RS Constraints	Transducers	General Results	Focus	MOM	SDP	Concl	References

Syntax, Semantics, Pragmatics: Where do we Find Optimality?

Thomas Graf tgraf@ucla.edu tgraf.bol.ucla.edu

University of California, Los Angeles

Universität Göttingen, Göttingen, Germany December 14, 2010

RS Constraints	Transducers	General Results	Focus	MOM	SDP	Concl	References

- 2 Linear Tree Transducers The Shortest Introduction Ever
- 3 General Results through OT-like Grammars
- 4 Example 1: Focus Economy
- 5 Example 2: Merge-over-Move
- 6 Example 3: Shortest Derivation Principle/Fewest Steps

RS Constraints ●○○○○	Transducers	General Results	Focus	MOM 00000000	SDP	Concl	References			
Optimalit	Optimality in Pragmatics									

Many pragmatic phenomena are analyzed as requiring comparisons of several alternatives and picking the best one (examples from Blutner and Zeevat 2008)

Implicatures

.

- Conventional implicatures
- Conversational implicatures
- Scalar implicatures
- Exhaustivity implicatures
- Implicature projection
- Presupposition projection
- Distribution of discourse particles

 RS Constraints
 Transducers
 General Results
 Focus
 MOM
 SDP
 Concl
 References

 00000
 000000
 0000000
 0000000
 0000000
 0000000
 0000000
 References

 Optimality in Syntax/Semantics:
 Reference-Set

 Constraints

 $\begin{array}{l} \mbox{Optimality condition} \approx \mbox{reference-set constraint} \\ \approx \mbox{transderivational constraint} \approx \mbox{global economy condition} \approx \\ \mbox{interface strategy} \end{array}$

An Informal Definition

Given some input tree t, a reference-set constraint computes a set of possible output trees for t — called the reference set of t— and picks from said set the optimal output tree according to some economy metric.

Some examples from the literature:

- Rule I (Reinhart 2006)
- Scope Economy (Fox 2000)
- Fewest Steps (Chomsky 1995)
- Merge-over-Move (Chomsky 2000)
- Focus Economy (Reinhart 2006)

 RS Constraints
 Transducers
 General Results
 Focus
 MOM
 SDP
 Concl
 References

 00000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 References

 Optimality in Syntax/Semantics:
 Reference-Set

 Constraints

 $\begin{array}{l} \mbox{Optimality condition} \approx \mbox{reference-set constraint} \\ \approx \mbox{transderivational constraint} \approx \mbox{global economy condition} \approx \\ \mbox{interface strategy} \end{array}$

An Informal Definition

Given some input tree t, a reference-set constraint computes a set of possible output trees for t — called the reference set of t— and picks from said set the optimal output tree according to some economy metric.

Some examples from the literature:

- Rule I (Reinhart 2006)
- Scope Economy (Fox 2000)
- Fewest Steps (Chomsky 1995)
- Merge-over-Move (Chomsky 2000)
- Focus Economy (Reinhart 2006)

 RS Constraints
 Transducers
 General Results
 Focus
 MOM
 SDP
 Concl
 References

 00000
 000000
 000000
 0000000
 0000000
 0000000
 0000000
 References

 Optimality in Syntax/Semantics:
 Reference-Set

 Constraints

 $\begin{array}{l} \mbox{Optimality condition} \approx \mbox{reference-set constraint} \\ \approx \mbox{transderivational constraint} \approx \mbox{global economy condition} \approx \\ \mbox{interface strategy} \end{array}$

An Informal Definition

Given some input tree t, a reference-set constraint computes a set of possible output trees for t — called the reference set of t— and picks from said set the optimal output tree according to some economy metric.

Some examples from the literature:

- Rule I (Reinhart 2006)
- Scope Economy (Fox 2000)
- Fewest Steps (Chomsky 1995)
- Merge-over-Move (Chomsky 2000)
- Focus Economy (Reinhart 2006)

- - b. [TP John [VP bought [DP a red car]]]. Focus set: {red}

Focus Projection

Any constituent containing the carrier of sentential main stress may be focused.

Focus Economy Rule

If the main stress has been shifted, a constituent containing its carrier may be focused iff it cannot be focused in the tree with unshifted stress.

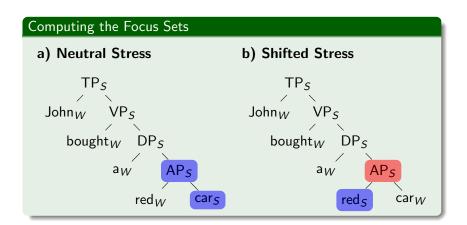
- (2) a. [TP John [VP bought [DP a red car]]]. Focus set: {TP, VP, DP, red car, car}
 - b. [TP John [VP bought [DP a red car]]]. Focus set: {red}

Focus Projection

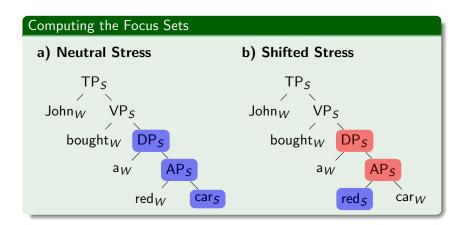
Any constituent containing the carrier of sentential main stress may be focused.

