MGs	Unrestricted MDTLs	Local MDTLs	Concl	References

Locality and the Complexity of Minimalist Derivation Tree Languages

Thomas Graf tgraf@ucla.edu tgraf.bol.ucla.edu

University of California, Los Angeles

FG 2011 August 6, 2011

MGs 00000000	Unrestricted MDTLs	Local MDTLs	Concl O	References
This Talk	in a Nutshell			

- What?
 - investigate Minimalist grammars (MGs) with respect to the structural complexity of their derivation trees
 - measure the impact of syntactic locality conditions
- Why?
 - Modularity results (Kolb et al. 2003; Kobele et al. 2007): non-CF grammar formalism = regular derivational calculus + tree yield function
 - Short term question:
 - What are the properties of the MG derivation calculus? What is the role of locality in syntax?
 - Long term question:

How do different formalisms distribute the workload over these two components? In particular, how do MGs compare to TAG?

MGs 00000000	Unrestricted MDTLs	Local MDTLs	Concl O	References
Outline				

A Short Introduction to Minimalist grammars The Formalism

• Defining Derivation Trees

2 Complexity of Unrestricted MDTLs

3 Complexity of Local MDTLs

- Local MDTLs are Strictly Local
- Every MG can be Localized

MGs ●0000000	Unrestricted MDTLs	Local MDTLs	Concl O	References
MGs: Mo	otivation			

- resource-sensitive, lexicalized framework (cf. CG)
- weakly equivalent to MCFGs
 - \Rightarrow appropriate generative capacity for natural language
- inspired by Minimalist syntax (Chomsky 1995)
 ⇒ wide empirical coverage & formal perspective on linguistic ideas
- efficiently parsable
- MAT-learnable from strings (Stabler & Yoshinaka, in progress)

MGs ○●○○○○○○	Unrestricted MDTLs	Local MDTLs	Concl O	References
The Atom	is of an MG			

Minimalist Grammars (MGs; Stabler 1997)

An MG is a 5-tuple $G := \langle \Sigma, Op, Feat, F, Lex \rangle$, where

- Σ is an alphabet,
- $Op := \{merge, move\}$ is the set of structure-building operations.
- Feat is a non-empty finite set of

 - category features f,
 selector features = f,
 trigger merge

 - movement licensor features -f, movement licensor features +f, trigger move
- $F \subset Feat$ is a set of final category features,
- the lexicon *Lex* is a finite subset of $\Sigma^* \times Feat^+$.

For every MG it suffices to specify *Lex* and *F*.

MGs 00●00000	Unrestricted MDTLs	Local MDTLs	Concl O	References
An MG E	xample			

MG with $F = \{C\}$

 $\begin{array}{l} \mbox{men} :: \ N \\ \mbox{the} :: \ = N \ D \\ \mbox{what} :: \ D \ - \mbox{wh} \end{array}$

like ::: = D = D V ε ::: = V C do :: = V + wh C

MGs ○○●○○	0000	Unrestricted MDTLs	Local MDTLs	Concl O	References
An	MG Ex	ample			
	MG with	$F = \{C\}$			
		$\begin{array}{l} \text{men}:: \ N \\ \text{the}:: = N \ D \\ \text{what}:: \ D \ - wh \end{array}$	like :: = D = \mathbf{D} ε :: = V C do :: = V + w	D V ^r h C	

the	men	like	what
= N D	N	=D $=$ D V	D –wh

MGs ○○●○	Unrestricted MDTLs	Local MDTLs	Concl o	References
An	MG Example			
	MG with $F = \{C\}$			
	men :: N	like :: =]	D = D V	
	the :: $= N D$	$\varepsilon :: = V$	С	
	what :: $D - T$	wh $do :: = V$	+ wh C	

