Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion

Morphotactics as Tier-Based Strictly Local Dependencies

Alëna Aksënova, Thomas Graf, and Sedigheh Moradi

Stony Brook University

SIGMORPHON 14 Berlin, Germany 11. August 2016

Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
000000	00000	00000000	00000	00
Our goal				

Received view

Recent research

Phonology

regular Kaplan&Kay (1994) subregular Heinz (2015) Morphology regular Beesley&Karttunen (2003) ?

Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
000000	00000	00000000	00000	00
Our goal				

	Phonology	Morphology
Received view	regular	regular
Received view	Kaplan&Kay (1994)	Beesley&Karttunen (2003)
Recent research	subregular Heinz (2015)	?

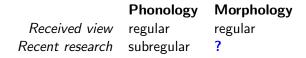
- Show that morphotactics is subregular
- More precisely: Tier-Based Strictly Local
- Consequences
 - parallels to phonology
 - learnable in the limit from positive text
 - explain typological gaps

Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
000000	00000	00000000	00000	00
Outline				

- 2 SL Patterns In Morphology
- 3 Tier-Based Strictly Local
 - TSL is necessary
 - TSL is sufficient

00000	00000	0000000	Typology 00000	00		
Morphotactics						

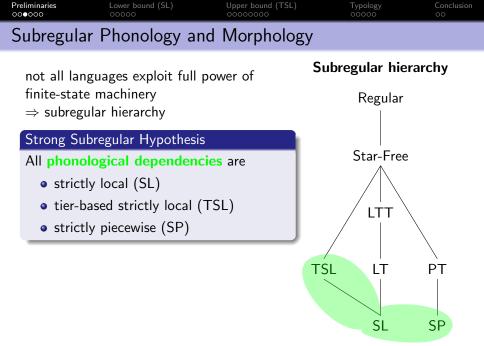
Definition (Morphotactics)

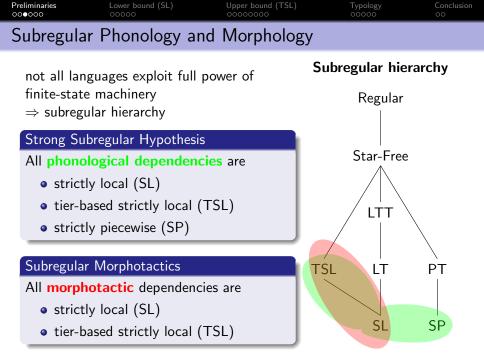

Restrictions on the linear ordering of morphemes.

- Our focus: morphotactics in underlying representations (English)
 OKSTEM-PL
 *PL-STEM
- \bullet \Rightarrow allomorphy (dogs, peaches) is not considered yet

 Preliminaries
 Lower bound (SL)
 Upper bound (TSL)
 Typology
 Conclusion

 ○○○○○
 ○○○○○
 ○○○○○
 ○○○○○
 ○○○○○
 ○○○○○


Computational nature of morphotactics



Advantages of (some) subregular languages:

- resolves learnability issues
- describes potential cognitive mechanisms
- uses less powerful generating device

Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
000●00	00000	00000000	00000	00
Strictly L	ocal languages			

- SL and TSL are generated by *k*-gram models.
- A k-gram model is a finite set of blocked k-grams.

Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
000000	00000	00000000	00000	00
Strictly L	ocal languages			

- SL and TSL are generated by *k*-gram models.
- A k-gram model is a finite set of blocked k-grams.

Example (Strictly Local Grammar for $(ab)^*a$)

 $\Sigma = \{a, b\}$ Grammar = {×b, bb, aa, b×, ××}

Accepted strings: $\forall a \ltimes, \forall a b a \ltimes, \forall a b a b a \ltimes, etc.$ Rejected strings: $\forall a b \ltimes, \forall b a \ltimes, \forall a b b a \ltimes, etc.$

Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
000000	00000	00000000	00000	00
Strictly L	ocal languages			

- SL and TSL are generated by *k*-gram models.
- A k-gram model is a finite set of blocked k-grams.