Focus Economy Rule

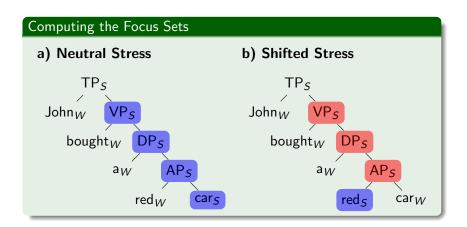
If the main stress has been shifted, a constituent containing its carrier may be focused iff it cannot be focused in the tree with unshifted stress.

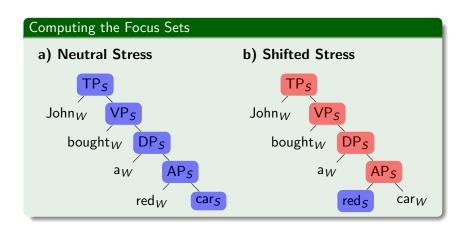


Computing the Focus Sets a) Neutral Stress b) Shifted Stress TP_{S} $John_{W} VP_{S}$ $bought_{W} DP_{S}$ $a_{W} AP_{S}$ $red_{W} Car$ TP_{S} $John_{W} VP_{S}$ $bought_{W} DP_{S}$ $a_{W} AP_{S}$ $red_{S} C^{2^{\mu}}$ cars carW



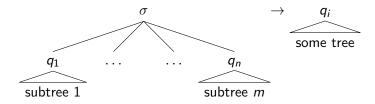
Computing the Focus Sets a) Neutral Stress b) Shifted Stress TP*s* TP_S John_W VP_s bought_W DP_s John_W VP_s bought_W DP_s a_W AP_s a_W AP_s red_W cars reds carW



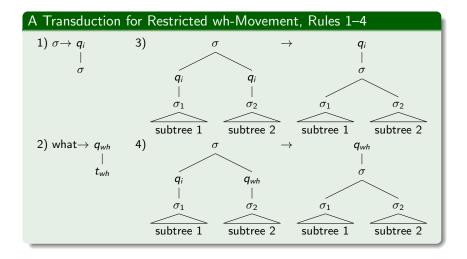


- It seems that the same kind of optimality conditions can be found in all three modules:
 - compute set of alternatives
 - 2 pick best option
- But if we use linear tree transducers as a model, it turns out that reference-set constraints involve no comparisons. Rather, they are...
 - Insight 1 (theory-internal)

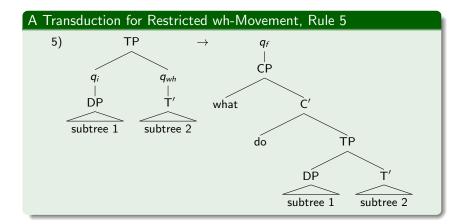
 a different way of specifying standard well-formedness
 constraints ⇒ involve no tangible notion of optimality
 - Insight 2 (across theories) connected to unidirectional OT.
- Pragmatic optimality conditions, on the other hand, are usually modelled with bidirectional OT ⇒ different from reference-set constraints.

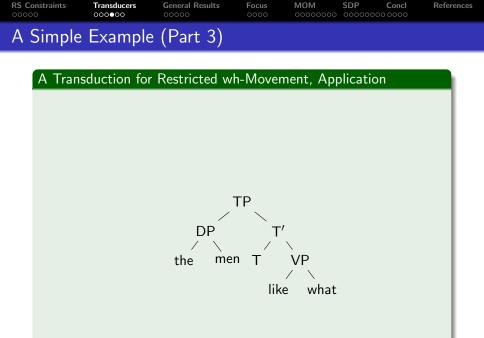


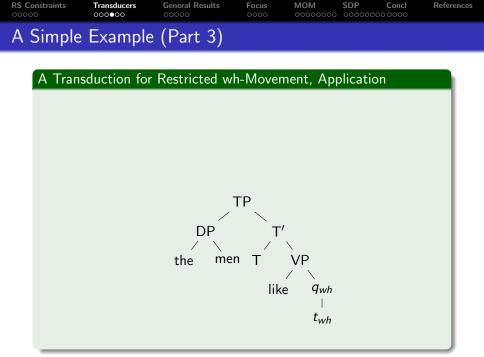
Linear Tree Transducers in Pictures

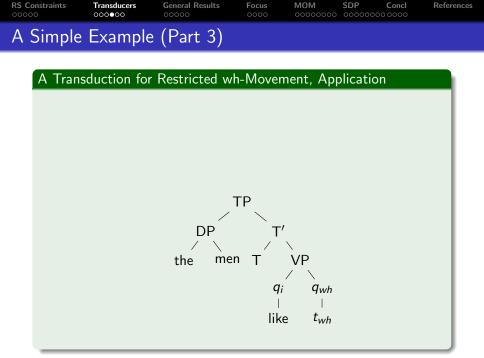

A linear finite-state bottom-up tree transducer

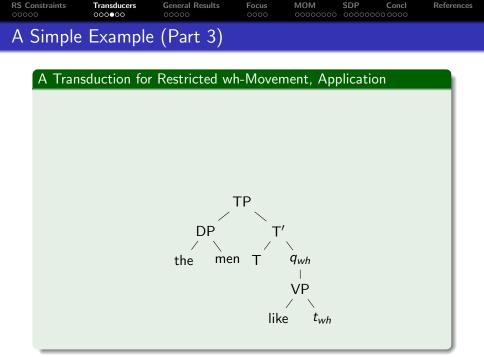
- traverses an input-tree from the leaves towards the root,
- labels it with states q_i, and
- transforms it into an output-tree.

