not sufficient to block nati. Table 6
shows cases where a labial or velar plosive blocks
nati across a left root boundary, and Table 7 shows
cases where such a plosive does not block because
no left root boundary intervenes.

Form Gloss
põa-√ïaC-ja-ti ‘vanishes (3s)’
Võtõa-√Háïa ‘Vr

˚
tra-killing’

põa-√mi:ï-a:-ti ‘frustrates (3s)’

Table 5: Nati occurring across left root boundaries
(Ryan, 2017, pp. 320, 321, 324)

Form Gloss
põ-√a:p-no:-ti ‘attains (3s)’
põ-√a:p-nu-a:h ‘should attain (2s opt.)’
põa-√bHag-na ‘broken’

Table 6: Labial/velar blocking with intervening root
boundary (Ryan, 2017, pp. 318, 321)

Form Gloss
√õug-ïá ‘break (pass. part.)’
√tõ

"
p-ïV- ‘be satisfied (pres. stem)’

√õé:kïas ‘inheritance’

Table 7: No labial/velar blocking (Ryan, 2017, p. 319)

To accommodate these new facts, we change
the context to Rα S. Here α is any string that
does not contain a coronal and does not match
· · · √ · · ·P , where P is a velar plosive or a labial
plosive.

3.5 Conditional blocking by following
retroflex

There is one final complication: nati is blocked
when a retroflex occurs somewhere to the right of
the target /n/. Like with blocking by plosives,
though, two conditions must be met: I) as above, a

left root boundary separates the trigger and the tar-
get of nati, and II) no coronal intervenes between
/n/ and the blocking retroflex (so coronals “block”
retroflex blocking). Keep in mind that, as in §3.2,
/n/ itself is coronal and thus can act as a blocker,
a point that will be important in §4.

Table 8 shows cases where a following retroflex
blocks in the presence of a left root boundary
intervening between trigger and target, and Ta-
ble 9 shows cases where it does not block be-
cause a coronal intervenes between the target and
the blocker, or no intervening boundary is present.
Note in the final example of Table 9 that an inter-
vening left root boundary between the trigger and
the blocker has no effect — the boundary must oc-
cur before the targeted /n/.

Ryan (2017) notes that it is unclear from the
data whether the retroflex blocking is truly un-
bounded, or if the blocker must occur within a cer-
tain distance of the target. We assume the pattern
is unbounded here, but it does not significantly al-
ter the analysis if this is not the case.

Form Gloss
põa-√naù-úum ‘to vanish (inf.)’
põa-√nõ

"
t- ‘dance forth’

põa-√nakù- ‘approach’

Table 8: Following retroflex blocking (Ryan, 2017,
p. 325)

Form Gloss
põa-√ïe:-tõ

"
‘leader’

√bõa:Hmaï-é:-ùu ‘Brahmins (loc. pl.)’
√põ-ïa-k-ùi ‘unite (2s)’
√puõa:ïa-√õùi ‘ancient rishi’

Table 9: No following retroflex blocking (Ryan, 2017,
p. 325, 326)

With this last piece of data in place, we can fi-
nally give a full description of nati as a phonotac-
tic constraint on the distribution of [n] in surface
forms.

Definition 5 (nati). No [n] may occur in a context
Rα Sβ such that the following hold:

• R is a non-lateral retroflex continuant, and

• S is a vowel, glide, /m/, or /n/ and

• none of the following blocking conditions are
met:

– α contains a coronal C, or
– α matches · · · √ · · ·P , where P is a ve-

lar plosive or labial plosive, or
– α contains√, and β contains a retroflex

that is not preceded by a coronal in β.

This description can be translated into a first-
order formula with precedence to show that nati
is star-free. In the next section, we show that it is
also IO-TSL.

4 Formal analysis

The IO-TSL analysis of nati is a bit convoluted,
but more straightforward than one might expect.
All the heavy lifting is done by the tier projection
mechanism (§4.1). In any case where the projec-
tion considers the context at all, it uses a look-
ahead of 1 or 2, a look-back of 1 in the string, a
look-back of 1 on the tier, or a mixture of these
options. In particular, P and C have complex
tier projection conditions. Our projection function
creates tiers of a very limited shape that are easily
shown to be SL-3 (§4.2). While our analysis uses
abstract symbols such as R, P , and C, the com-
plexity of nati remains the same even if one talks
directly about the relevant segments instead (§4.3).