Example (Strictly Local Grammar for $(ab)^*a$)

$$\begin{split} \Sigma &= \{ \mathsf{a}, \, \mathsf{b} \} \\ \mathsf{Grammar} &= \{ \rtimes \mathsf{b}, \, \mathsf{bb}, \, \mathsf{aa}, \, \mathsf{b} \ltimes, \, \rtimes \ltimes \} \end{split}$$

Accepted strings: $\forall a \ltimes, \forall a b a \ltimes, \forall a b a b a \ltimes, etc.$ Rejected strings: $\forall a \flat \ltimes, \forall b a \ltimes, \forall a b b a \ltimes, etc.$

Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
000●00	00000	00000000	00000	00
Strictly L	ocal languages			

- SL and TSL are generated by *k*-gram models.
- A k-gram model is a finite set of blocked k-grams.

Example (Strictly Local Grammar for $(ab)^*a$)

$$\begin{split} \Sigma &= \{ \mathsf{a}, \, \mathsf{b} \} \\ \mathsf{Grammar} &= \{ \rtimes \mathsf{b}, \, \mathsf{bb}, \, \mathsf{aa}, \, \mathsf{b} \ltimes, \, \rtimes \ltimes \} \end{split}$$

Accepted strings: $\forall a \ltimes, \forall a b a \ltimes, \forall a b a b a \ltimes, etc.$ Rejected strings: $\forall a \triangleright \ltimes, \forall b a \ltimes, \forall a b b a \ltimes, etc.$

Definition

Strictly *k*-**Local (***k*-**SL) grammar** consists of a set of blocked *k*-grams over an alphabet Σ .

Example (Tier-Based Strictly Local Grammar for $c^*(ac^*bc^*)^*ac^*$)

$$\begin{split} \Sigma &= \{ \mathsf{a}, \, \mathsf{b}, \, \mathsf{c} \} \\ \mathsf{Grammar:} \\ \mathsf{G}(\mathsf{a},\mathsf{b_tier}) &= \{ \rtimes \mathsf{b}, \, \mathsf{bb}, \, \mathsf{aa}, \, \mathsf{b} \ltimes, \, \rtimes \ltimes \} \end{split}$$

Accepted strings: $\forall a \ltimes, \forall accba \ltimes, \forall cacbaccccba \ltimes, etc.$

Example (Tier-Based Strictly Local Grammar for $c^*(ac^*bc^*)^*ac^*$)

$$\begin{split} \Sigma &= \{ \mathsf{a}, \, \mathsf{b}, \, \mathsf{c} \} \\ \mathsf{Grammar:} \\ \mathsf{G}(\mathsf{a}, \mathsf{b_tier}) &= \{ \rtimes \mathsf{b}, \, \mathsf{bb}, \, \mathsf{aa}, \, \mathsf{b} \ltimes, \, \rtimes \ltimes \} \\ \mathsf{Accepted strings:} \ &\rtimes \mathsf{a} \ltimes, \, \rtimes \mathsf{accba} \ltimes, \, \rtimes \mathsf{cacbaccccba} \ltimes, \, \mathsf{etc.} \\ & \mathsf{a}, \mathsf{b_tier:} \ &\rtimes \mathsf{a} \ltimes \ &\rtimes \mathsf{aba} \ltimes \ &\rtimes \mathsf{ababa} \ltimes \end{split}$$

Example (Tier-Based Strictly Local Grammar for $c^*(ac^*bc^*)^*ac^*$) $\Sigma = \{a, b, c\}$

Grammar:

 $\mathsf{G}(\mathsf{a},\mathsf{b_tier}) = \{ \rtimes \mathsf{b}, \ \mathsf{bb}, \ \mathsf{aa}, \ \mathsf{b\ltimes}, \ \rtimes \ltimes \}$

Accepted strings: $\forall a \ltimes$, $\forall accba \ltimes$, $\forall cacbaccccba \ltimes$, etc.

a,b_tier: ⋊*a*⋉ ⋊*aba*⋉ ⋊*ababa*⋉

Rejected strings: $\rtimes accccaba \ltimes$, $\rtimes abcccacccbc \ltimes$, etc.

