
Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Reference-Set Constraints
as Linear Tree Transductions

via Controlled Optimality Systems

Thomas Graf
tgraf@ucla.edu

tgraf.bol.ucla.edu

University of California, Los Angeles

Formal Grammar 2010
Copenhagen, Denmark

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

1 Tree Transducers — A Very Short, Very Informal Introduction

2 Reference-Set Constraints & Optimality Systems
Reference-Set Constraints
Optimality Systems
Reference-Set Constraints as Optimality Systems

3 Controlled Optimality Systems
Definitions, Subclasses and Illustrations
Results

4 A Formal Model of Focus Economy

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Tree Transducers in Pictures

A finite-state bottom-up tree transducer

traverses an input-tree from the leaves towards the root,

labels it with states qi , and

transforms it into an output-tree.

It does so using rules of the following kind:

σ

q1

subtree 1

. qn

subtree m

→ qi

some tree

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

A Simple Example (Part 1)

A Transduction for wh-Movement, Rules 1–4

1) σ→ qi

σ

3) σ

qi

σ1

subtree 1

qi

σ2

subtree 2

→ qi

σ

σ1

subtree 1

σ2

subtree 2
2) what→ qwh

twh

4) σ

qi

σ1

subtree 1

qwh

σ2

subtree 2

→ qwh

σ

σ1

subtree 1

σ2

subtree 2

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

A Simple Example (Part 2)

A Transduction for wh-Movement, Rule 5

5) TP

qi

DP

subtree 1

qwh

T′

subtree 2

→ qf

CP

what C′

does TP

DP

subtree 1

T′

subtree 2

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

A Simple Example (Part 3)

A Transduction for wh-Movement, Application

TP

DP

the man

T′

T VP

like what

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

A Simple Example (Part 3)

A Transduction for wh-Movement, Application

TP

DP

the man

T′

T VP

like qwh

twh

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

A Simple Example (Part 3)

A Transduction for wh-Movement, Application

TP

DP

the man

T′

T VP

qi

like

qwh

twh

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

A Simple Example (Part 3)

A Transduction for wh-Movement, Application

TP

DP

the man

T′

T qwh

VP

like twh

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

A Simple Example (Part 3)

A Transduction for wh-Movement, Application

TP

DP

the man

T′

qi

T

qwh

VP

like twh

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

A Simple Example (Part 3)

A Transduction for wh-Movement, Application

TP

DP

the man

qwh

T′

T VP

like twh

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

A Simple Example (Part 3)

A Transduction for wh-Movement, Application

TP

DP

the qi

man

qwh

T′

T VP

like twh

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

A Simple Example (Part 3)

A Transduction for wh-Movement, Application

TP

DP

qi

the

qi

man

qwh

T′

T VP

like twh

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

A Simple Example (Part 3)

A Transduction for wh-Movement, Application

TP

qi

DP

the man

qwh

T′

T VP

like twh

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

A Simple Example (Part 3)

A Transduction for wh-Movement, Application

TP

DP

the man

T′

T VP

like twh

qf

CP

what C′

does

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Some Important Facts

There are also transducers that traverse a tree top-down.

A transducer is linear iff it does not copy an subtrees,
i.e. iff it has no rules where a subtree of the input
occurs more than once on the right hand side of the rule.

Every linear top-down transducer can be emulated by
a linear bottom-up transducer.

The class of linear bottom-up transducers is closed under
composition.

The class of regular tree languages is closed under
linear transductions.

The diagonal of a regular tree language is a linear
transduction.

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Outline

1 Tree Transducers — A Very Short, Very Informal Introduction

2 Reference-Set Constraints & Optimality Systems
Reference-Set Constraints
Optimality Systems
Reference-Set Constraints as Optimality Systems

3 Controlled Optimality Systems
Definitions, Subclasses and Illustrations
Results

4 A Formal Model of Focus Economy

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Reference-Set Constraints

An Informal Definition

Given some tree t, a reference-set constraint computes
a set of possible output trees for t — called the reference set of t
— and picks from said set the optimal output tree according to
some economy metric.

