
RCs Formal SDP Discussion Concl References

Optimality is not a Race

Against a Performance-Based View of Reference-Set Computation

Thomas Graf
tgraf@ucla.edu

tgraf.bol.ucla.edu

University of California, Los Angeles

Glow 34
April 29, 2011

RCs Formal SDP Discussion Concl References

Reference-Set Constraints

Optimality condition ≈ reference-set constraint
≈ transderivational constraint ≈ global economy condition
≈ interface strategy

An Informal Definition

Given some input tree t, a reference-set constraint (RC) computes
a set of possible output trees for t — called the reference set of t
— and picks from said set the optimal output tree according to
some economy metric.

Some examples from the literature:

Rule I (Reinhart 2006)

Scope Economy (Fox 2000)

Shortest Derivation Principle/Fewest Steps (Chomsky 1995)

Merge-over-Move (Chomsky 2000)

Focus Economy (Reinhart 2006)

RCs Formal SDP Discussion Concl References

Reference-Set Constraints

Optimality condition ≈ reference-set constraint
≈ transderivational constraint ≈ global economy condition
≈ interface strategy

An Informal Definition

Given some input tree t, a reference-set constraint (RC) computes
a set of possible output trees for t — called the reference set of t
— and picks from said set the optimal output tree according to
some economy metric.

Some examples from the literature:

Rule I (Reinhart 2006)

Scope Economy (Fox 2000)

Shortest Derivation Principle/Fewest Steps (Chomsky 1995)

Merge-over-Move (Chomsky 2000)

Focus Economy (Reinhart 2006)

RCs Formal SDP Discussion Concl References

Reference-Set Constraints

Optimality condition ≈ reference-set constraint
≈ transderivational constraint ≈ global economy condition
≈ interface strategy

An Informal Definition

Given some input tree t, a reference-set constraint (RC) computes
a set of possible output trees for t — called the reference set of t
— and picks from said set the optimal output tree according to
some economy metric.

Some examples from the literature:

Rule I (Reinhart 2006)

Scope Economy (Fox 2000)

Shortest Derivation Principle/Fewest Steps (Chomsky 1995)

Merge-over-Move (Chomsky 2000)

Focus Economy (Reinhart 2006)

RCs Formal SDP Discussion Concl References

Deriving RCs from Performance Factors

The issue: Most linguists don’t want RCs in syntax.
However, they seem to be empirically useful. Is there a solution?

Why no RCs in Syntax?

allegedly too computationally demanding
(Johnson and Lappin 1999)

new, peculiar class of constraints ⇒ stipulative

conceptually inconsistent (Collins 1996)

leaves notion of simplicity unexplained (Jacobson 1997)

Why RCs in the Parser?

RC = race

race-effects due to parallel computation

ample evidence for parallel computation

simplicity = fastest to compute

RCs Formal SDP Discussion Concl References

Deriving RCs from Performance Factors

The issue: Most linguists don’t want RCs in syntax.
However, they seem to be empirically useful. Is there a solution?

Why no RCs in Syntax?

allegedly too computationally demanding
(Johnson and Lappin 1999)

new, peculiar class of constraints ⇒ stipulative

conceptually inconsistent (Collins 1996)

leaves notion of simplicity unexplained (Jacobson 1997)

Why RCs in the Parser?

RC = race

race-effects due to parallel computation

ample evidence for parallel computation

simplicity = fastest to compute

RCs Formal SDP Discussion Concl References

Deriving RCs from Performance Factors

The issue: Most linguists don’t want RCs in syntax.
However, they seem to be empirically useful. Is there a solution?

Why no RCs in Syntax?

allegedly too computationally demanding
(Johnson and Lappin 1999)

new, peculiar class of constraints ⇒ stipulative

conceptually inconsistent (Collins 1996)

leaves notion of simplicity unexplained (Jacobson 1997)

Why RCs in the Parser?