4.1 Tier projection
As contexts make for a verbose description, we opt
for a more informal specification of the IOSL tier
projection. The projection rules for each symbol
are sufficiently simple that this does not introduce
any inaccuracies.

An IOSL-(3, 2) tier projection for nati is shown
below. For each condition we list its individ-
ual complexity. Note that the rules below merely
specify how tiers are constructed, not which tiers
are well-formed. This is left for §4.2.

• Always project R. IOSL-(1,1)

• Project S if it is immediately preceded by [n]
in the input. IOSL-(2,1)

• Project√ if the previous tier symbol is R.
IOSL-(1,2)

• Project P if the previous tier symbol is√ and
the next two input symbols are [n] and S.

IOSL-(3,2)

• Project C if the previous tier symbol is R,
√, or S, unless C is [n] and the next input
symbol is S. IOSL-(2,2)

• Project every retroflex (not just those match-
ing R) if the previous tier symbol is S.

IOSL-(1,2)

• Don’t project anything else. IOSL-(1,1)

Table 10 shows variations of the previous data
points with the tiers projected according to the
rules above.

Let us briefly comment on the intuition behind
these projection rules. We always want to project
R since this is the only potential trigger for nati.
For [n], we do not want to project all instances as
this may end up restricting the distribution of an
[n] that is not a suitable target anyways. In ad-
dition, we do not want to project [n] itself as this
would make it impossible to distinguish an [n] that
was projected as a potential nati-target from one
that was projected as an instance of C. So instead,
we project the sonorant after [n]. As a sonorant
has no other reason to appear on the tier, it can act
as an indirect representative of an [n] that may be
targeted by nati.

The left root boundary √ matters only if it oc-
curs between R and [n]. Since we build tiers from
left-to-right, we cannot anticipate the presence of
[n] on the tier, and in the input string there is no up-
per bound on how far [n] might be from√. Hence
we have to project√ after every R, even if R does
not end up triggering nati. A redundant instance
of√ on the tier is no problem.

As for P , its presence matters only when it oc-
curs before a potential nati target, so we project it
only in these configurations. We also impose the
requirement that the previous tier symbol is √ as
P needs a left root boundary between R and [n]
to become a blocker. This kind of mixing of input
and output conditions is not necessary for P , but
it is essential for C.

The coronal C is the strongest blocker. In con-
trast to √, it does not depend on other material
in the string, so it should be projected not only
immediately after R but also if the previous tier
symbol is√ (from which we can infer that the tier
symbol before that is R). A C between [n] and a
retroflex inhibits the latter’s ability to block nati,
so we also need to project C if the previous tier
symbol is S (our tier stand-in for [n]). As arbi-
trary retroflex segments are projected only if the
previous tier symbol is S, projecting C after S
effectively blocks projection of retroflexes. Note
that we do not project C when it is an [n] before

S as this is a potential nati-target and hence S is
projected anyways.

4.2 SL grammar
Once the IOSL tier projection is in place, specify-
ing the forbidden substrings is a simple task. Con-
sider a segment [n] that is followed by S and hence
a potential target for nati. If there are any R that
can trigger nati, it suffices to consider the closest
one. Given such a configuration R · · · [n]S, any
tier will have the shape below:

· · ·R (C | √(C | P)) S (C | S | retroflex) · · ·

Here (X | Y) means “X or Y or nothing”.
Based on this abstract template, the following

substrings are illicit because they indicate an [n]
in a configuration where nati should apply:

• R S, and

• R √ S X (where X is n, C, or S).

That these are the only four substrings that need
to be forbidden is illustrated in Table 10. But note
that √ is always immediately preceded by R on
the tier, so the illicit substrings for the second case
can be shortened to √ S n, √ S C, and √ S S.
Therefore the longest forbidden substring has at
most 3 segments and the dependencies over the
tier are SL-3. As a result, nati is IO-TSL-(3,2,3);
these surprisingly low thresholds suggest that nati
is still fairly simple from a formal perspective.