Examples in the literature

Rule I (Reinhart 2006)

Scope Economy (Fox 2000)

Fewest Steps (Chomsky 1995)

Merge-over-Move (Chomsky 2000)

Resumption (Aoun et al. 2001)
...

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example: Focus Economy (Reinhart 2006)

(1) a. [TP John [VP bought [DP a red car]]].
Focus set: {TP, VP, DP, red car, car}

b. [TP John [VP bought [DP a red car]]].
Focus set: {red}

Focus Projection

Any constituent containing the carrier of sentential main stress
may be focused.

Focus Economy Rule

If the main stress has been shifted, a constituent containing its
carrier may be focused iff it cannot be focused in the tree with
unshifted stress.

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example: Focus Economy, Cont.

Computing the Focus Sets

TPS

JohnW VPS

boughtW DPS

aW APS

redW carS

TPS

JohnW VPS

boughtW DPS

aW APS

redS carW

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example: Focus Economy, Cont.

Computing the Focus Sets

TPS

JohnW VPS

boughtW DPS

aW APS

redW carS

TPS

JohnW VPS

boughtW DPS

aW APS

redS carWcarS redS

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example: Focus Economy, Cont.

Computing the Focus Sets

TPS

JohnW VPS

boughtW DPS

aW APS

redW carS

TPS

JohnW VPS

boughtW DPS

aW APS

redS carWcarS

APS

redS

APS

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example: Focus Economy, Cont.

Computing the Focus Sets

TPS

JohnW VPS

boughtW DPS

aW APS

redW carS

TPS

JohnW VPS

boughtW DPS

aW APS

redS carWcarS

APS

DPS

redS

APS

DPS

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example: Focus Economy, Cont.

Computing the Focus Sets

TPS

JohnW VPS

boughtW DPS

aW APS

redW carS

TPS

JohnW VPS

boughtW DPS

aW APS

redS carWcarS

APS

DPS

VPS

redS

APS

DPS

VPS

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example: Focus Economy, Cont.

Computing the Focus Sets

TPS

JohnW VPS

boughtW DPS

aW APS

redW carS

TPS

JohnW VPS

boughtW DPS

aW APS

redS carWcarS

APS

DPS

VPS

TPS

redS

APS

DPS

VPS

TPS

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

So What’s the Deal?

Reference-set constraints are believed to be
too computationally demanding, for real-world applications
as well as human cognition in general (Collins 1996; Johnson
and Lappin 1999).

Reasoning in the literature: Not only do we have to compute
a (possibly infinite) reference-set, picking the optimal ouput
also requires comparing distinct trees, in contrast to
standard well-formedness condition.

However, similar things were once said about a different
piece of linguistic machinery that is now known to be
efficiently computable: Optimality Theory. . .

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Definition of Optimality Systems

Optimality Systems (Frank and Satta 1998)

An optimality system over input language L and
output candidate language L′ is a pair O := 〈Gen,C 〉 with

Gen ⊆ L× L′ a relation from inputs to output candidates,

C := 〈c1, . . . , cn〉 a linearly ordered sequence of functions
ci : Gen→ N that assign each input-output pair the number
of violations it incurs with respect to the i th constraint.

For pairs p, q ∈ Gen, p is more optimal than q iff there is an
1 ≤ k ≤ n such that ck(a) < ck(b) and for all j < k , cj(a) = cj(b).

The output language of O is the smallest set containing
all 〈i , o〉 ∈ Gen for which it holds that there is no o ′ such that
〈i , o ′〉 is more optimal than 〈i , o〉.