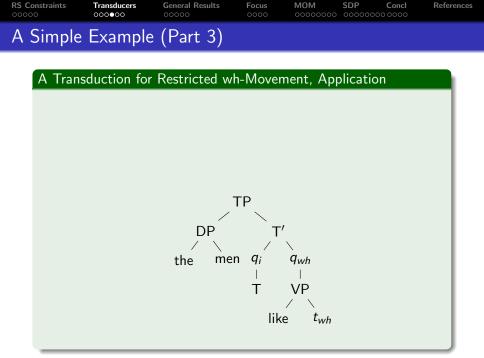

It does so using rules of the following kind:

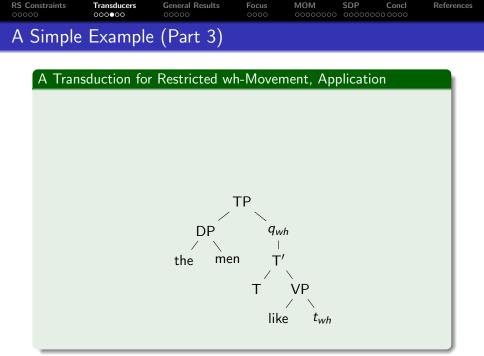


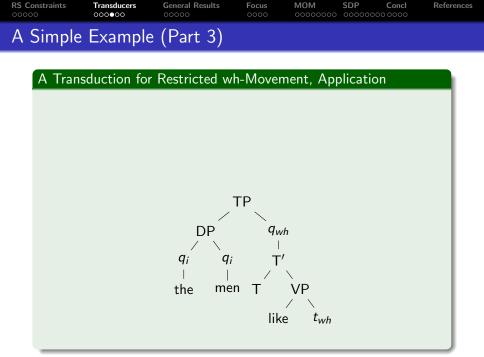


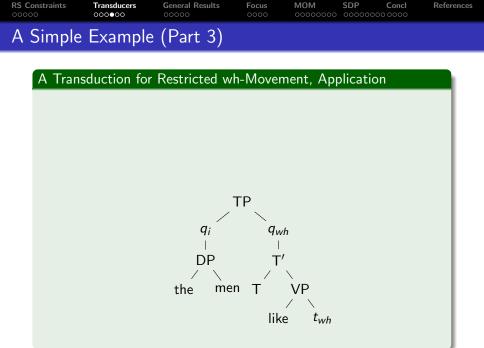


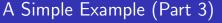


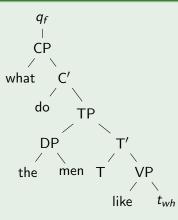












RS Constraints	Transducers	General Results	Focus	MOM	SDP	Concl	References
	000000					00000	
C							

Some Important Facts

What is Possible?

- Relabeling nodes
- Deleting subtrees
- Inserting subtrees of bounded size
- Enforcing constraints that define regular tree languages

What is Impossible?

- Copying of arbitrary subtrees
- Switching positions of non-siblings (e.g. specifier and complement)
- Counting past some threshold

Mathematical Properties

- A transducer can be decomposed into a sequence of smaller transducers, *et vice versa*.
- If the input tree language of a transducer is regular, then so is its output language. Regular tree languages are sufficiently powerful for Minimalism (Kobele et al. 2007).

RS Constraints	Transducers	General Results	Focus	MOM	SDP Co	oncl	References
	000000						
Como lun	n autant [

Some Important Facts

What is Possible?

- Relabeling nodes
- Deleting subtrees
- Inserting subtrees of bounded size
- Enforcing constraints that define regular tree languages

What is Impossible?

- Copying of arbitrary subtrees
- Switching positions of non-siblings (e.g. specifier and complement)
- Counting past some threshold

Mathematical Properties

- A transducer can be decomposed into a sequence of smaller transducers, *et vice versa*.
- If the input tree language of a transducer is regular, then so is its output language. Regular tree languages are sufficiently powerful for Minimalism (Kobele et al. 2007).

RS Constraints	Transducers	General Results	Focus	MOM	SDP Co	oncl	References
	000000						
Como lun	n autant [

Some Important Facts

What is Possible?

- Relabeling nodes
- Deleting subtrees
- Inserting subtrees of bounded size
- Enforcing constraints that define regular tree languages

What is Impossible?

- Copying of arbitrary subtrees
- Switching positions of non-siblings (e.g. specifier and complement)
- Counting past some threshold

Mathematical Properties

- A transducer can be decomposed into a sequence of smaller transducers, *et vice versa*.
- If the input tree language of a transducer is regular, then so is its output language. Regular tree languages are sufficiently powerful for Minimalism (Kobele et al. 2007).

RS Constraints	Transducers 00000●	General Results	Focus 0000	MOM 00000000	Concl 0 0 0 0 0	References
Overall R	easoning					

Strategy

For a given reference-set constraint C, exhibit

- a Minimalist grammar that generates the input language, and
- a sequence of transducers that computes the same mapping from inputs to optimal outputs.
- Due to the mathematical properties of transducers, the output language is no more complex than the input language
- Hence it can be generated by some Minimalist grammar
- Hence *C* is equivalent to some "constraint" that does not involve reference-set computation.

RS Constraints	Transducers 00000●	General Results	Focus 0000	MOM 00000000	Concl 0 0 0 0 0	References
Overall R	easoning					

Strategy

For a given reference-set constraint C, exhibit

- a Minimalist grammar that generates the input language, and
- a sequence of transducers that computes the same mapping from inputs to optimal outputs.
- Due to the mathematical properties of transducers, the output language is no more complex than the input language
- Hence it can be generated by some Minimalist grammar
- Hence *C* is equivalent to some "constraint" that does not involve reference-set computation.