Example (Tier-Based Strictly Local Grammar for $c^*(ac^*bc^*)^*ac^*$)

$$\begin{split} \Sigma &= \{ \texttt{a}, \texttt{b}, \texttt{c} \} \\ \texttt{Grammar:} \\ \texttt{G}(\texttt{a},\texttt{b_tier}) &= \{ \rtimes \texttt{b}, \texttt{bb}, \texttt{aa}, \texttt{b} \ltimes, \rtimes \ltimes \} \\ \texttt{Accepted strings:} &\rtimes \texttt{a} \ltimes, \rtimes \texttt{accba} \ltimes, \rtimes \texttt{cacbaccccba} \ltimes, \texttt{etc.} \\ & \texttt{a},\texttt{b_tier:} &\rtimes \texttt{a} \ltimes & \rtimes \texttt{abab} \ltimes & \rtimes \texttt{ababa} \ltimes \\ \texttt{Rejected strings:} &\rtimes \texttt{accccaba} \ltimes, \rtimes \texttt{abcccacccbc} \ltimes, \texttt{etc.} \\ & \texttt{a},\texttt{b_tier:} &\rtimes \texttt{aba} \ltimes & \rtimes \texttt{abab} \ltimes \\ \end{split}$$

Tier-Based Strictly Local languages

Example (Tier-Based Strictly Local Grammar for $c^*(ac^*bc^*)^*ac^*$)

$$\begin{split} \Sigma &= \{ \texttt{a}, \texttt{b}, \texttt{c} \} \\ \texttt{Grammar:} \\ \texttt{G}(\texttt{a},\texttt{b_tier}) &= \{ \rtimes \texttt{b}, \texttt{bb}, \texttt{aa}, \texttt{b} \ltimes, \rtimes \ltimes \} \\ \texttt{Accepted strings:} &\rtimes \texttt{a} \ltimes, \rtimes \texttt{accba} \ltimes, \rtimes \texttt{cacbaccccba} \ltimes, \texttt{etc.} \\ &\texttt{a},\texttt{b_tier:} &\rtimes \texttt{a} \ltimes &\rtimes \texttt{aba} \ltimes &\rtimes \texttt{ababa} \ltimes \\ \texttt{Rejected strings:} &\rtimes \texttt{accccaba} \ltimes, \rtimes \texttt{abcccacccbc} \ltimes, \texttt{etc.} \\ &\texttt{a},\texttt{b_tier:} &\rtimes \texttt{aaba} \ltimes &\rtimes \texttt{abab} \ltimes \end{split}$$

Definition

A Tier-Based Strictly k-Local grammar is a k-SL grammar that operates over a *tier*, a specific substructure of the string.

Learnability				
Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
00000●		00000000	00000	00

Learning of SL and TSL

- learning ≡ memorizing finite number of *k*-grams + tier induction
- learnable in the limit from positive text

Jardine & Heinz (2016)

Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
000000	●0000	00000000	00000	00
Mappings	s we use			

General assumption: we assume stem not to be bound in length:

- There is no limit on the length of the stem in languages.
- The stem can be result of the compounding. whiteboard, whiteboard marker, whiteboard marker cleaning fluid, whiteboard marker cleaning fluid purchase receipt
- Mapping of the stem to a single symbol will result in insensibility to compounds.

Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
000000	●0000	00000000	00000	00
Mappings	s we use			

General assumption: we assume stem not to be bound in length:

- There is no limit on the length of the stem in languages.
- The stem can be result of the compounding. whiteboard, whiteboard marker, whiteboard marker cleaning fluid, whiteboard marker cleaning fluid purchase receipt
- Mapping of the stem to a single symbol will result in insensibility to compounds.
 - Affixes: affix-to-symbol mapping
 - Stems: symbol-to-symbol mapping

Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
000000	0●000	00000000	00000	00
Strictly Lo	ocal Morphology:	affixation		

Example (prefix 'za-', Russian)					
• zaexat'					
'call on the way'					
axxxx					
Bigram * <i>xa</i> ensures that 'za' is a prefix.					

Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
000000	0●000	00000000	00000	00
Strictly L	ocal Morphology:	affixation		

Example (prefix 'za-', Russian)					
• exat'	• zaexat'				
'go, drive'	'call on the way'				
XXXX	axxxx				
Bigram $*xa$ ensures that 'za' is a prefix.					