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example (Optimality System)

L := {a} L′ := {a, aa, ab, b, bb, c} C := 〈∗c , save a, ∗a, ∗#a〉

Gen := {〈a, a〉 , 〈a, aa〉 , 〈a, ab〉 , 〈a, b〉 , 〈a, bb〉 , 〈a, c〉}

Input a ∗c save a ∗a ∗#a

Output a 1 1
Output aa 2
Output ab 1 1

Output b 1
Output bb 1

Output c 1

transduction τ := {〈a, a〉 , 〈a, ab〉} output language := {a, ab}

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example (Optimality System)

L := {a} L′ := {a, aa, ab, b, bb, c} C := 〈∗c , save a, ∗a, ∗#a〉

Gen := {〈a, a〉 , 〈a, aa〉 , 〈a, ab〉 , 〈a, b〉 , 〈a, bb〉 , 〈a, c〉}

Input a ∗c save a ∗a ∗#a

Output a 1 1
Output aa 2
Output ab 1 1

Output b 1
Output bb 1

Output c 1

transduction τ := {〈a, a〉 , 〈a, ab〉} output language := {a, ab}

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example (Optimality System)

L := {a} L′ := {a, aa, ab, b, bb, c} C := 〈∗c , save a, ∗a, ∗#a〉

Gen := {〈a, a〉 , 〈a, aa〉 , 〈a, ab〉 , 〈a, b〉 , 〈a, bb〉 , 〈a, c〉}

Input a ∗c save a ∗a ∗#a

Output a 1 1
Output aa 2
Output ab 1 1

Output b 1
Output bb 1

Output c 1

transduction τ := {〈a, a〉 , 〈a, ab〉} output language := {a, ab}

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example (Optimality System)

L := {a} L′ := {a, aa, ab, b, bb, c} C := 〈∗c , save a, ∗a, ∗#a〉

Gen := {〈a, a〉 , 〈a, aa〉 , 〈a, ab〉 , 〈a, b〉 , 〈a, bb〉 , 〈a, c〉}

Input a ∗c save a ∗a ∗#a

Output a 1 1
Output aa 2
Output ab 1 1

Output b 1
Output bb 1

Output c 1

transduction τ := {〈a, a〉 , 〈a, ab〉} output language := {a, ab}

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example (Optimality System)

L := {a} L′ := {a, aa, ab, b, bb, c} C := 〈∗c , save a, ∗a, ∗#a〉

Gen := {〈a, a〉 , 〈a, aa〉 , 〈a, ab〉 , 〈a, b〉 , 〈a, bb〉 , 〈a, c〉}

Input a ∗c save a ∗a ∗#a

Output a 1 1
Output aa 2
Output ab 1 1

Output b 1
Output bb 1

Output c 1

transduction τ := {〈a, a〉 , 〈a, ab〉} output language := {a, ab}

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example (Optimality System)

L := {a} L′ := {a, aa, ab, b, bb, c} C := 〈∗c , save a, ∗a, ∗#a〉

Gen := {〈a, a〉 , 〈a, aa〉 , 〈a, ab〉 , 〈a, b〉 , 〈a, bb〉 , 〈a, c〉}

Input a ∗c save a ∗a ∗#a

Output a 1 1
Output aa 2
Output ab 1 1

Output b 1
Output bb 1

Output c 1

transduction τ := {〈a, a〉 , 〈a, ab〉} output language := {a, ab}

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example (Optimality System)

L := {a} L′ := {a, aa, ab, b, bb, c} C := 〈∗c , save a, ∗a, ∗#a〉

Gen := {〈a, a〉 , 〈a, aa〉 , 〈a, ab〉 , 〈a, b〉 , 〈a, bb〉 , 〈a, c〉}

Input a ∗c save a ∗a ∗#a

Output a 1 1
Output aa 2
Output ab 1 1

Output b 1
Output bb 1

Output c 1

transduction τ := {〈a, a〉 , 〈a, ab〉} output language := {a, ab}

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example (Optimality System)