But why should this work for arbitrary reference-set constraints?

RS Constraints	Transducers	General Results ●0000	Focus 0000	MOM 00000000	SDP 000000	Concl	References
OT: A Bi	rd's Eye	Perspectiv	е				

It seems natural to model reference-set constraints via OT.

Reference-Set Constraints as OT Grammars

- $\bullet~$ Use $\mathrm{G}\mathrm{E}\mathrm{N}$ to compute the reference-sets.
- Use a sequence of constraints to filter out the suboptimal candidates.

A Major Complaint

Without further restrictions, OT grammars can generate any kind of (tree) language \Rightarrow they don't tell us anything about reference-set constraints.

Fortunately, there is a weaker alternative...

RS Constraints	Transducers	General Results ●0000	Focus 0000	MOM 00000000	SDP 0000000	Concl	References
OT: A Bi	rd's Eve	Perspectiv	е				

It seems natural to model reference-set constraints via OT.

Reference-Set Constraints as OT Grammars

- $\bullet~$ Use $\mathrm{G}\mathrm{E}\mathrm{N}$ to compute the reference-sets.
- Use a sequence of constraints to filter out the suboptimal candidates.

A Major Complaint

Without further restrictions, OT grammars can generate any kind of (tree) language \Rightarrow they don't tell us anything about reference-set constraints.

Fortunately, there is a weaker alternative...

RS Constraints	Transducers	General Results ●0000	Focus 0000	MOM 00000000	SDP 0000000	Concl	References
OT: A Bi	rd's Eye	Perspectiv	е				

It seems natural to model reference-set constraints via OT.

Reference-Set Constraints as OT Grammars

- $\bullet~$ Use $\mathrm{G}\mathrm{E}\mathrm{N}$ to compute the reference-sets.
- Use a sequence of constraints to filter out the suboptimal candidates.

A Major Complaint

Without further restrictions, OT grammars can generate any kind of (tree) language \Rightarrow they don't tell us anything about reference-set constraints.

Fortunately, there is a weaker alternative...

Optimality Systems (OSs; Frank and Satta 1998)

A variant of OT that keeps just the bare skeleton.

- All constraints only consider the output, never the input.
- No correspondence theory
- No output-output correspondence
- No sympathy constraints

There are mathematical conditions that ensure that an OS can be implemented by a tree transducer.

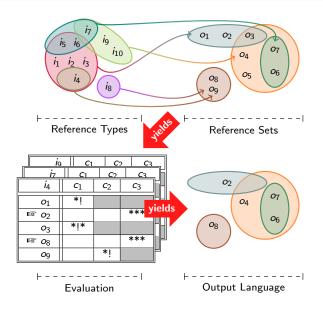
A Minor Quibble

 $\rm GEN$ is too "flat" for faithful models of reference-set computation, it does not directly represent reference-sets and their algebraic properties.

Optimality Systems (OSs; Frank and Satta 1998)

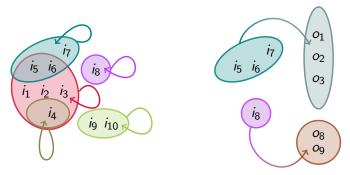
A variant of OT that keeps just the bare skeleton.

- All constraints only consider the output, never the input.
- No correspondence theory
- No output-output correspondence
- No sympathy constraints


There are mathematical conditions that ensure that an OS can be implemented by a tree transducer.

A Minor Quibble

 $\rm GEN$ is too "flat" for faithful models of reference-set computation, it does not directly represent reference-sets and their algebraic properties.


RS Constraints	Transducers	General Results 00●00	Focus	MOM 00000000	SDP Conc 000000000000000000000000000000000000	

Depiction of a Controlled OS

- Almost all constraints in the literature exhibit one of the two configurations below.
- What do the two have in common?

RS Constraints	Transducers	General Results ○○○○●	Focus	MOM 00000000	SDP 0000000	Concl	References
Output J	loint Pres	servation					

If two reference sets overlap, then so do the reference types that are mapped to them.

Theorem (Frank and Satta 1998; Wartena 2000; Jäger 2002)

A controlled OS can be implemented as a transducer if

- the OS is output-joint preserving, and
- the input language is regular, and
- GEN and all constraints can be implemented as transducers.

RS Constraints	Transducers	General Results ○○○○●	Focus	MOM 00000000	SDP 0000000	Concl	References
Output J	loint Pres	servation					

If two reference sets overlap, then so do the reference types that are mapped to them.

Theorem (Frank and Satta 1998; Wartena 2000; Jäger 2002)

A controlled OS can be implemented as a transducer if

- the OS is output-joint preserving, and
- the input language is regular, and
- GEN and all constraints can be implemented as transducers.

RS Constraints	Transducers	General Results ○○○○●	Focus	MOM 00000000	SDP 0000000	Concl	References
Output J	loint Pres	servation					

If two reference sets overlap, then so do the reference types that are mapped to them.

Theorem (Frank and Satta 1998; Wartena 2000; Jäger 2002)

A controlled OS can be implemented as a transducer if

- the OS is output-joint preserving, and
- the input language is regular, and
- GEN and all constraints can be implemented as transducers.