Example (suffix '-s', I	English)			
• dog	• dog <mark>s</mark>			
XXX	xxxb			
Bigram * <i>bx</i> ensures that 's' is a suffix.				

Preliminaries 000000	Lower bound (SL) 00●00	Upper bound (TSL) 00000000	Typology 00000	Conclusion 00
Strictly L	ocal Morphology	: affixation [co	ont.]	
Exampl	e (affixation, English)			
• loc xx		 blacklist xxxxxxx 		
	lockable xxx <mark>b</mark>	• unblack axxxxxx		

Preliminaries 000000	Lower bound (SL) 00●00	Upper bound (TSL) 00000000	Typology 00000	Conclusion
Strictly Lo	ocal Morphology:	affixation [cont.]	
Example	e (affixation, English)			
 lock 	<	 blackl 	ist	
XXX	Х	XXXXX	XXXX	
• unlo	ock <mark>able</mark>	unbla	cklist <mark>able</mark>	
axx	xxb	axxxx	xxxxb	

 $\mathsf{SLG} = \{ \rtimes \mathsf{b}, \ \mathsf{ba}, \ \mathsf{bx}, \ \mathsf{xa}, \ \mathsf{a} \ltimes \}$

This grammar necessarily generates the following forms of English, too: $\forall axxxxx \Leftrightarrow and \forall xxxxxb \ltimes$.

Prelim 0000	ninaries 000	Lower bound (SL) 00●00	Upper bound (TSL) 00000000	Typology ooooo	Conclusion 00
Sti	rictly Loca	al Morphology:	affixation	[cont.]	
	Example (a	affixation, English)			
	 lock 		• bla	cklist	
	XXXX		XXX	XXXXXX	
	• unlock	cable		lacklistable	
	axxxx	0	axx	xxxxxxb	

 $\mathsf{SLG} = \{ \rtimes \mathsf{b}, \ \mathsf{ba}, \ \mathsf{bx}, \ \mathsf{xa}, \ \mathsf{a} \ltimes \}$

This grammar necessarily generates the following forms of English, too: $\forall axxxxx \Leftrightarrow and \forall xxxxxb \Leftrightarrow$.

Indeed, this prediction is correct:

Example (affixation, English)		
• unleash	• breakable	
axxxxx	xxxxxb	

- English un-...-able are prefix and suffix that can co-occur.
- However, two parts of a *circumfix* cannot occur independently:

Consider the following example from Indonesian:

Example (circumfix 'ke-an', Indonesian)			
 tinggi 'high' xxxxxx 	 mahasiswa 'big pupil (student)' xxxxxxxxx 		
 ketinggian 'altitude' axxxxxxb 	 kemahasiswaan 'student affairs' axxxxxxxxb 		
• *axxxxx	• *xxxxxb		

Preliminaries 000000	Lower bound (SL) 0000●	Upper bound (TSL) ೦೦೦೦೦೦೦೦	Typology 00000	Conclusion
SL is not	enough: Indone	esian circumfixa	tion [cont.]	
Example	e (circumfix 'ke-an',	Indonesian)		
• ting xxx	ggi xxxx	• mahasis xxxxxxx		
	inggi <mark>an</mark> xxxxxb	• <mark>ke</mark> maha axxxxxx		
• * <mark>a</mark> >	xxxxx	• *xxxxxx	xb	

 $\begin{aligned} \mathsf{SLG} &= \{ \rtimes \mathsf{b}, \ \mathsf{ba}, \ \mathsf{bx}, \ \mathsf{xa}, \ \mathsf{a} \ltimes \} \\ \mathsf{String} \ \mathsf{language} &= \rtimes \mathsf{xxxx} \ltimes, \ \rtimes \mathsf{axxxxb} \ltimes, \ \rtimes \mathsf{axxxx} \ltimes, \ \rtimes \mathsf{xxb} \ltimes \ldots \end{aligned}$