L := {a} L′ := {a, aa, ab, b, bb, c} C := 〈∗c , save a, ∗a, ∗#a〉

Gen := {〈a, a〉 , 〈a, aa〉 , 〈a, ab〉 , 〈a, b〉 , 〈a, bb〉 , 〈a, c〉}

Input a ∗c save a ∗a ∗#a

Output a 1 1
Output aa 2
Output ab 1 1

Output b 1
Output bb 1

Output c 1

transduction τ := {〈a, a〉 , 〈a, ab〉} output language := {a, ab}

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example (Optimality System)

L := {a} L′ := {a, aa, ab, b, bb, c} C := 〈∗c , save a, ∗a, ∗#a〉

Gen := {〈a, a〉 , 〈a, aa〉 , 〈a, ab〉 , 〈a, b〉 , 〈a, bb〉 , 〈a, c〉}

Input a ∗c save a ∗a ∗#a

Output a 1 1
Output aa 2
Output ab 1 1

Output b 1
Output bb 1

Output c 1

transduction τ := {〈a, a〉 , 〈a, ab〉} output language := {a, ab}

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

OS as Linear Tree Transducers

Without further restrictions, OSs can generate any kind of
string and tree language. However, a few conditions suffice
to restrict them to the power of linear tree transducers.

Finite-State OSs (Wartena 2000; Jäger 2002)

Let O := 〈Gen,C 〉 be an OS such that

the domain of Gen is a regular tree language,

Gen is a linear tree transduction,

all constraints are insensitive to the input,

each constraint defines a linear tree transduction on
the range of Gen,

O is globally optimal.

Then the transduction τ induced by O is a linear tree transduction
and its range is a regular tree language.

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Global Optimality

Global Optimality

An OS is globally optimal iff for every output candidate o that is
optimal for some input i it holds that there is no input i ′ such that
o is an output candidate for i but not an optimal one.

Examples

An OS with Gen := {i , i ′} × {o, o ′} and only 〈i , o〉 and
〈i ′, o ′〉 as the optimal pairings is not globally optimal
⇒ if constraints may take the input into account,
global optimally is the exception

An OS with Gen := {〈i , o〉 , 〈i , o ′〉 , 〈i ′, o ′〉} and o
a universally better candidate than o ′ is not globally optimal
⇒ input-insensitivity is no guarantee for global optimality

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Reference-Set Constraints as OSs

General Strategy

Use Gen to compute the reference-sets.

Use a sequence of constraints to filter out the suboptimal
candidates.

But Gen is a “flat” relation, is does not directly represent
reference-sets and their algebraic properties.

Maybe we can enrich OSs appropriately?

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Outline

1 Tree Transducers — A Very Short, Very Informal Introduction

2 Reference-Set Constraints & Optimality Systems
Reference-Set Constraints
Optimality Systems
Reference-Set Constraints as Optimality Systems

3 Controlled Optimality Systems
Definitions, Subclasses and Illustrations
Results

4 A Formal Model of Focus Economy

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Definition of Controlled OSs

Controlled OSs

An F-controlled optimality system over languages L, L′ is a
4-tuple O[F] := 〈Gen,C ,F , γ〉, where

Gen and C are defined as usual,

F is a family of non-empty subsets of L, each of which
we call a reference type,

the control map γ : F → ℘(L′) associates every reference type
with a non-empty set of output candidates, the reference set,

the following conditions are satisfied

exhaustivity: every member of the input language belongs to
at least one reference type
bootstrapping: if input i belongs to the reference types
X1, . . . ,Xn, then 〈i , o〉 ∈ Gen iff o ∈

⋃
{X1γ, . . . ,Xnγ}

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Depiction of a Controlled OS

i9 c1 c2 c3

o1 1 2 0
+ o2 0 0 4

o3 2 2 1
+ o8 0 0 4

o9 0 1 0

i7 c1 c2 c3

o1 1 2 0
+ o2 0 0 4

o3 2 2 1
+ o8 0 0 4

o9 0 1 0

i1 i2 i3

i4

i5 i6

i7

i8

i9
i10

o1 o2 o3

o4

o5
o6

o7

o8
o9

Reference Types Reference Sets

Evaluation Output Language

i4 c1 c2 c3

o1 1 2 0
+ o2 0 0 4

o3 2 2 1
+ o8 0 0 4

o9 0 1 0

o2

o4

o6

o7

o8

yi
el
ds

yields

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Reference-set constraints as controlled OSs

Almost all constraints in the literature exhibit one
of the two configurations below.