RC = race

race-effects due to parallel computation

ample evidence for parallel computation

simplicity = fastest to compute

RCs Formal SDP Discussion Concl References

Jacobson (1997:303f) on RCs

[. . .] I do want to suggest that the grammar indeed does not contain

transderivational processes as such. Many of the cases which appear to

necessitate this device seem likely to be the result of processing and/or

production principles [. . .] The reasons for being suspicious of the existence of

such cases is quite straight-forward: If some device computes a set of

alternatives and then selects the simplest one, it is a complete accident that

the selection is for the simplest. Once the full set of alternatives [. . .] has been

computed, it is just as easy to locate the most complex, the third simplest, or

any other possibility (including possibilities which have nothing to do with

simplicity). Thus, if there are indeed cases where the simplest candidate

appears to “win out” over other possibilities, then this becomes unmysterious

only if we can view the system as being driven in some way to that alternative

rather than selecting the simplest from among a set of fully computed

alternatives. [. . .] However, as we understand formal grammatical principles,

there is no way to locate this kind of process in the grammar itself. There are,

however, ways to think of processing and production mechanisms in this light.

RCs Formal SDP Discussion Concl References

This Talk

The Basic Message

You cannot have a grammar without RCs.
You always get RCs for free because they are simply
a different way of specifying local constraints
⇒ RCs and local constraints are the same thing.

Thus there is no need to derive RCs from something else,
and hence we do not need a processing account.

But even if you don’t buy my results, a processing account
is still a tough sell.

Important Caveat

I only consider a peculiar class of RCs here. This class seems to
encompass all syntactic RCs proposed in the literature, but
semantic RCs are a different story (due to the “identity of
meaning” condition, which has little to do with their RC-hood).

RCs Formal SDP Discussion Concl References

This Talk

The Basic Message

You cannot have a grammar without RCs.
You always get RCs for free because they are simply
a different way of specifying local constraints
⇒ RCs and local constraints are the same thing.

Thus there is no need to derive RCs from something else,
and hence we do not need a processing account.

But even if you don’t buy my results, a processing account
is still a tough sell.

Important Caveat

I only consider a peculiar class of RCs here. This class seems to
encompass all syntactic RCs proposed in the literature, but
semantic RCs are a different story (due to the “identity of
meaning” condition, which has little to do with their RC-hood).

RCs Formal SDP Discussion Concl References

Outline

1 Formal Foundations and General Strategy
Formal Foundation 1: Minimalist Grammars
Formal Foundation 2: Linear Tree Transducers
How to Model RCs with MGs and Transducers

2 Example: Shortest Derivation Principle/Fewest Steps
Definition & Empirical Motivation
Implementation

3 Discussion
Why the Arguments Against RCs in Syntax Fail
Problems of the Processing Account
Some Loose Threads

RCs Formal SDP Discussion Concl References

MGs in 3 Simple Steps

If you want to make unassailable claims, you should prove them in
as rigorous a way as possible ⇒ Minimalist Grammars
(MGs; Stabler 1997) as a formalization of the Minimalist Program

A Definition of MGs for Syntacticians

As usual, Merge and (phrasal) Move are the only
structure building operations.

As usual, lexical items equipped with finitely many features,
but:

Features must be checked in a specific order.
A lexical item may carry the same feature several times.
Features are either category or movement features,
and they come in one of two polarities:
+ (“licensor”) and − (“licensee”)

Move is deterministic (i.e. it is always clear which constituent
has to move where).

RCs Formal SDP Discussion Concl References

MGs in 3 Simple Steps

If you want to make unassailable claims, you should prove them in
as rigorous a way as possible ⇒ Minimalist Grammars
(MGs; Stabler 1997) as a formalization of the Minimalist Program

A Definition of MGs for Syntacticians

As usual, Merge and (phrasal) Move are the only
structure building operations.

As usual, lexical items equipped with finitely many features,
but:

Features must be checked in a specific order.
A lexical item may carry the same feature several times.
Features are either category or movement features,
and they come in one of two polarities:
+ (“licensor”) and − (“licensee”)

Move is deterministic (i.e. it is always clear which constituent
has to move where).