MGs ○○●○	Unrestricted MDTLs	Local MDTLs	Concl o	References
An	MG Example			
	MG with $F = \{C\}$			
	men :: N	like :: =]	D = D V	
	the :: $=$ N D	$\varepsilon :: = V$	С	
	what :: $D - wh$	do :: = V	' + wh C	

MGs 000●0000	Unrestricted MDTLs	Local MDTLs	Concl O	References
The Short	est Move Constra	int (SMC)		

MGs 000●0000	Unrestricted MDTLs	Local MDTLs	Concl O	References
The Short	est Move Constra	int (SMC)		

MGs 000●0000	Unrestricted MDTLs	Local MDTLs	Concl O	References
The Short	est Move Constra	int (SMC)		

MGs 000●0000	Unrestricted MDTLs	Local MDTLs	Concl O	References
The Short	est Move Constra	int (SMC)		

MGs	Unrestricted MDTLs	Local MDTLs	Concl	References
0000000				
Derivati	on Trees			

Useful Fact

Every MG is fully specified by its set of derivation trees, which is regular (Michaelis 1998).

MGs ○○○○●○○	Unrestricted MDTLs	Local MDTLs	Concl ○	References
Defining I	Derivation Trees	Slices and Occu	irrences	

Goal A tree geometric definition of well-formed derivations Idea Lexical items are "tree atoms" that can be combined to form derivation trees, but certain constraints hold.

Slices (Intuitive Definition)

Slices are the **derivation tree equivalent of phrasal projection**: A slice marks the subpart of the derivation that a lexical item has control over by virtue of its selector and licensor features.

Occurrences

The **occurrences** of a lexical item are those movement nodes that erased one of its licensee features.

MGs ○○○○○○●○	Unrestricted MDTLs	Local MDTLs	Concl O	References
Example of	of Slices & Occur	rences		

MGs ○○○○○●○	Unrestricted MDTLs	Local MDTLs	Concl o	References
Example of	of Slices & Occur	rences		

MGs Unrestricted MDTLs Local MDTLs Concl References MDTLs as Combinations of Slices

The **Minimalist derivation tree language** (MDTL) of MG G is the largest set of combinations of slices such that (all $l \in Lex_G$)

- *Final*: The root belongs to the slice of some *l* such that *l* has a final category feature.
- Merge: If the *n*-th feature of *l* is = *f*, then the *n*-th mother of *l* immediately dominates the slice of some *l'* such that *l'* has category feature *f*.
- Move:
 - For every movement node *n* there is exactly one lexical item *l* such that *n* is an occurrence of *l*.
 - For every licensee feature of some lexical item *I*, there is exactly one movement node that is an occurrence of *I*.

MGs 00000000	Unrestricte ●0000	ed MDTLs	Local MDTLs	Conc O		References
Unrest	ricted MI	DTLs in th	e Subregula	ar Hierar	chy	
	ST	A lrDT DTDA	TDA D21	EG PTA DTL	FO[<i>S</i> ₁	, S ₂ , <]
D2 D7 FC C LC IrI RI S7 SL	2PTA ΓDA $D[S_1, S_2]$ $D[S_1, S_2, <]$ DC DTDA EG CA	deterministic 2 deterministic to first-order logic first-order logic strictly 2-local s l-r-deterministic regular language sensing tree aut strictly local set	pebble tree autor p-down tree autor with immediate with proper dom sets top-down tree a es comaton	maton omaton dominance inance utomaton	FO[<i>S</i> S	$\begin{bmatrix} I_1, S_2 \end{bmatrix}$ L

Example [.]	Undefinability in	SL		
MGs 00000000	Unrestricted MDTLs ○●○○○	Local MDTLs	Concl o	References

A tree language L is strictly k-local if there is some finite set S of subtrees of depth $d \le k$ such that L is the smallest set containing all trees whose k-factors belong to S.

MGs 00000000	Unrestricted MDTLs ○●○○○	Local MDTLs	Concl o	References
Example:	Undefinability in	SL		

A tree language L is strictly k-local if there is some finite set S of subtrees of depth $d \le k$ such that L is the smallest set containing all trees whose k-factors belong to S.