What do the two have in common?

i1 i2 i3

i4

i5 i6
i7

i8

i9 i10

i5 i6
i7

i8

o1

o2

o3

o8
o9

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Two Common Properties of Reference-Set Constraints

Output Joint Preservation (restricts Gen)

An F-controlled OS is output joint preserving iff it holds for all
reference types X and Y in F that whenever their reference sets
Xγ and Y γ overlap, so do X and Y themselves.

Output joint preservation is a strong restriction on Gen.
When it comes to C , many reference set constraints do not use
the full range of options either:

Type-Level Optimality (restricts C)

An F-controlled OS is type-level optimal iff it holds for
all reference types X ∈ F and output candidates o in
the reference set of X that if o is optimal for some input in X ,
it is optimal for all inputs that belong to X .

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Global Optimality Implies Type-Level Optimality

Lemma

An OS is type-level optimal if it is globally optimal.
If all constraints of an OS are insensitive to the input, it is
type-level optimal.

Intuitively, the first statement is obvious because type-level
optimality is “global optimality restricted to single reference-sets”.

Proof.

Prove the contrapositive. If the OS is not type-level optimal,
then there is some reference type X whose reference set contains
an output candidate z on which at least two inputs that are
contained by X disagree with respect to optimality.
This is an unequivocal violation of global optimality
(optimal for some input → optimal for every input).

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Global Optimality Implies Type-Level Optimality

Lemma

An OS is type-level optimal if it is globally optimal.
If all constraints of an OS are insensitive to the input, it is
type-level optimal.

Intuitively, the first statement is obvious because type-level
optimality is “global optimality restricted to single reference-sets”.

Proof.

Prove the contrapositive. If the OS is not type-level optimal,
then there is some reference type X whose reference set contains
an output candidate z on which at least two inputs that are
contained by X disagree with respect to optimality.
This is an unequivocal violation of global optimality
(optimal for some input → optimal for every input).

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Global Optimality for Reference-Set Constraints

Theorem (Characterization of Global Optimality)

Every output joint preserving OS is type-level optimal iff it is
globally optimal.

Proof.

⇐: Follows from the previous lemma.
⇒: An indirect proof of the contrapositive is given on the next
slide (in pictures!).

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Global Optimality for Reference-Set Constraints

Theorem (Characterization of Global Optimality)

Every output joint preserving OS is type-level optimal iff it is
globally optimal.

Proof.

⇐: Follows from the previous lemma.
⇒: An indirect proof of the contrapositive is given on the next
slide (in pictures!).

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Pictorial Proof

To Show

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.

p

x

i5

y

o1

o2

z

o8

o9

Assumptions

¬global optimality

controlled OS

type-level optimality

output joint
preservation

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Pictorial Proof

To Show

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.

p

x

i5

y

o1

o2

z

o8

o9

X

Assumptions

¬global optimality

controlled OS

type-level optimality

output joint
preservation

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Pictorial Proof

To Show

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.

p

x

i5

y

o1

o2

z

o8

o9

X

Assumptions

¬global optimality

controlled OS

type-level optimality

output joint
preservation

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Pictorial Proof

To Show

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.

p

x

i5

y

o1

o2

z

o8

o9

X

Assumptions

¬global optimality

controlled OS

type-level optimality

output joint
preservation

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Pictorial Proof

To Show

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.