RCs Formal SDP Discussion Concl References

A Toy Example (yes, it’s really unsophisticated)

Lexicon

men :: −N like :: +D + D −V
the :: +N −D ε :: +V (+wh) − C
what :: −D − wh

RCs Formal SDP Discussion Concl References

A Toy Example (yes, it’s really unsophisticated)

Lexicon

men :: −N like :: +D + D −V
the :: +N −D ε :: +V (+wh) − C
what :: −D − wh

the

+N −D

men

−N

like

+D +D −V

what

−D −wh

RCs Formal SDP Discussion Concl References

A Toy Example (yes, it’s really unsophisticated)

Lexicon

men :: −N like :: +D + D −V
the :: +N −D ε :: +V (+wh) − C
what :: −D − wh

the

+N −D

men

−N

like

+D +D −V

what

−D −wh

<

RCs Formal SDP Discussion Concl References

A Toy Example (yes, it’s really unsophisticated)

Lexicon

men :: −N like :: +D + D −V
the :: +N −D ε :: +V (+wh) − C
what :: −D − wh

the

+N −D

men

−N

like

+D +D −V

what

−D −wh

< <

RCs Formal SDP Discussion Concl References

A Toy Example (yes, it’s really unsophisticated)

Lexicon

men :: −N like :: +D + D −V
the :: +N −D ε :: +V (+wh) − C
what :: −D − wh

the

+N −D

men

−N

like

+D +D −V

what

−D −wh

< <

>

RCs Formal SDP Discussion Concl References

A Toy Example (yes, it’s really unsophisticated)

Lexicon

men :: −N like :: +D + D −V
the :: +N −D ε :: +V (+wh) − C
what :: −D − wh

the

+N −D

men

−N

like

+D +D −V

what

−D −wh

ε

+V +wh −C

< <

>

RCs Formal SDP Discussion Concl References

A Toy Example (yes, it’s really unsophisticated)

Lexicon

men :: −N like :: +D + D −V
the :: +N −D ε :: +V (+wh) − C
what :: −D − wh

the

+N −D

men

−N

like

+D +D −V

what

−D −wh

ε

+V +wh −C

< <

>

<

RCs Formal SDP Discussion Concl References

A Toy Example (yes, it’s really unsophisticated)

Lexicon

men :: −N like :: +D + D −V
the :: +N −D ε :: +V (+wh) − C
what :: −D − wh

the

+N −D

men

−N

like

+D +D −V

ε

+V +wh −C

what

−D −wh

< <

>

<

>

RCs Formal SDP Discussion Concl References

Derivation Trees

Useful Fact

Every MG is fully specified
by its set of derivation
trees (Kobele et al. 2007).

the

+N −D

men

−N

like

+D +D −V

ε

+V +wh −C

what

−D −wh

< <

>

<

>

the

+N −D

men

−N

like

+D +D −V

what

−D −wh

ε

+V +wh −C

M M

M

M

O

RCs Formal SDP Discussion Concl References

But this isn’t Minimalism!

Fair enough, but we can extend the simple MGs to make them
more Minimalism-like:

feature system: +/− interpretable, valued/unvalued
copying/traces
head movement, covert movement, ATB movement
Agree
phases/barriers
Relativized Minimality
islands constraints, complexity constraints
interface filters (type theory, linearity conditions)
syntactic binding conditions
that-trace filter, doubly-filled COMP filter
GPSG-style feature percolation

Every extended MG can be emulated by some simple MG.
(The only exception is copying/traces, but since this does not
affect the derivation trees, it is irrelevant for our purposes.)

RCs Formal SDP Discussion Concl References

Some Neat Properties

MGs are a reasonable approximation of natural language
Just like various other linguistically motivated formalisms
(Tree-Adjoining Grammar, Combinatory Categorial Grammar,
Multiple Context-Free Grammars, Linear Context-Free
Rewriting Systems), MGs define so-called
mildly context-sensitive string languages.
That so many different theories arrived at the same result
suggests that mild context-sensitivity is indeed a non-trivial
property of language. In particular, there are tree-based
translations between some of these formalisms!

MGs can be defined by finite-state machines
The set of derivation trees licensed by an MG is a
regular tree language. In the eyes of a formal
language theorist, nothing beats being regular ;-)

RCs Formal SDP Discussion Concl References

Linear Tree Transducers in Pictures

A linear finite-state bottom-up tree transducer

traverses an input-tree from the leaves towards the root,

labels it with states qi , and

transforms it into an output-tree.

