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Tree Transducers in Pictures

A finite-state bottom-up tree transducer
@ traverses an input-tree from the leaves towards the root,
o labels it with states g;, and
@ transforms it into an output-tree.

It does so using rules of the following kind:
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A Simple Example (Part 1)

A Transduction for wh-Movement, Rules 1-4
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A Simple Example (Part 2)

A Transduction for wh-Movement, Rule 5
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A Simple Example (Part 3)

A Transduction for wh-Movement, Application
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Some Important Facts

@ There are also transducers that traverse a tree top-down.

@ A transducer is linear iff it does not copy an subtrees,
i.e. iff it has no rules where a subtree of the input
occurs more than once on the right hand side of the rule.

o Every linear top-down transducer can be emulated by
a linear bottom-up transducer.

@ The class of linear bottom-up transducers is closed under
composition.

@ The class of regular tree languages is closed under
linear transductions.

@ The diagonal of a regular tree language is a linear
transduction.
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Reference-Set Constraints

An Informal Definition

Given some tree t, a reference-set constraint computes

a set of possible output trees for t — called the reference set of t
— and picks from said set the optimal output tree according to
some economy metric.

Examples in the literature

Rule I (Reinhart 2006)

Scope Economy (Fox 2000)
Fewest Steps (Chomsky 1995)
Merge-over-Move (Chomsky 2000)
Resumption (Aoun et al. 2001)



Reference-Set Constraints
0®00

Example: Focus Economy (Reinhart 2006)

(1) a. [rp John [yp bought [pp a red car]]].
Focus set: {TP, VP, DP, red car, car}

b. [rp John [vp bought [pp a red car]]].
Focus set: {red}

Focus Projection

Any constituent containing the carrier of sentential main stress
may be focused.

| A\

Focus Economy Rule

If the main stress has been shifted, a constituent containing its
carrier may be focused iff it cannot be focused in the tree with
unshifted stress.

\
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Example: Focus Economy, Cont.

Computing the Focus Sets
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Example: Focus Economy, Cont.
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So What's the Deal?

@ Reference-set constraints are believed to be
too computationally demanding, for real-world applications
as well as human cognition in general (Collins 1996; Johnson
and Lappin 1999).

@ Reasoning in the literature: Not only do we have to compute
a (possibly infinite) reference-set, picking the optimal ouput
also requires comparing distinct trees, in contrast to
standard well-formedness condition.

@ However, similar things were once said about a different
piece of linguistic machinery that is now known to be
efficiently computable: Optimality Theory. ..
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Definition of Optimality Systems

Optimality Systems (Frank and Satta 1998)

An optimality system over input language L and

output candidate language L is a pair O := (GEN, C) with
@ GEN C L x L’ a relation from inputs to output candidates,
e C:={(cy,...,cn) a linearly ordered sequence of functions

¢i: GEN — N that assign each input-output pair the number
of violations it incurs with respect to the ith constraint.

For pairs p, g € GEN, p is more optimal than q iff there is an
1 < k < n such that cx(a) < cx(b) and for all j < k, ¢j(a) = ¢j(b).
The output language of O is the smallest set containing

all (i, 0) € GEN for which it holds that there is no o’ such that
(i, 0') is more optimal than (i, o).
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Example (Optimality System)

L:={a} L' :={a,aa,ab,b,bb,c} C:=(*c, save a, *a, *#a)

GEN := {(a,a), (a,aa),(a,ab),(a, b),(a,bb),(a,c)}

Input a | *c save a *a *#a
Output a
Output aa
Output ab
Output b
Output bb
Output ¢
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Example (Optimality System)

L:={a} L' :={a,aa,ab,b,bb,c} C:=(*c, save a, *a, *#a)

GEN := {(a,a), (a,aa),(a,ab),(a, b),(a,bb),(a,c)}

Input a | *c save a *a *#a
Output a 1 1
Output ab 1 1

transduction 7 := {(a, a), (a,ab)} output language := {a, ab}
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OS as Linear Tree Transducers

Without further restrictions, OSs can generate any kind of
string and tree language. However, a few conditions suffice
to restrict them to the power of linear tree transducers.
Finite-State OSs (Wartena 2000; Jager 2002)

Let O := (GEN, C) be an OS such that

@ the domain of GEN is a regular tree language,

@ GEN is a linear tree transduction,
@ all constraints are insensitive to the input,

@ each constraint defines a linear tree transduction on
the range of GEN,

o O is globally optimal.