p

x

i5

y

o1

o2

z

o8

o9

X

Assumptions

¬global optimality

controlled OS

type-level optimality

output joint
preservation

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Pictorial Proof

To Show

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.

p

x

i5

y

o1

o2

z

o8

o9

X

Assumptions

¬global optimality

controlled OS

type-level optimality

output joint
preservation

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Pictorial Proof

To Show

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.

p

x

i5

y

o1

o2

z

o8

o9

X

Assumptions

¬global optimality

controlled OS

type-level optimality

output joint
preservation

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Pictorial Proof

To Show

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.

p

x

i5

y

o1

o2

z

o8

o9

X

Assumptions

¬global optimality

controlled OS

type-level optimality

output joint
preservation

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Pictorial Proof

To Show

If an output joint preserving OS fails global optimality,
it also fails type-level optimality.

p

x

i5

y

o1

o2

z

o8

o9

X
?

Assumptions

¬global optimality

controlled OS

type-level optimality

output joint
preservation

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Reference-Set Constraints as Linear Tree Transductions

These new results allow us to state when a controlled OS can be
realized by a linear tree transducer. Note that the elusive property
of global optimality has been replaced by output joint preservation,
which is satisfied by all reference-set constraints.

Finite-State Controlled OSs

Let O[F] := 〈Gen,C ,F , γ〉 an F-controlled OS such that

the domain of Gen is a regular tree language,

Gen is a linear tree transduction,

all constraints are insensitive to the input,

each constraint defines a linear tree transduction on
the range of Gen,

O[F] is output joint preserving.

Then the transduction τ induced by O is a linear tree transduction
and its range is a regular tree language.

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Reference-Set Constraints as Linear Tree Transductions

These new results allow us to state when a controlled OS can be
realized by a linear tree transducer. Note that the elusive property
of global optimality has been replaced by output joint preservation,
which is satisfied by all reference-set constraints.

Finite-State Controlled OSs

Let O[F] := 〈Gen,C ,F , γ〉 an F-controlled OS such that

the domain of Gen is a regular tree language,

Gen is a linear tree transduction,

all constraints are insensitive to the input,

each constraint defines a linear tree transduction on
the range of Gen,

O[F] is output joint preserving.

Then the transduction τ induced by O is a linear tree transduction
and its range is a regular tree language.

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Outline

1 Tree Transducers — A Very Short, Very Informal Introduction

2 Reference-Set Constraints & Optimality Systems
Reference-Set Constraints
Optimality Systems
Reference-Set Constraints as Optimality Systems

3 Controlled Optimality Systems
Definitions, Subclasses and Illustrations
Results

4 A Formal Model of Focus Economy

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Focus Economy Revisited

Focus Economy Rule (Reminder)

If the main stress has been shifted, a constituent containing
its carrier may be focused iff it cannot be focused in
the tree with unshifted stress.

Informal Derivational Order

Compute output tree with neutral stress.

Project focus according to Focus Projection.

Optionally: Shift stress and recompute focus according to
Focus Economy.

Formal Derivational Order

Compute all stress patterns (→ multiple output trees).

Project focus according to Focus Projection.

Filter out illicit focus projections according to Focus Economy.

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Formal Model: Gen

Step 1 & 2: Gen

Non-deterministically relabel input with S/W-subscripts.

Non-deterministically focus some node along the
“stress path”.

Transducing an Input into a Stress-Annotated Output with Focus

TP

John VP

bought DP

a AP

red car

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Formal Model: Gen

Step 1 & 2: Gen

Non-deterministically relabel input with S/W-subscripts.

Non-deterministically focus some node along the
“stress path”.

Transducing an Input into a Stress-Annotated Output with Focus

TP

John VP

bought DP

a AP

red car

S

W S

W S

W S

S W

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Formal Model: Gen

Step 1 & 2: Gen

Non-deterministically relabel input with S/W-subscripts.

Non-deterministically focus some node along the
“stress path”.