⇒ generalization of transformational rule system of Aspects

Rules follow a specific schema:
σ

q1

subtree 1

. qn

subtree m

→ qi

some tree

RCs Formal SDP Discussion Concl References

A Simple Example (Part 1)

A Transduction for Restricted wh-Movement, Rules 1–4

1) σ→ qi

σ

3) σ

qi

σ1

subtree 1

qi

σ2

subtree 2

→ qi

σ

σ1

subtree 1

σ2

subtree 2
2) what→ qwh

twh

4) σ

qi

σ1

subtree 1

qwh

σ2

subtree 2

→ qwh

σ

σ1

subtree 1

σ2

subtree 2

RCs Formal SDP Discussion Concl References

A Simple Example (Part 2)

A Transduction for Restricted wh-Movement, Rule 5

5) TP

qi

DP

subtree 1

qwh

T′

subtree 2

→ qi

CP

what C′

do TP

DP

subtree 1

T′

subtree 2

RCs Formal SDP Discussion Concl References

A Simple Example (Part 3)

A Transduction for Restricted wh-Movement, Application

TP

DP

the men

T′

T VP

like what

RCs Formal SDP Discussion Concl References

A Simple Example (Part 3)

A Transduction for Restricted wh-Movement, Application

TP

DP

the men

T′

T VP

like qwh

twh

RCs Formal SDP Discussion Concl References

A Simple Example (Part 3)

A Transduction for Restricted wh-Movement, Application

TP

DP

the men

T′

T VP

qi

like

qwh

twh

RCs Formal SDP Discussion Concl References

A Simple Example (Part 3)

A Transduction for Restricted wh-Movement, Application

TP

DP

the men

T′

T qwh

VP

like twh

RCs Formal SDP Discussion Concl References

A Simple Example (Part 3)

A Transduction for Restricted wh-Movement, Application

TP

DP

the men

T′

qi

T

qwh

VP

like twh

RCs Formal SDP Discussion Concl References

A Simple Example (Part 3)

A Transduction for Restricted wh-Movement, Application

TP

DP

the men

qwh

T′

T VP

like twh

RCs Formal SDP Discussion Concl References

A Simple Example (Part 3)

A Transduction for Restricted wh-Movement, Application

TP

DP

the qi

men

qwh

T′

T VP

like twh

RCs Formal SDP Discussion Concl References

A Simple Example (Part 3)

A Transduction for Restricted wh-Movement, Application

TP

DP

qi

the

qi

men

qwh

T′

T VP

like twh

RCs Formal SDP Discussion Concl References

A Simple Example (Part 3)

A Transduction for Restricted wh-Movement, Application

TP

qi

DP

the men

qwh

T′

T VP

like twh

RCs Formal SDP Discussion Concl References

A Simple Example (Part 3)

A Transduction for Restricted wh-Movement, Application

TP

DP

the men

T′

T VP

like twh

qi

CP

what C′

do

RCs Formal SDP Discussion Concl References

Some Important Facts

What is Possible?

Relabeling nodes

Deleting subtrees

Inserting subtrees of
bounded size

Enforcing constraints that
define regular tree languages

What is Impossible?

Copying of arbitrary subtrees

Switching positions of
non-siblings (e.g. specifier
and complement)

Counting past some
threshold

Mathematical Properties

A transducer can be decomposed into a sequence of
smaller transducers, et vice versa.

If the output language of a transducer is intersected with
some MDTL, the result is an MDTL, too.
(Graf 2011; Kobele 2011)

RCs Formal SDP Discussion Concl References

Some Important Facts

What is Possible?

Relabeling nodes

Deleting subtrees

Inserting subtrees of
bounded size

Enforcing constraints that
define regular tree languages

What is Impossible?

Copying of arbitrary subtrees

Switching positions of
non-siblings (e.g. specifier
and complement)

Counting past some
threshold

Mathematical Properties

A transducer can be decomposed into a sequence of
smaller transducers, et vice versa.

If the output language of a transducer is intersected with
some MDTL, the result is an MDTL, too.
(Graf 2011; Kobele 2011)

RCs Formal SDP Discussion Concl References

Some Important Facts

What is Possible?

Relabeling nodes

Deleting subtrees

Inserting subtrees of
bounded size

Enforcing constraints that
define regular tree languages

What is Impossible?