4.3 Removing abstract symbols
There are still a few minor points that merit ad-
dressing. As noted in §2.2, IO-TSL is not closed
under relabeling, so the fact that the abstract pat-
terns used in the previous sections are IO-TSL
does not imply that nati itself is. This is the case
only if one can compile out the abstract symbols
R, S, C, P , and retroflex into specific segments
like [n], [j], and [õ]. No problems arise in cases
where no segment corresponds to more than one
abstract symbol. For example, [j] only matches S.
If [j] were also a coronal blocker, then it would
also match C and the account in the previous sec-
tion would no longer work since it would not be
clear if a [j] on a tier represents a blocker C or a
sonorant S. In such a case, the use of abstract sym-
bols would simplify the pattern in an illicit way.
There are two instances of overlap in our analysis:
R versus arbitrary retroflexes, and [n] belonging
to both C and S.

Regarding the split between R and arbitrary
retroflexes, it is actually unclear from the data
whether the two are distinct classes. The available
data includes only instances of segments matching
R acting as blockers, though Ryan (2017) suggests
based on his analysis that all retroflexes should be
able to block. But even if the two are distinct,
that is unproblematic for our account. The pro-
jection of R is less restricted than that of arbitrary
retroflexes as the latter are only projected if the
previous tier symbol is S. This discrepancy mat-
ters only in cases where a C-segment occurs after
[n]. In this case, arbitrary reflexives do not project
whereas R still does. Projecting an R-segment af-
ter a C has no consequences, though. If the pre-
ceding substring matches √ SC, then projecting
R won’t salvage it. If it does not match this pat-
tern, projecting R won’t make the tier ill-formed.
Hence the minimal difference between R and ar-
bitrary retroflexes — if it exists — is immaterial
for our account.

That [n] belongs to both C and S is not much of
an issue, either. Since S is projected only after [n],
an [n] on the tier could be an instance of S only if
there are [nn] clusters targeted by nati. In such
cases, the entire cluster undergoes nati. For exam-
ple, we see [niùaïïa], not ∗[niùaïna] (cf. Table 2).
There are two solutions to this. One option is to
treat these not as [nn] clusters, but rather as a sin-
gle segment [n:]. As long as the projection of S is
generalized to be sensitive to both [n] and [n:], this
data is handled correctly by our analysis. Alterna-
tively, we could rely on the fact that [nn] clusters
in our data are always followed by S. Hence we
can limit S to vowels, glides, and [m] and still end
up with a sonorant on the tier after each potential
nati-target. Either way there are again safe ways
to deal with the apparent overlap between the ab-
stract symbols.

We find it interesting in connection to this that
[j] is both sonorant and coronal but does not act as
a coronal blocker. If it did, it would belong to both
C and S, without an easy fix to rescue our analy-
sis. Although Ryan (2017) accounts for the special
status of [j] on the basis of its articulatory proper-
ties, the fact that its behavior is also predictable
from a computational perspective is intriguing. Be
that as it may, the important point is that the ac-
count in §4.1 and §4.2 captures nati even if the ab-
stract symbols are compiled out to the actual seg-
ments.

Example Tier Forbidden
substring

naõe:ïa aõïn –
∗naõe:na aõan õa
põaïina:ja õïan –
caõanti õtn –
Võtõa√Háïa õtõ√ïn –
∗Võtõa√Hána õtõ√an √an
põ√a:pno:ti õ√po:tn –

Example Tier Forbidden
substring

√õugïá õïn –
∗√õugná õán õá
põa√ïe:tõ

"
õ√ïõ

"
n –

∗põa√ne:tõ
"

õ√e:tõ
"
n √e:t

√bõa:Hmaïé:ùu õïùn –
∗√bõa:Hmané:ùu õé:ùn õé:
põa√nakù õ√aùn –

Table 10: Selected data points and ungrammatical variants from Tables 2 to 9 with their tiers and forbidden
subsequences (if any); n is added to each tier for the sake of exposition.