Then the transduction 7 induced by O is a linear tree transduction
and its range is a regular tree language.
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Global Optimality

Global Optimality

An OS is globally optimal iff for every output candidate o that is
optimal for some input / it holds that there is no input i/’ such that
o is an output candidate for i but not an optimal one.

Examples

@ An OS with GEN := {i, "} x {0, 0’} and only (i, 0) and
(', 0') as the optimal pairings is not globally optimal
= if constraints may take the input into account,
global optimally is the exception

@ An OS with GEN := {(i,0),(i,0'),(i",0'}} and o
a universally better candidate than o’ is not globally optimal
= input-insensitivity is no guarantee for global optimality
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Reference-Set Constraints as OSs

General Strategy

@ Use GEN to compute the reference-sets.

@ Use a sequence of constraints to filter out the suboptimal
candidates.

But GEN is a “flat” relation, is does not directly represent
reference-sets and their algebraic properties.

Maybe we can enrich OSs appropriately?
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Definition of Controlled OSs

Controlled OSs

An F-controlled optimality system over languages L, L’ is a
4-tuple O[F] := (GEN, C, F,~), where
@ GEN and C are defined as usual,

@ F is a family of non-empty subsets of L, each of which
we call a reference type,

@ the control map v : F — p(L') associates every reference type
with a non-empty set of output candidates, the reference set,

@ the following conditions are satisfied
e exhaustivity: every member of the input language belongs to
at least one reference type
e bootstrapping: if input i belongs to the reference types
Xi,...,Xn, then (i,0) € GEN iff 0o € | {X17,..., Xp7}
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Depiction of a Controlled OS

[ o [l alolca
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5 0g 0 0 4
09 0 1 0

Evaluation Output Language
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Reference-set constraints as controlled OSs

@ Almost all constraints in the literature exhibit one
of the two configurations below.

@ What do the two have in common?
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Two Common Properties of Reference-Set Constraints

Output Joint Preservation (restricts GEN)

An F-controlled OS is output joint preserving iff it holds for all
reference types X and Y in F that whenever their reference sets
X~ and Y+ overlap, so do X and Y themselves.

Output joint preservation is a strong restriction on (GEN.
When it comes to C, many reference set constraints do not use
the full range of options either:

Type-Level Optimality (restricts C)

An F-controlled OS is type-level optimal iff it holds for

all reference types X € F and output candidates o in

the reference set of X that if o is optimal for some input in X,
it is optimal for all inputs that belong to X.
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Global Optimality Implies Type-Level Optimality

An OS is type-level optimal if it is globally optimal.
If all constraints of an OS are insensitive to the input, it is
type-level optimal.

Intuitively, the first statement is obvious because type-level
optimality is “global optimality restricted to single reference-sets”.
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Global Optimality Implies Type-Level Optimality

An OS is type-level optimal if it is globally optimal.
If all constraints of an OS are insensitive to the input, it is
type-level optimal.

Intuitively, the first statement is obvious because type-level
optimality is “global optimality restricted to single reference-sets”.

Proof.

Prove the contrapositive. If the OS is not type-level optimal,

then there is some reference type X whose reference set contains
an output candidate z on which at least two inputs that are
contained by X disagree with respect to optimality.

This is an unequivocal violation of global optimality

(optimal for some input — optimal for every input). OJ
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Global Optimality for Reference-Set Constraints

Theorem (Characterization of Global Optimality)

Every output joint preserving OS is type-level optimal iff it is
globally optimal.
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Global Optimality for Reference-Set Constraints

Theorem (Characterization of Global Optimality)

Every output joint preserving OS is type-level optimal iff it is
globally optimal.

Proof.

<: Follows from the previous lemma.