MGs 00000000	Unrestricted MDTLs ○●○○○	Local MDTLs	Concl O	References
Example:	Undefinability	in SL		

A tree language L is strictly k-local if there is some finite set S of subtrees of depth $d \le k$ such that L is the smallest set containing all trees whose k-factors belong to S.

MGs 00000000	Unrestricted MDTLs ○●○○○	Local MDTLs	Concl o	References
Example:	Undefinability in	SL		

A tree language L is strictly k-local if there is some finite set S of subtrees of depth $d \le k$ such that L is the smallest set containing all trees whose k-factors belong to S.

MGs 00000000	Unrestricted MDTLs ○●○○○	Local MDTLs	Concl o	References
Example:	Undefinability in	SL		

A tree language L is strictly k-local if there is some finite set S of subtrees of depth $d \le k$ such that L is the smallest set containing all trees whose k-factors belong to S.

MGs 00000000	Unrestricted MDTLs	Local MDTLs	Concl O	References
What to I	earn from the Res	sults		

- Incomparable with local sets Merge by itself already establishes dependencies that extend beyond trees of depth 1.
- (Not) recognizable by top-down tree automata The lack of meaningful non-terminal symbols makes MDTLs highly non-deterministic from a top-down perspective. The automaton must be capable of unbounded look-ahead into one subtree of the root.
- Undefinability in FO[*S*₁, *S*₂]/Definability in FO[*S*₁, *S*₂, <] While the conditions *Final* and *Merge* are local, movement dependencies are unbounded.
- Recognizability by deterministic 2 pebble tree automata Well-formedness conditions are not co-dependent. Movement nodes can be checked independently despite them being closely related via the notion of occurrence.

MGs 00000000	Unrestricted MDTLs	Local MDTLs	Concl O	References
Importan	ce of the SMC			

- Well-known: SMC crucial in rendering MDTLs regular.
- But all the previous definability results also hinge on the SMC.

The Effect of the SMC

Occurrences can be computed from path conditions:

- Given: lexical item I with licensee features $-f_1, \ldots, -f_n$.
- occ₁(*I*) := the first O-node properly dominating the slice of *I* with feature +*f*₁.
- occ_n(1) := the first O-node properly dominating occ_{n-1}(1) with feature +f_n.

Insight Even though Move is unbounded, it is still structurally simple, thanks to the SMC

MGs 00000000	Unrestricted MDTLs	Local MDTLs ●00000	Concl ○	References
Introducin	g Locality			

Most undefinability results are due to the unboundedness of Move. So what if we limit how far an element may be moved in one step?

k-Locality

An MDTL *L* is *k*-local if it holds for all derivations $d \in L$ and lexical items $l \in d$ that at most k - 1 slices intervene between the occurrences of *l* (counting *l* itself as an occurrence).

MGs 00000000	Unrestricted MDTLs	Local MDTLs ○●○○○○	Concl ○	References
MDTLs of	f <i>k</i> -Local MGs are	Strictly Local		

Theorem (k-Local \rightarrow Strictly κ -Local)

For every k-local MG, its MDTL is strictly κ -local, where

- $\kappa = (|\gamma| + 1) * (|\delta| * k + 1) + 1$,
- |γ| is the maximum of licensor and selector features on a lexical item,
- $|\delta|$ is the maximum of licensee features on a lexical item.

Proof.

- Both Merge and Move are local operations in a k-local MG.
- All their requirements must be satisfied in some local domain of bounded size $s \leq \kappa$.
- So if every subtree of depth κ is well-formed, the entire tree is, too.
- This implies being strictly κ -local.

MGs 00000000	Unrestricted MDTLs	Local MDTLs	Concl O	References
k-locality	= 1-locality			

Lemma (Locality Reduction)

For every k-local MG there is a weakly equivalent 1-local MG.