RS Constraints	Transducers	General Results ○○○○●	Focus	MOM 00000000	SDP 000000	Concl	References
Output J	loint Pres	servation					

If two reference sets overlap, then so do the reference types that are mapped to them.

Theorem (Frank and Satta 1998; Wartena 2000; Jäger 2002)

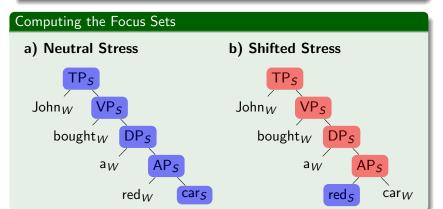
A controlled OS can be implemented as a transducer if

- the OS is output-joint preserving, and
- the input language is regular, and
- GEN and all constraints can be implemented as transducers.

RS Constraints	Transducers	General Results ○○○○●	Focus	MOM 00000000	SDP 0000000	Concl	References
Output J	loint Pres	servation					

If two reference sets overlap, then so do the reference types that are mapped to them.

Theorem (Frank and Satta 1998; Wartena 2000; Jäger 2002)

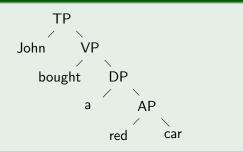

A controlled OS can be implemented as a transducer if

- the OS is output-joint preserving, and
- the input language is regular, and
- GEN and all constraints can be implemented as transducers.

RS Constraints	Transducers	General Results	Focus	MOM	SDP	Concl	References
			0000				
Example	1. Eacur	Economy					
Гханые							

Focus Economy Rule (Reminder)

If the main stress has been shifted, a constituent containing its carrier may be focused iff it cannot be focused in the tree with unshifted stress.

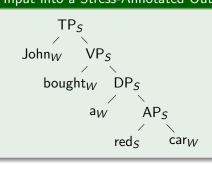


RS Constraints	Transducers	General Results	Focus ○●○○	MOM 00000000	SDP 0000000	Concl	References
Transduce	er Model	: Gen					

Step 1 & 2: GEN

- Non-deterministically relabel input with S/W-subscripts.
- Non-deterministically focus some node along the "stress path".

Transducing an Input into a Stress-Annotated Output with Focus

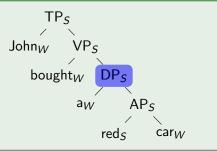


RS Constraints	Transducers	General Results	Focus ⊙●○○	MOM 00000000	SDP 000000	Concl	References
Transduc	er Model	: Gen					

Step 1 & 2: GEN

- Non-deterministically relabel input with S/W-subscripts.
- Non-deterministically focus some node along the "stress path".

Transducing an Input into a Stress-Annotated Output with Focus

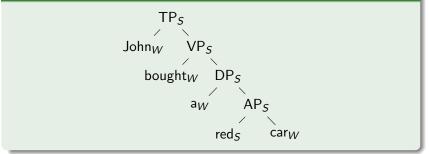


RS Constraints	Transducers	General Results	Focus ○●○○	MOM 00000000	SDP 0000000	Concl	References
Transduc	er Model	: Gen					

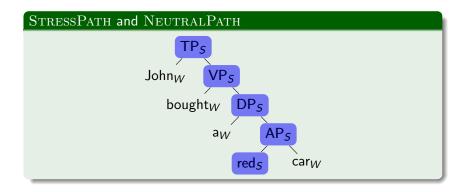
Step 1 & 2: GEN

- Non-deterministically relabel input with S/W-subscripts.
- Non-deterministically focus some node along the "stress path".

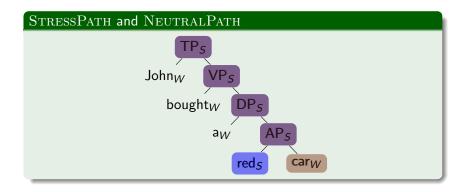
Transducing an Input into a Stress-Annotated Output with Focus


Focus Economy requires reference to the neutral stress pattern. We allow this by implicitly representing the neutral stress within the same tree!

Strategy

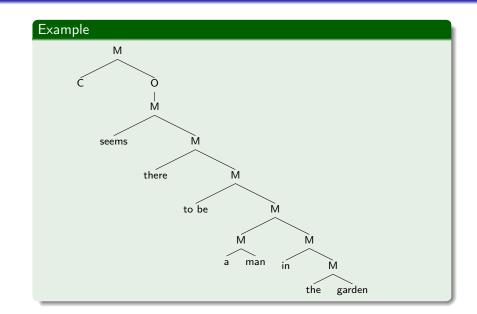

- Define two paths **STRESSPATH** and **NEUTRALPATH**.
- $\bullet~\mathrm{StressPath}$ represents the path of the current stress.
- $\bullet~\mathrm{NEUTRALPATH}$ represents the path of the neutral stress.
- Add a constraint that requires focus to be in the stress path, but unless STRESSPATH and NEUTRALPATH pick out the same nodes, focus may not be in NEUTRALPATH.