=-: An indirect proof of the contrapositive is given on the next
slide (in pictures!). O

| \

4
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Pictorial Proof

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.

) o1 Assumptions
Is
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z
p
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Pictorial Proof

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.
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Pictorial Proof

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.

o1 Assumptions
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Pictorial Proof
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Pictorial Proof

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.

Assumptions
e —global optimality
@ controlled OS
o type-level optimality

@ output joint
preservation
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Pictorial Proof

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.

Assumptions
e —global optimality
@ controlled OS
o type-level optimality

@ output joint
preservation
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Reference-Set Constraints as Linear Tree Transductions

These new results allow us to state when a controlled OS can be
realized by a linear tree transducer. Note that the elusive property
of global optimality has been replaced by output joint preservation,
which is satisfied by all reference-set constraints.

Finite-State Controlled OSs

Let O[F] := (GEN, C, F,v) an F-controlled OS such that

@ the domain of GEN is a regular tree language,

@ GEN is a linear tree transduction,
@ all constraints are insensitive to the input,
°

each constraint defines a linear tree transduction on
the range of GEN,

e O[F] is output joint preserving.

Then the transduction 7 induced by O is a linear tree transduction
and its range is a regular tree language.
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Reference-Set Constraints as Linear Tree Transductions

These new results allow us to state when a controlled OS can be
realized by a linear tree transducer. Note that the elusive property
of global optimality has been replaced by output joint preservation,
which is satisfied by all reference-set constraints.

Finite-State Controlled OSs
Let O[F] := (GEN, C, F,v) an F-controlled OS such that

@ the domain of GEN is a regular tree language,

@ GEN is a linear tree transduction,

@ each constraint defines a linear tree transduction on
the range of GEN,

Then the transduction 7 induced by O is a linear tree transduction
and its range is a regular tree language.
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Focus Economy Reuvisited

Focus Economy Rule (Reminder)

If the main stress has been shifted, a constituent containing
its carrier may be focused iff it cannot be focused in
the tree with unshifted stress.

Informal Derivational Order

o Compute output tree with neutral stress.

@ Project focus according to Focus Projection.

@ Optionally: Shift stress and recompute focus according to
Focus Economy.

Formal Derivational Order

e Compute all stress patterns (— multiple output trees).

@ Project focus according to Focus Projection.

@ Filter out illicit focus projections according to Focus Economy.
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Formal Model: GEN

Step 1 & 2: GEN
@ Non-deterministically relabel input with S/W-subscripts.

@ Non-deterministically focus some node along the
“stress path”.

Transducing an Input into a Stress-Annotated Output with Focus
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Formal Model: GEN

Step 1 & 2: GEN
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@ Non-deterministically focus some node along the
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Transducing an Input into a Stress-Annotated Output with Focus
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Formal Model: C

Focus Economy requires reference to the neutral stress pattern.
We allow this by implicitly representing the neutral stress within
the same treel

Strategy
@ Define monadic second-order predicates FOCUSPATH and
STRESSPATH.
@ FOCUSPATH represents the path of the current stress.

@ STRESSPATH represents the path of the neutral stress.

@ Write a formula ¢ that requires focus to be in the focus path,
but unless FOCUSPATH and STRESSPATH pick out
the same set, focus may not be in the stress path.
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Example of ¢

FocUSPATH and STRESSPATH
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Formal Model: Putting it Together

We already know that output joint preservation is satisfied.
GEN is a linear transduction.

C consists of only one constraint ¢, a linear transduction.

o The tree models of the formula ¢ form a regular language L(¢).
o The diagonal of L(¢) is a linear transduction (representing C).

The composition of GEN with ¢ is a linear transduction
and yields the intended output language.

This shows that Focus Economy is efficiently computable.



Conclusion

Conclusion

@ Controlled OS were introduced as a model for
reference-set constraints.

@ Most requirements for a controlled OS to be efficiently
computable are fulfilled by reference-set constraints;
in particular, their corresponding OSs are globally optimal.

@ The only problematic areas are GEN and the OS constraints.

@ The formalization of Focus Economy indicates that
these do not pose an insurmountable challenge either.
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