Copying of arbitrary subtrees

Switching positions of
non-siblings (e.g. specifier
and complement)

Counting past some
threshold

Mathematical Properties

A transducer can be decomposed into a sequence of
smaller transducers, et vice versa.

If the output language of a transducer is intersected with
some MDTL, the result is an MDTL, too.
(Graf 2011; Kobele 2011)

RCs Formal SDP Discussion Concl References

How to Model RCs with MGs and Transducers

Strategy

For a given reference-set constraint C , exhibit

an MG G that generates the input language, and

a sequence τ of transducers that computes the same mapping
from inputs to optimal outputs as C .

Due to the mathematical properties of transducers,
the result of feeding the MDTL of G into τ is an MDTL.

Hence it can be generated by some MG.

Hence C can be enforced without reference-set computation.

Every MG can trivially be decomposed into a combination of an
MG plus a reference-set constraint, so we get the desired
equivalence between reference-set constraints and local constraints.

RCs Formal SDP Discussion Concl References

How to Model RCs with MGs and Transducers

Strategy

For a given reference-set constraint C , exhibit

an MG G that generates the input language, and

a sequence τ of transducers that computes the same mapping
from inputs to optimal outputs as C .

Due to the mathematical properties of transducers,
the result of feeding the MDTL of G into τ is an MDTL.

Hence it can be generated by some MG.

Hence C can be enforced without reference-set computation.

Every MG can trivially be decomposed into a combination of an
MG plus a reference-set constraint, so we get the desired
equivalence between reference-set constraints and local constraints.

RCs Formal SDP Discussion Concl References

How to Model RCs with MGs and Transducers

Strategy

For a given reference-set constraint C , exhibit

an MG G that generates the input language, and

a sequence τ of transducers that computes the same mapping
from inputs to optimal outputs as C .

Due to the mathematical properties of transducers,
the result of feeding the MDTL of G into τ is an MDTL.

Hence it can be generated by some MG.

Hence C can be enforced without reference-set computation.

Every MG can trivially be decomposed into a combination of an
MG plus a reference-set constraint, so we get the desired
equivalence between reference-set constraints and local constraints.

RCs Formal SDP Discussion Concl References

Underspecification-and-Filtration

All my transducer implementations of reference-set constraints
follow a strategy I call underspecification-and-filtration.
Underspecification is used for computing the reference-set, and
filtration for the economy metric.

A Rule of Thumb

A reference-set constraint is likely to be computable by
a transducer if

one can find a structure that encodes the commonalities of
all the competitors, and

neither the underspecification step nor the recovery step
require insertion of material of unbounded size, and

the economy metric can be implemented as a transducer that
turns optimal candidates into suboptimal ones.

RCs Formal SDP Discussion Concl References

Underspecification-and-Filtration

All my transducer implementations of reference-set constraints
follow a strategy I call underspecification-and-filtration.
Underspecification is used for computing the reference-set, and
filtration for the economy metric.

A Rule of Thumb

A reference-set constraint is likely to be computable by
a transducer if

one can find a structure that encodes the commonalities of
all the competitors, and

neither the underspecification step nor the recovery step
require insertion of material of unbounded size, and

the economy metric can be implemented as a transducer that
turns optimal candidates into suboptimal ones.

RCs Formal SDP Discussion Concl References

Shortest Derivation Principle (SDP)

The SDP is a rather complicated constraint to implement, but it is
the prototypical case of a race-like constraint and also generalizes
to other reference-set constraints.

SDP

Given convergent derivations d1, . . . , dn over the same lexical
items, pick the one(s) with the fewest instances of Move.

Empirical usage in Collins (1994): Why do we find the following
contrast? In particular, what rules out (1b)?

(1) a. Whoi did John take [DPj
a picture of ti]?

b. * Whoi was [DPj
a picture of ti] taken tj by John?

RCs Formal SDP Discussion Concl References

Shortest Derivation Principle (SDP)

The SDP is a rather complicated constraint to implement, but it is
the prototypical case of a race-like constraint and also generalizes
to other reference-set constraints.

SDP

Given convergent derivations d1, . . . , dn over the same lexical
items, pick the one(s) with the fewest instances of Move.