MGs 00000000	Unrestricted MDTLs	Local MDTLs ०००●००	Concl o	References
An Unexp	ected Problem?			

Potential problem

MGs have lexicons of finite size, and each lexical item carries only a finite number of features

• Why the procedure works

- $\bullet~SMC \Rightarrow$ upper bound on number of moving elements
- k-locality \Rightarrow length of movement steps bounded
- Hence only a finite number of new features is needed.

Technical remark

Procedure implemented by a linear tree transducer \Rightarrow output is indeed an MDTL (Graf 2011; Kobele 2011)

MGs 00000000	Unrestricted MDTLs	Local MDTLs ○○○○●○	Concl ○	References
Localizing	Unrestricted MD	TLs		

> what D – wh

MGs 00000000	Unrestricted MDTLs	Local MDTLs ○○○○●○	Concl O	References
Localizing	Unrestricted MD	TLs		

MGs 00000000	Unrestricted MDTLs	Local MDTLs ○○○○●○	Concl O	References
Localizing	Unrestricted MD	TLs		

MGs 00000000	Unrestricted MDTLs	Local MDTLs ○○○○●○	Concl O	References
Localizing	g Unrestricted MD	TLs		

MGs 00000000	Unrestricted MDTLs	Local MDTLs ○○○○○●	Concl O	References
Unrestrict	ted MG \equiv 1-loc	cal MG		

Theorem (Unrestricted/Local Equivalence)

For every unrestricted MG there exists a 1-local MG yielding the same string language (and almost the same tree language).

Technical remarks

- New features needed for remnant movement
- Careful bookkeeping required (which features to add/remove, where to insert new lexical items)
- Works only because of SMC
- Nonetheless computable by linear tree transducer \Rightarrow output is an MDTL

MGs 00000000	Unrestricted MDTLs	Local MDTLs ○○○○○●	Concl O	References
Unrestrict	ted MG \equiv 1-loc	cal MG		

Theorem (Unrestricted/Local Equivalence)

For every unrestricted MG there exists a 1-local MG yielding the same string language (and almost the same tree language).

Technical remarks

- New features needed for remnant movement
- Careful bookkeeping required (which features to add/remove, where to insert new lexical items)
- Works only because of SMC
- Nonetheless computable by linear tree transducer
 ⇒ output is an MDTL

MGs 00000000	Unrestricted MDTLs	Local MDTLs	Concl ●	References
Conclusion & Discussion				

- Local MGs are strictly local, unrestricted MGs are not.
- The non-locality of the latter follows from the unboundedness of Move.
- Still, both Merge and Move are structurally simple operations, thanks to the SMC.
- Moreover, every unrestricted MG can be localized.
- Status of locality conditions in linguistic theories?

MGs 00000000	Unrestricted MDTLs	Local MDTLs	Concl O	References	
References					

Chomsky, Noam. 1995. The minimalist program. Cambridge, Mass.: MIT Press.

- Graf, Thomas. 2011. Closure properties of minimalist derivation tree languages. In LACL 2011, ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of Lecture Notes in Artificial Intelligence, 96–111.
- Kobele, Gregory M. 2011. Minimalist tree languages are closed under intersection with recognizable tree languages. To appear in Proceedings of LACL2011.
- Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An automata-theoretic approach to minimalism. In *Model Theoretic Syntax at 10*, ed. James Rogers and Stephan Kepser, 71–80.
- Kolb, Hans-Peter, Jens Michaelis, Uwe Mönnich, and Frank Morawietz. 2003. An operational and denotational approach to non-context-freeness. *Theoretical Computer Science* 293:261–289.
- Michaelis, Jens. 1998. Derivational minimalism is mildly context-sensitive. *Lecture Notes in Artificial Intelligence* 2014:179–198.
- Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in Computer Science, 68–95. Berlin: Springer.