RS Constraints	Transducers	General Results	Focus 000●	MOM 00000000	SDP 00000000	Concl	References
Example	of ϕ						

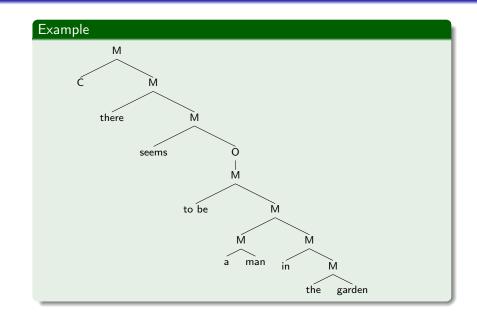

$\ensuremath{\mathsf{STRESSPATH}}$ and $\ensuremath{\mathsf{NEUTRALPATH}}$

RS Constraints	Transducers	General Results	Focus ○○○●	MOM 00000000	Concl	References
Example	of ϕ					

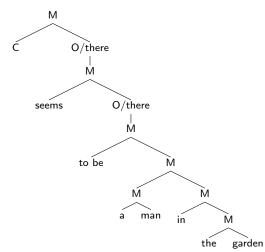
RS Constraints	Transducers	General Results	Focus 000●	MOM 00000000	SDP 0000000	Concl	References
Example	of ϕ						

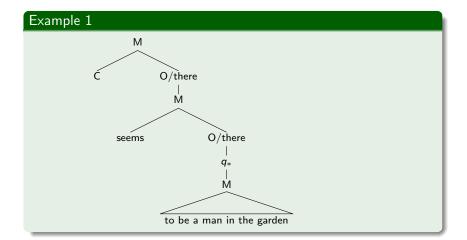

RS Constraints	Transducers	General Results	Focus	MOM ●○○○○○○○	SDP 000000	Concl	References			
Merge-over-Move (MOM)										

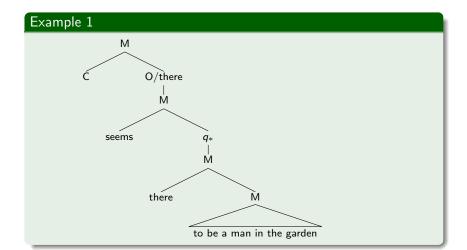
Merge-over-Move (MOM)


If two convergent derivations d and d' are built from the same lexical items and identical up to step n, at which point d continues with Merge and d' with Move, filter out d'.

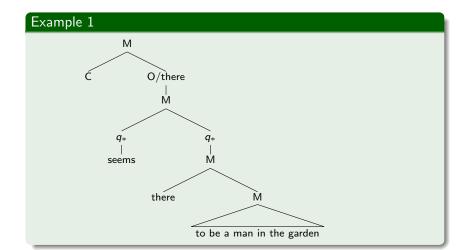
- (3) a. There seems t_{there} to be a man in the garden.
 - b. * There seems a man to be $t_{a \text{ man}}$ in the garden.
 - c. A man seems $t_{a \text{ man}}$ to be $t_{a \text{ man}}$ in the garden.

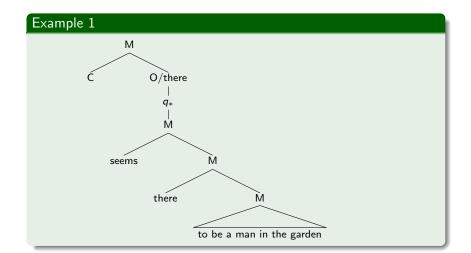


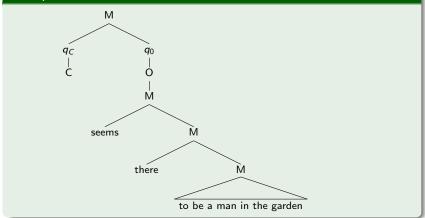

- Fuse the two derivations into one underspecified derivation.
 - Remove all features but the category feature.
 - Inside TP: Replace O or Merger of there by new label O/there.

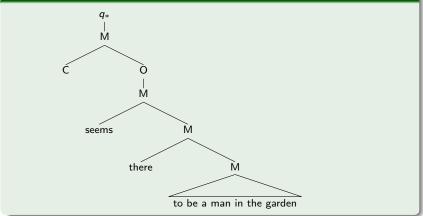


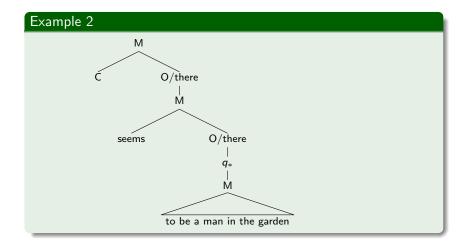
- Turn O/there back into O or Merge of there.
 - Use a transducer with states q_* , q_O and q_C .
 - In state *q*_{*}, the transducer non-deterministically rewrites O/there as O or Merge of *there*.
 - If the transducer rewrites O/there as O, it switches into state q_0 .
 - In state q_0 , every occurrence of O/there is rewritten just as O.
 - The transducer switches out of q₀ only if it encounters a CP (indicated by state q_C; cf. structured numerations).
- Reinstantiate the features.