Transducing an Input into a Stress-Annotated Output with Focus

TP

John VP

bought DP

a AP

red car

S

W S

W S

W S

S W

DPS

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Formal Model: C

Focus Economy requires reference to the neutral stress pattern.
We allow this by implicitly representing the neutral stress within
the same tree!

Strategy

Define monadic second-order predicates FocusPath and
StressPath.

FocusPath represents the path of the current stress.

StressPath represents the path of the neutral stress.

Write a formula φ that requires focus to be in the focus path,
but unless FocusPath and StressPath pick out
the same set, focus may not be in the stress path.

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example of φ

FocusPath and StressPath

TP

John VP

bought DP

a AP

red car

S

W S

W S

W S

S W

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example of φ

FocusPath and StressPath

TP

John VP

bought DP

a AP

red car

S

W S

W S

W S

S WredS

APS

DPS

VPS

TPS

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Example of φ

FocusPath and StressPath

TP

John VP

bought DP

a AP

red car

S

W S

W S

W S

S WredS

APS

DPS

VPS

TPS

carW

APS

DPS

VPS

TPS

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Formal Model: Putting it Together

We already know that output joint preservation is satisfied.

Gen is a linear transduction.

C consists of only one constraint c , a linear transduction.

The tree models of the formula φ form a regular language L(φ).
The diagonal of L(φ) is a linear transduction (representing C).

The composition of Gen with c is a linear transduction
and yields the intended output language.

This shows that Focus Economy is efficiently computable.

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

Conclusion

Controlled OS were introduced as a model for
reference-set constraints.

Most requirements for a controlled OS to be efficiently
computable are fulfilled by reference-set constraints;
in particular, their corresponding OSs are globally optimal.

The only problematic areas are Gen and the OS constraints.

The formalization of Focus Economy indicates that
these do not pose an insurmountable challenge either.

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

References I

Aoun, Joseph, Lina Choueiri, and Norbert Hornstein. 2001. Resumption,
movement and derivational economy. Linguistic Inquiry 32:371–403.

Chomsky, Noam. 1995. The minimalist program. Cambridge, Mass.: MIT
Press.

Chomsky, Noam. 2000. Minimalist inquiries: The framework. In Step by step:
Essays on minimalist syntax in honor of Howard Lasnik, ed. Roger Martin,
David Michaels, and Juan Uriagereka, 89–156. Cambridge, Mass.: MIT
Press.

Collins, Chris. 1996. Local economy . Cambridge, Mass.: MIT Press.

Fox, Danny. 2000. Economy and semantic interpretation. Cambridge, Mass.:
MIT Press.

Frank, Robert, and Giorgio Satta. 1998. Optimality theory and the generative
complexity of constraint violability. Computational Linguistics 24:307–315.

Johnson, David, and Shalom Lappin. 1999. Local constraints vs. economy .
Stanford: CSLI.

Tree Transducers Reference-Set Constraints Controlled OSs Formal Model Conclusion References

References II

Jäger, Gerhard. 2002. Gradient constraints in finite state OT: The
unidirectional and the bidirectional case. In More than words. A festschrift
for Dieter Wunderlich, ed. I. Kaufmann and B. Stiebels, 299–325. Berlin:
Akademie Verlag.

Reinhart, Tanya. 2006. Interface strategies: Optimal and costly computations.
Cambridge, Mass.: MIT Press.

Wartena, Christian. 2000. A note on the complexity of optimality systems. In
Studies in optimality theory , ed. Reinhard Blutner and Gerhard Jäger,
64–72. Potsdam, Germany: University of Potsdam.

	Tree Transducers --- A Very Short, Very Informal Introduction
	

	Reference-Set Constraints & Optimality Systems
	Reference-Set Constraints
	Optimality Systems
	Reference-Set Constraints as Optimality Systems

	Controlled Optimality Systems
	Definitions, Subclasses and Illustrations
	Results

	A Formal Model of Focus Economy
	

	Conclusion
	References