Empirical usage in Collins (1994): Why do we find the following
contrast? In particular, what rules out (1b)?

(1) a. Whoi did John take [DPj
a picture of ti]?

b. * Whoi was [DPj
a picture of ti] taken tj by John?

RCs Formal SDP Discussion Concl References

Shortest Derivation Principle (SDP)

The SDP is a rather complicated constraint to implement, but it is
the prototypical case of a race-like constraint and also generalizes
to other reference-set constraints.

SDP

Given convergent derivations d1, . . . , dn over the same lexical
items, pick the one(s) with the fewest instances of Move.

Empirical usage in Collins (1994): Why do we find the following
contrast? In particular, what rules out (1b)?

(1) a. Whoi did John take [DPj
a picture of ti]?

b. * Whoi was [DPj
a picture of ti] taken tj by John?

RCs Formal SDP Discussion Concl References

Derivations for (1b)

There are (supposedly) only two derivations for (1b).

CED violation in (2c) ⇒ ruled out independently

(2) a. [VP taken [DPj
a picture of whoi] by John]

b. [TP [DPj
a picture of whoi] T [VP taken tj by

John]]

c. [CP whoi was [TP [DPj
a picture of ti] T [VP taken

tj by John]]]

longer than (2) ⇒ job for SDP

(3) a. [VP taken [DPj
a picture of whoi] by John]

b. [VP whoi taken [DPj
a picture of ti] by John]

c. [TP [DPj
a picture of ti] T [VP whoi taken tj by

John]]

d. [CP whoi was [TP [DPj
a picture of ti] T [VP taken

tj by John]]]

RCs Formal SDP Discussion Concl References

Derivations for (1b)

There are (supposedly) only two derivations for (1b).

CED violation in (2c) ⇒ ruled out independently

(2) a. [VP taken [DPj
a picture of whoi] by John]

b. [TP [DPj
a picture of whoi] T [VP taken tj by

John]]

c. [CP whoi was [TP [DPj
a picture of ti] T [VP taken

tj by John]]]

longer than (2) ⇒ job for SDP

(3) a. [VP taken [DPj
a picture of whoi] by John]

b. [VP whoi taken [DPj
a picture of ti] by John]

c. [TP [DPj
a picture of ti] T [VP whoi taken tj by

John]]

d. [CP whoi was [TP [DPj
a picture of ti] T [VP taken

tj by John]]]

RCs Formal SDP Discussion Concl References

Derivations for (1b)

There are (supposedly) only two derivations for (1b).

CED violation in (2c) ⇒ ruled out independently

(2) a. [VP taken [DPj
a picture of whoi] by John]

b. [TP [DPj
a picture of whoi] T [VP taken tj by

John]]

c. [CP whoi was [TP [DPj
a picture of ti] T [VP taken

tj by John]]]

longer than (2) ⇒ job for SDP

(3) a. [VP taken [DPj
a picture of whoi] by John]

b. [VP whoi taken [DPj
a picture of ti] by John]

c. [TP [DPj
a picture of ti] T [VP whoi taken tj by

John]]

d. [CP whoi was [TP [DPj
a picture of ti] T [VP taken

tj by John]]]

RCs Formal SDP Discussion Concl References

Derivation Tree of (2)

O

M

was O

M

T M

M

taken DP

a picture of who

M

by John

RCs Formal SDP Discussion Concl References

Derivation Tree of (3)

O

M

was O

M

T O

M

M

taken DP

a picture of who

M

by John

RCs Formal SDP Discussion Concl References

Transducer Decomposition of SDP

I

F

U

U

J

R

J

	f	f

	O ⊕O⊕O

⊕O⊕O

⊕f⊕f

F filter
I input derivations
J “junk” ≈ overgeneration
R ranked set
U underspecified structures
	f remove features
⊕f add features
	O remove Move nodes
⊕O add Move nodes

RCs Formal SDP Discussion Concl References

A Step-by-Step Example

Let’s set up a scenario in the spirit of the original problem.