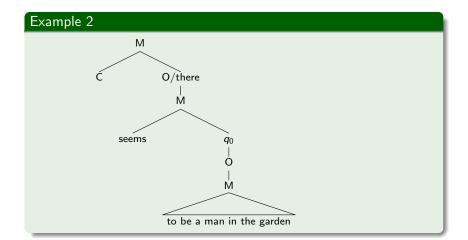


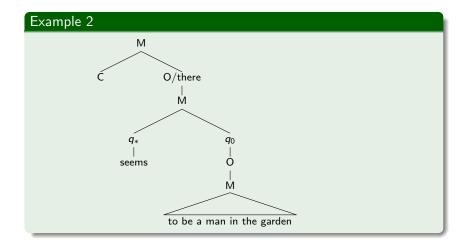


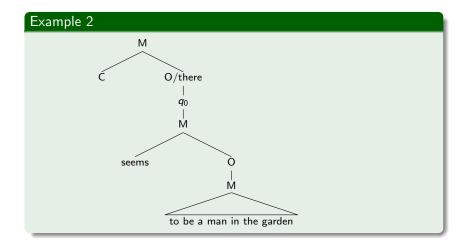


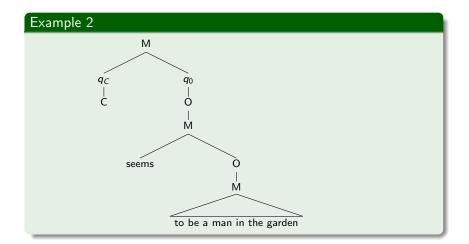


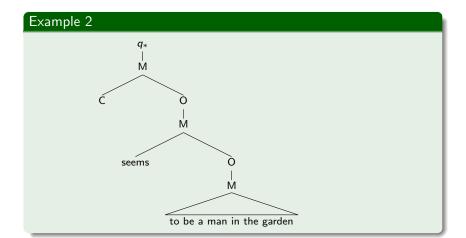












Transducer Model: The Induced Mapping

General Results

Transducers

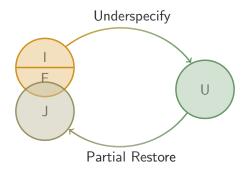
RS Constraints

The output candidates for both (4a) and (4b) are now (5a)-(5b).

Focus

MOM

00000000


Concl

References

- (4) a. There seems t_{there} to be a man in the garden.
 - b. * There seems a man to be $t_{a \text{ man}}$ in the garden.
- (5) a. * There seems there to be a man in the garden.
 - b. There seems t_{there} to be a man in the garden.
 - c. A man seems $t_{a man}$ to be $t_{a man}$ in the garden.
- We may extend the mapping such that (5c) is also assigned this reference set.
- (5a) still has to be ruled out.

The only constraint is the input language itself! By turning it into a transducer and composing it with GEN, we remove all instances of overgeneration and filter out the illicit MOM violators.

RS Constraints Transducers General Results Focus MOM SDP Concl References

Shortest Derivation Principle (SDP)

SDP

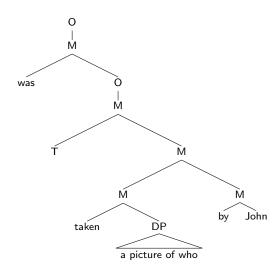
Given convergent derivations d_1, \ldots, d_n over the same lexical items, pick the one(s) with the fewest instances of Move.

Why do we find the following contrast?

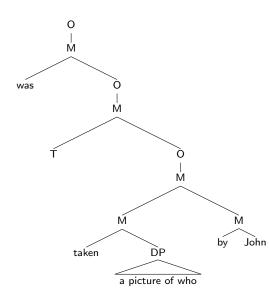
- (6) a. Who_i did John take $[DP_i]$ a picture of t_i]?
 - b. * Who_i was $[DP_i \text{ a picture of } t_i]$ taken t_j by John?

 RS Constraints
 Transducers
 General Results
 Focus
 MOM
 SDP
 Concl
 References

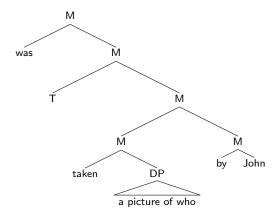
 Derivations for (6b)


Two derivations are possible for (6b). CED violation in (7c)

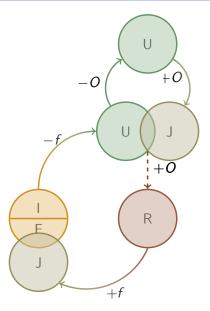
- (7) a. $[VP \text{ taken } [DP_i \text{ a picture of who}_i]$ by John]
 - b. $[TP [DP_i \text{ a picture of who}_i] T [VP \text{ taken } t_j \text{ by John}]]$
 - c. [CP who_i was [TP [DP_j a picture of t_i] T [VP taken t_j by John]]]


Derivation (8) is longer than (7)!

- (8) a. $[VP \text{ taken } [DP_i \text{ a picture of who}_i] \text{ by John}]$
 - b. $[VP \text{ who}_i \text{ taken } [DP_j \text{ a picture of } t_i] \text{ by John}]$
 - c. $[TP [DP_j \text{ a picture of } t_i] T [VP \text{ who}_i \text{ taken } t_j \text{ by John}]]$
 - d. [CP who_i was [TP [DP_j a picture of t_i] T [VP taken t_j by John]]]


RS Constraints	Transducers	General Results	Focus 0000	MOM 00000000	SDP 00●000		References	
Derivation Tree of (7)								

RS Constraints	Transducers	General Results	Focus	MOM 00000000	SDP 000●00	Concl	References	
Derivation Tree of (8)								



RS Constraints	Transducers	General Results	Focus	MOM 00000000	SDP 000000●	Concl	References
Strategy							

- Compute reference-set by
 - Imapping to underspecified derivation (i.e. remove Move-nodes)
 - 2 arbitrarily adding Move-nodes to underspecified derivation
 - discarding all derivation trees that aren't in the input language (i.e. the junk)
- Filter out the suboptimal derivation trees (those that can be obtained from others by adding Move-nodes)
 - Let R be the transduction that maps a derivation tree to the trees in its reference-set and +O the transduction defined by adding Move-nodes
 - The range of the composition of R with +O is the set of derivation trees that can be obtained from some tree in the range of R by adding Move-nodes, i.e. the suboptimal outputs.
 - Thus, the relative complement of the range of R and the range of the composition of R with +O is the set S of optimal outputs. Composing R with the diagonal over S maps every tree to its optimal outputs.