Preliminaries 000000	Lower bound (SL) 0000●	Upper bound (TSL) 00000000	Typology 00000	Conclusion
SL is not	enough: Indone	sian circumfixat	tion [cont.]	
Example	e (circumfix 'ke-an',	Indonesian)		
• tin; xxx	ggi «xxx	 mahasisy xxxxxxxx 		
	inggi <mark>an</mark> xxxxx <mark>b</mark>	 kemahas axxxxxxx 		
• * <mark>a</mark> >	xxxxxx	• *xxxxxx	xb	

 $\begin{aligned} \mathsf{SLG} &= \{ \rtimes \mathsf{b}, \ \mathsf{ba}, \ \mathsf{bx}, \ \mathsf{xa}, \ \mathsf{a} \ltimes \} \\ \mathsf{String} \ \mathsf{language} &= \rtimes \mathsf{xxxx} \ltimes, \ \rtimes \mathsf{axxxxb} \ltimes, \ \rtimes \mathsf{axxxx} \ltimes, \ \rtimes \mathsf{xxb} \ltimes \ldots \end{aligned}$

Problem:

- SL languages can only capture local dependencies
- Circumfixes introduce non-local ones

Preliminaries 000000	Lower bound (SL) 00000	Upper bound (TSL) ●0000000	Typology 00000	Conclusion
Morphota	actics is TSL			
Exampl	e (circumfix 'ke-an'	, Indonesian)		
• tinggi		• mahasisv xxxxxxxx		
 ketinggian axxxxxxb 			 kemahasiswaan axxxxxxxxxb 	
• *axxxxx		• *xxxxxxx	:b	

 $\mathsf{TSLG}(\mathsf{circumfix_tier}) = \{ \rtimes \mathsf{b}, \mathsf{ ba}, \mathsf{a} \ltimes \}$

Preliminaries 000000	Lower bound (SL) 00000	Upper bound (TSL) ●0000000	Typology 00000	Conclusion 00
Morphota	octics is TSL			
Example	e (circumfix 'ke-an'	, Indonesian)		
• tin	ggi	 mahasiswa 		

 xxxxx
 ketinggian axxxxxb
 *axxxxxb
 *axxxxxb
 *xxxxxxb
 *xxxxxxb

 $\mathsf{TSLG}(\mathsf{circumfix_tier}) = \{ \rtimes \mathsf{b}, \, \mathsf{ba}, \, \mathsf{a} \ltimes \}$

Licit strings: • ×xxxxx • • × • Illicit strings: • ×axxxx • • × axxxx • •

● ⋊*axxxxxb*⋉ ⋊*ab*⋉

● ×bxxxa× ×ba× Preliminaries Lower bound (SL) Upper bound (TSL) Typology Conclusion

Morphotactics is TSL

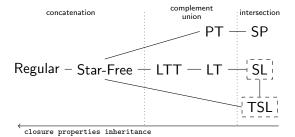
Example (circumfix 'ka-an', llocano)

In Ilocano, it is impossible to do embedded circumfixation:

 bigát 'morning' xxxxx kabigátan
 'the next morning'
 axxxxxb

 $\mathsf{TSLG}(\mathsf{circumfix_tier}) = \{ \rtimes \mathsf{b}, \mathsf{ba}, \mathsf{a} \ltimes, \mathsf{aa}, \mathsf{bb} \}$




 $\mathsf{TSLG}(\mathsf{circumfix}_{\mathsf{tier}}) = \{ \rtimes \mathsf{b}, \mathsf{ba}, \mathsf{a} \ltimes, \mathsf{aa}, \mathsf{bb} \}$

Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
000000	00000	०००●००००	00000	00
Interim S	ummary			

- SL enforces local dependencies
- TSL enforces local dependencies on the determined tier
- Most of morphotactics is SL, some of it is TSL
- Learning of TSL languages is possible from positive data only
- Can morphotactics be more than TSL?

Can morphotactics be more than TSL?

 Closure under concatenation: Frenglish contains only words whose first part is a word of French and the second a word of English.

 Closure under concatenation: Frenglish contains only words whose first part is a word of French and the second a word of English. X

- Closure under concatenation: Frenglish contains only words whose first part is a word of French and the second a word of English. X
- **Closure under union**: If a Mandaresian word violates rules of Mandarin Chinese, it must obey the rules of Indonesian.