4.4 Relevance and interpretation

Our analysis establishes IO-TSL as a tighter upper
bound on the complexity of nati when construed as
a single phonotactic constraint over strings. This
does not mean, though, that this is the only viable
view of nati, as it could have been analyzed as
a collection of individually simple constraints (cf.
Ryan, 2017), a condition on graph structures in the
sense of Jardine (2017), or a mapping from un-
derlying representations to surface forms. These
are all insightful perspectives, but they are orthog-
onal to our goal of bounding the overall com-
plexity of nati. Our finding that nati (and prob-
ably segmental phonology as a whole) is IO-TSL
is analogous to claims that syntax yields mildly
context-sensitive string languages (Joshi, 1985)
even though the actual representations are trees
with a tree-to-string mapping. The IO-TSL nature
of nati provides a rough complexity baseline on
which more nuanced and linguistically insightful
notions of complexity can be built.

We do find it interesting that IO-TSL as a nat-
ural generalization of TSL is sufficient to cap-
ture nati. But IO-TSL is still too liberal an up-
per bound. Just like the TSL-extensions used in
Baek (2017), De Santo and Graf (2017), and Yang
(2018), IO-TSL allows for unattested phenomena
such as first-last harmony (Lai, 2015). Future
work may identify subclasses of IO-TSL that al-
low for nati but not first-last harmony. IO-TSL in
its current form is nonetheless a fairly restrictive
upper bound on nati.

One final point of contention is our treatment of
nati as a long distance process, rather than local
retroflex spreading as suggested by Ryan (2017).
Unfortunately, there is no clear evidence that the
posited local spreading is visible in the output
string. Spreading of unpronounced material would

be an instance of feature coding, which destroys
subregular complexity because every regular lan-
guage can be made SL-2 this way (see e.g. Rogers
1997). Ryan’s analysis may still be more appropri-
ate from a linguistic perspective, but for our pur-
poses it may incorrectly nullify the complexity of
nati.

5 Conclusion

We have shown that even a highly complex pro-
cess like nati can be regarded as a local depen-
dency over tiers given a slightly more sophis-
ticated tier projection mechanism that considers
both the local context in the input and the preced-
ing symbol(s) on the tier. This extension is natural
in the sense that it co-opts mechanisms that have
been independently proposed in the subregular lit-
erature as a more restricted model of rewrite rules.
Moreover, the complexity is fairly low as nati fits
into IO-TSL-(3, 2, 3). A careful reanalysis of the
data may be able to lower these thresholds even
more by incorporating independent restrictions on
the distribution of some segments. Allowing the
tier projection to proceed from right to left might
also affect complexity.

The effect of the increased power on learnability
is still unknown. IO-TSL-(i, j, k) is a finite class
given upper bounds on i, j, and k, which immedi-
ately entails that the class is learnable in the limit
from positive text (Gold, 1967). This leaves open
whether the class is efficiently learnable, as is the
case for TSL (Jardine and McMullin, 2017) and
the strictly local maps IO-TSL builds on (Chan-
dlee et al., 2014, 2015). But IO-TSL adds two
serious complications: the learner does not have
access to the output of the tier projection function
in the training data, and inferring correct contexts
presupposes correctly built tiers.

Acknowledgments

We would like to thank David Goldstein and
Canaan Breiss for helping us better understand
nati.

References
Hyunah Baek. 2017. Computational representation

of unbounded stress: Tiers with structural features.
Ms., Stony Brook University; to appear in Proceed-
ings of CLS 53.

Jane Chandlee. 2014. Strictly Local Phonological Pro-
cesses. Ph.D. thesis, University of Delaware.

Jane Chandlee. 2017. Computational locality in mor-
phological maps. Morphology, pages 599–641.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz.
2014. Learning strictly local subsequential func-
tions. Transactions of the Association for Compu-
tational Linguistics, 2:491–503.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2015.
Output strictly local functions. Mathematics of Lan-
guage.

Jane Chandlee and Jeffrey Heinz. 2018. Strict locality
and phonological maps. Linguistic Inquiry, 49:23–
60.

Aniello De Santo and Thomas Graf. 2017. Structure
sensitive tier projection: Applications and formal
properties. Ms., Stony Brook University.