RS Constraints	Transducers	General Results	Focus	MOM	SDP	Concl	References
					000000	00000	
Architecture of SDP							

 RS Constraints
 Transducers
 General Results
 Focus
 MOM
 SDP
 Concl
 References

 00000
 00000
 0000
 0000000
 0000000
 0000000
 0000000
 0000000

Scope Economy \neq Semantic SDP

Scope Economy

QR is licit only if it induces a change in meaning.

Scope Economy (Rephrased)

Given convergent derivations d_1, \ldots, d_n that are identical modulo QR and have identical meaning, prefer the one with the fewest instances of Move.

- Checking semantic identity is hard.
- Even if we ignore semantics, Scope Economy needs more power than the SDP because the number of QR-able phrases per CP is not finitely bounded!
- We can move to a more powerful type of transducer that still preserves regularity, but we lose closure under composition \Rightarrow Scope Economy structurally more demanding than SDP

RS Constraints	Transducers	General Results	Focus	MOM 00000000	SDP 0000000	Concl ○○ ●○○○	References		
Underspecification-and-Filtration									

A Rule of Thumb

A reference-set constraint is likely to be computable by a transducer if

- one can find a structure that encodes the commonalities of all the competitors, and
- neither the underspecification step nor the recovery step require insertion of material of unbounded size, and
- the economy metric can be implemented as
 - a well-formedness constraint on underspecified structures, or
 - a specific restriction on the recovery step, or
 - a transducer that turns optimal candidates into suboptimal ones.

		^	~			
00000	000000	00000	0000	00000000	000000000000000000000000000000000000000	0
RS Constraints	Transducers	General Results	Focus	MOM	SDP Con	c References

Advantages of Reference-Set Constraints

Modularity

Constraint only depends on input language, not on mechanisms that generate it

Succinctness

Non-reference-set correspondent may fail to make the restriction explicit or be much more complicated; reference-set constraint may subsume very different constraints, depending on input grammar

More Tweakable Parameters

Reference-set constraint gives us at least four parametrizable components: reference types, reference sets, the map between the two, and the economy metric.

Reaching out

Connections to OT, sTAG and others may allow us to incorporate results from these frameworks

- Tree transducers were proposed as a model for reference-set constraints.
- OSs offer a bird's eye view on them (Insight 2).
- Most requirements for an OS to be efficiently computable are fulfilled by reference-set constraints; in particular, their corresponding OSs are output joint preserving.
- $\bullet\,$ The only problematic areas are ${\rm GEN}$ and the OS constraints.
- The underspecification-and-filtration strategy offers a general solution.

• Syntax

optimality conditions can be modelled by transducers \Rightarrow no optimality considerations involved

Semantics

- Incorporating semantic information is difficult.
- Even on a purely structural level, more powerful transducers are necessary (cf. Scope Economy).

Pragmatics

assumed to require at least bidirectional optimization, whereas transducers correspond to unidirectional optimality \Rightarrow optimality in pragmatics fundamentally different

RS Constraints	Transducers	General Results	Focus 0000	MOM 00000000	SDP 0000000	Concl	References
Reference	s I						

- Blutner, Reinhard, and Henk Zeevat. 2008. Optimality-theoretic pragmatics. In Semantics: An international handbook of natural language meaning, ed. Claudia Maienborn, Klaus von Heusinger, and Paul Portner, pp-pp. Berlin: Mouton de Gruyter. To appear.
- Chomsky, Noam. 1995. *The minimalist program*. Cambridge, Mass.: MIT Press.
- Chomsky, Noam. 2000. Minimalist inquiries: The framework. In *Step by step: Essays on minimalist syntax in honor of Howard Lasnik*, ed. Roger Martin, David Michaels, and Juan Uriagereka, 89–156. Cambridge, Mass.: MIT Press.
- Fox, Danny. 2000. *Economy and semantic interpretation*. Cambridge, Mass.: MIT Press.
- Frank, Robert, and Giorgio Satta. 1998. Optimality theory and the generative complexity of constraint violability. *Computational Linguistics* 24:307–315.
- Jäger, Gerhard. 2002. Gradient constraints in finite state OT: The unidirectional and the bidirectional case. In *More than words. A festschrift for Dieter Wunderlich*, ed. I. Kaufmann and B. Stiebels, 299–325. Berlin: Akademie Verlag.

RS Constraints	Transducers	General Results	Focus	MOM 00000000	SDP 0000000	Concl	References
Reference	es II						

- Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An automata-theoretic approach to minimalism. In *Model Theoretic Syntax at* 10, ed. James Rogers and Stephan Kepser, 71–80. Workshop organized as part of the Europen Summer School on Logic, Language and Information, ESSLLI 2007, 6-17 August 2007, Dublin, Ireland.
- Reinhart, Tanya. 2006. Interface strategies: Optimal and costly computations. Cambridge, Mass.: MIT Press.
- Wartena, Christian. 2000. A note on the complexity of optimality systems. In Studies in optimality theory, ed. Reinhard Blutner and Gerhard Jäger, 64–72. Potsdam, Germany: University of Potsdam.