- Closure under concatenation: Frenglish contains only words whose first part is a word of French and the second a word of English. X
- Closure under union: If a Mandaresian word violates rules of Mandarin Chinese, it must obey the rules of Indonesian. X

- Closure under concatenation: Frenglish contains only words whose first part is a word of French and the second a word of English. X
- Closure under union: If a Mandaresian word violates rules of Mandarin Chinese, it must obey the rules of Indonesian. X
- **Closure under relative complement**: Hsilgne contains all words that are ill-formed in English.

- Closure under concatenation: Frenglish contains only words whose first part is a word of French and the second a word of English. X
- Closure under union: If a Mandaresian word violates rules of Mandarin Chinese, it must obey the rules of Indonesian. X
- Closure under relative complement: Hsilgne contains all words that are ill-formed in English. X

• **Closure under intersection**: Russenorsk is created by combination of elements of Russian and Norwegian.

 ● Closure under intersection: Russenorsk is created by combination of elements of Russian and Norwegian. ✓ (spoken in Northern Norway, 18th-19th centuries)

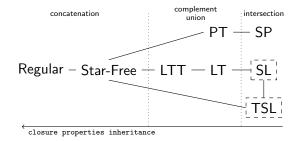
 Closure under intersection: Russenorsk is created by combination of elements of Russian and Norwegian. (spoken in Northern Norway, 18th-19th centuries)

Example (Closure under intersection)

- A language allows complex nuclei and blocks codas (Supyire)
- A language forbids complex nuclei and allows codas (Russian)

 Closure under intersection: Russenorsk is created by combination of elements of Russian and Norwegian. ✓ (spoken in Northern Norway, 18th-19th centuries)

Example (Closure under intersection)


- A language allows complex nuclei and blocks codas (Supyire)
- A language forbids complex nuclei and allows codas (Russian)
- Then there will be a language that blocks complex nuclei and codas (Hawaiian, Senufo)

- X Closure under concatenation
- X Closure under union
- X Closure under relative complement
- Closure under intersection

- X Closure under concatenation
- X Closure under union
- X Closure under relative complement
- Closure under intersection

Preliminaries	Lower bound (SL)	Upper bound (TSL)	Typology	Conclusion
000000	00000	00000000	●0000	00
Typologic	al gaps			

Basic Logic of Argument

- All attested morphotactic patterns must be TSL.
- So if pattern A is TSL, and pattern B is TSL, but their combination A+B is not, we get a typological gap.

Some predicted gaps:

- No embedded circumfixation;
- No cases when amount of affixes A depends on the amount of affixes B;
- In general, no $a^n b^n$ pattern and its derivatives.

Preliminaries 000000	Lower bound (SL) 00000	Upper bound (TSL) 00000000	Typology o●ooo	Conclusion 00
Typologic	cal gap I: Impos	sible compound	ing	
Russia	n pattern – (stem-	o)*-stem		
Exampl	e (compounding, R	ussian)		
	d <mark>o</mark> voz	• vod <mark>o</mark> voz		
'wa	ater carrier'	'carrier	of water carrie	ers'
XXX	XOXXX	XXX <mark>0</mark> XXX	OXXX	

Preliminaries 000000	Lower bound (SL) 00000	Upper bound (TSL) 00000000	Typology o∙ooo	Conclusion
Typological	gap I: Impos	sible compound	ing	
Russian p	oattern – (stem-o)*-stem		
Example (compounding, Ru	issian)		
• vodov		• vodovoz		
'wate	r carrier'	'carrier	of water carriers	,
XXXOX	XX	XXXOXXX	OXXX	

Turkish pattern – stem-(stem⁺-o)

Example (compounding, Turkish)

- bahçe kapı-sı 'garden gate' xxxxxxxxo
- türk kahve-sı 'Turkish coffee'

XXXXXXXXXO

- türk bahçe kapı-sı 'Turkish garden gate' xxxxxxxxxxo
- *türk bahçe kapı-sı-sı *xxxxxxxxxxxx00

Russian pattern – (stem-o)*-stem Turkish pattern – stem-(stem⁺-o)

Turkussian pattern: amount of compound markers is equal to the amount of added stems, stem-(stemⁿ-oⁿ)

Typological gap I: Impossible compounding

Russian pattern – (stem-o)*-stem Turkish pattern – stem-(stem⁺-o)

Turkussian pattern: amount of compound markers is equal to the amount of added stems, $stem-(stem^{n}-o^{n})$

- This pattern is not regular because it has infinite number of "good continuations". (*Myhill-Nerode theorem*)
- It appears to be non-existent.