M.B. Emeneau. 1946. The nasal phonemes of Sanskrit.
Language, 22(2):86–93.

E. Mark Gold. 1967. Language identification in the
limit. Information and Control, 10:447–474.

Thomas Graf. 2010. Comparing incomparable frame-
works: A model theoretic approach to phonology.
University of Pennsylvania Working Papers in Lin-
guistics, 16(2):Article 10.

Thomas Graf. 2017. The power of locality domains in
phonology. Phonology, 34:385–405.

Thomas Graf. 2018. Locality domains and phonologi-
cal c-command over strings. To appear in Proceed-
ings of NELS 2017.

Thomas Graf and Nazila Shafiei. 2018. C-command
dependencies as TSL string constraints. Ms., Stony
Brook University.

Gunnar Ólafur Hansson. 2001. Theoretical and Typo-
logical Issues in Consonant Harmony. Ph.D. thesis,
University of California, Berkeley.

Jeffrey Heinz. 2018. The computational nature of
phonological generalizations. In Larry Hyman and
Frank Plank, editors, Phonological Typology, Pho-
netics and Phonology, chapter 5, pages 126–195.
Mouton De Gruyter.

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing.
2012. Learning in the limit with lattice-structured
hypothesis spaces. Theoretical Computer Science,
457:111–127.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner.
2011. Tier-based strictly local constraints in phonol-
ogy. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics,
pages 58–64.

Adam Jardine. 2016. Computationally, tone is differ-
ent. Phonology, 33:247–283.

Adam Jardine. 2017. The local nature of tone-
association patterns. Phonology, 34:385–405.

Adam Jardine and Kevin McMullin. 2017. Efficient
learning of tier-based strictly k-local languages. In
Proceedings of Language and Automata Theory and
Applications, Lecture Notes in Computer Science,
pages 64–76, Berlin. Springer.

Aravind Joshi. 1985. Tree-adjoining grammars: How
much context sensitivity is required to provide rea-
sonable structural descriptions? In David Dowty,
Lauri Karttunen, and Arnold Zwicky, editors, Nat-
ural Language Parsing, pages 206–250. Cambridge
University Press, Cambridge.

Regine Lai. 2015. Learnable vs unlearnable harmony
patterns. Linguistic Inquiry, 46:425–451.

Connor Mayer and Travis Major. 2018. A challenge
for tier-based strict locality from Uyghur backness
harmony. In Formal Grammar 2018. Lecture Notes
in Computer Science, vol. 10950, pages 62–83.
Springer, Berlin, Heidelberg.

Kevin McMullin. 2016. Tier-Based Locality in Long-
Distance Phonotactics: Learnability and Typology.
Ph.D. thesis, University of British Columbia.

Friedrich Max Müller. 1886. A Sanskrit Grammar
for Beginners: In Devanagari and Roman Letters.
Longmans, Green, and Co., London.

James Rogers. 1997. Strict LT2 : Regular :: Local :
Recognizable. In Logical Aspects of Computational
Linguistics: First International Conference, LACL
’96 (Selected Papers), volume 1328 of Lectures
Notes in Computer Science/Lectures Notes in Arti-
ficial Intelligence, pages 366–385. Springer.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlef-
sen, Molly Vischer, David Wellcome, and Sean
Wibel. 2010. On languages piecewise testable in the
strict sense. In Christan Ebert, Gerhard Jäger, and
Jens Michaelis, editors, The Mathematics of Lan-
guage, volume 6149 of Lecture Notes in Artificial
Intelligence, pages 255–265. Springer, Heidelberg.

Kevin Ryan. 2017. Attenuated spreading in Sanskrit
retroflex harmony. Linguistic Inquiry, 48(2):299–
340.

Mai Ha Vu, Nazila Shafiei, and Thomas Graf. 2018.
Case assignment in TSL syntax: A case study. Ms.,
Stony Brook University and University of Delaware.

William Dwight Whitney. 1889. Sanskrit Grammar.
Oxford University Press, London.

Su Ji Yang. 2018. Subregular complexity in Korean
phonotactics. Undergraduate honors thesis, Stony
Brook University.