Typological gap II: Recurrent affixation

Sometimes languages allow some affixes to be iterated: a*-stem.

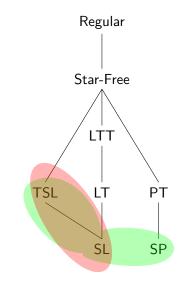
Consider example of such pattern in German:

Example (prefix 'über', Gern	nan)
 morgen 'tomorrow' 	 übermorgen 'the day after tomorrow'
• überübermorgen 'the day after the day a aaxxxxxx	axxxxx

German pattern: a*-stem.

The same meaning can be expressed in another language differently, consider llocano (Austronesian) temporal circumfix *ka-...-an* 'next'.

Example (circumfix 'ka-a	n', llocano)
 bigát 	• kabigátan
'morning'	'the next morning'
XXXXX	axxxxp


German pattern: a*-stem.

The same meaning can be expressed in another language differently, consider llocano (Austronesian) temporal circumfix *ka-...-an* 'next'.

Example (circumfix 'ka-a	n', llocano)
• bigát	 kabigátan
'morning'	'the next morning'
XXXXX	axxxxb

However, word kakabigátanan doesn't appear to be possible word in llocano: aⁿ-stem-bⁿ pattern is not regular.

- Morphotactics is at most Tier-Based Strictly Local
- Positive data is enough for morphological learning
- Set of typological gaps can be explained due to the subregular nature of morphology
- Same formal tools can be used for morphology and phonology

	00000	0000000	00000	0•
Future wor				

- Try to find SP patterns in morphotactics
- Look at more typologically diverse languages
- Extend to mappings from underlying to surface forms
- Work with representations of internal structure
- The elephant in the room: reduplication

References 00

Thank you!

References I

Beesley, Kenneth R. and Lauri Karttunen (2003)

Chandlee, Jane (2014)

Strictly Local Phonological Processes. PhD Thesis, University of Delaware

Chandlee, Jane, Rémi Eyraud and Jeffrey Heinz (2014)

Learning Strictly Local Subsequential Functions. Transactions of the Association for Computational Linguistics 2, 491 – 503.

Galvez Rubino, Carl R. (1998)

Ilocano: Ilocano-English, English-Ilocano: Dictionary and Phrasebook. Hippocrene Books Inc., U.S.

Heinz, Jeffrey (2015)

The Computational Nature of Phonological Generalizations. Ms., University of Delaware

Heinz, Jeffrey, Chetan Rawal and Herbert G. Tanner (2011)

Tier-Based Strictly Local Constraints in Phonology. Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, 58 – 64.

Jardine, Adam (2015)

Computationally, Tone is Different. Ms., University of Delaware

References II

Jardine, Adam and Jeffrey Heinz (2016)

Learning Tier-based Strictly 2-Local Languages. Transactions of the Association for Computational Linguistics 4, 87 – 98.

Jurafsky, Daniel and James H. Martin. (2009)

Speech and language processing: an introduction to natural language processing, computational linguistics, and speech recognition.

Upper Saddle River, N.J. : Pearson Prentice Hall.

Kaplan, Ronald M. and Martin Kay (1994)

Regular Models of Phonological Rule Systems. Computational Linguistics 20(3), 331 – 378.

Mahdi, Waruno (2012)

Distinguishing Cognate Homonyms in Indonesian. Oceanic Linguistics 51(2), 402 – 449.

Rogers, James and Geoffrey Pullum (2007)

Aural Pattern Recognition Experiments and the Subregular Hierarchy. Mathematics of Language 10, 1 - 16.

Sneddon, James Neil (1996)

Indonesian Comprehensive Grammar. Routledge, London and New York.

Stump, Greg (2016)

Rule composition in an adequate theory of morphotactics. Manuscript.