Step 1: Define an appropriate MG (we only need a lexicon);
the new feature s is used to “scramble” DPs into SpecVP

Lexicon

John :: −D (−s) (−nom) by :: +D − P
who :: −N (−s) (−nom) (−wh) taken :: +D (+P) (+s) −V
a picture of :: +N −D (−s) (−nom) was :: +V + nom − T

ε :: +T (+wh) − C

RCs Formal SDP Discussion Concl References

A Step-by-Step Example

Let’s set up a scenario in the spirit of the original problem.

Step 1: Define an appropriate MG (we only need a lexicon);
the new feature s is used to “scramble” DPs into SpecVP

Lexicon

John :: −D (−s) (−nom) by :: +D − P
who :: −N (−s) (−nom) (−wh) taken :: +D (+P) (+s) −V
a picture of :: +N −D (−s) (−nom) was :: +V + nom − T

ε :: +T (+wh) − C

RCs Formal SDP Discussion Concl References

Example: Step 1 Simplification

To reduce the complexity of the example, let us assume that
only the following five sentences are deemed well-formed
by the grammar (so there have to be extra constraints
that rule out all the other possible combinations).

(4) whowh C [DP a picture of twh] was [VP tDP [VP by John
taken tDP]]

(5) whowh C [DP a picture of twh] was [VP twh [VP by John
taken tDP]]

(6) whowh C [DP a picture of twh] was [VP [PP by John] [VP
tPP taken tDP]]

(7) whowh C [DP a picture of twh] was [VP by John taken tDP]

(8) C [DP a picture of who] was [VP by John taken tDP]

RCs Formal SDP Discussion Concl References

What the SDP Should Accomplish

Desired behavior of SDP

(4)–(7) compete against each other, but not against (8)
(7) and (8) are the only licit constructions;
(7) is ruled out later on for independent reasons

What we have to do

Define a transduction that computes the correct reference-set
for each sentence (composition of 	f , 	O and ⊕O)
Define a ranking that defines the economy metric
(⊕O applied to the right reference set)
Avoid overgeneration (several instances of filtering)

RCs Formal SDP Discussion Concl References

What the SDP Should Accomplish

Desired behavior of SDP

(4)–(7) compete against each other, but not against (8)
(7) and (8) are the only licit constructions;
(7) is ruled out later on for independent reasons

What we have to do

Define a transduction that computes the correct reference-set
for each sentence (composition of 	f , 	O and ⊕O)
Define a ranking that defines the economy metric
(⊕O applied to the right reference set)
Avoid overgeneration (several instances of filtering)

RCs Formal SDP Discussion Concl References

Step 2: Derivation Trees for (4)–(6)

O

M

ε

+T +wh −C
O

M

was

+V +nom −T
O

M

M

by

+D −P

John

−D

M

taken

+D +P +s −V
M

a picture of

+N −D −s −nom

who

−N −wh

RCs Formal SDP Discussion Concl References

Step 2: Derivation Trees for (4)–(6)

O

M

ε

+T +wh −C
O

M

was

+V +nom −T
O

M

M

by

+D −P

John

−D

M

taken

+D +P +s −V
M

a picture of

+N −D −nom

who

−N −s −wh

RCs Formal SDP Discussion Concl References

Step 2: Derivation Trees for (4)–(6)

O

M

ε

+T +wh −C
O

M

was

+V +nom −T
O

M

M

by

+D −P −s

John

−D

M

taken

+D +P +s −V
M

a picture of

+N −D −nom

who

−N −wh

RCs Formal SDP Discussion Concl References

Step 2: Output of 	f applied to (4)–(6)

O

M

ε

+T +wh −C
O

M

was

+V +nom −T
O

M

M

by

+D −P

John

−D

M

taken

+D +P −V
M

a picture of

+N −D −nom

who

−N −wh

RCs Formal SDP Discussion Concl References

Step 2: Derivation tree of (7) = 	f (7)

O

M

ε

+T +wh −C
O

M

was

+V +nom −T
M

M

by

+D −P

John

−D

M

taken

+D +P −V
M

a picture of

+N −D −nom

who

−N −wh

RCs Formal SDP Discussion Concl References

Step 2: Derivation tree of (8) = 	f (8)

M

ε

+T −C
O

M

was

+V +nom −T
M

M

by

+D −P

John

−D

M

taken

+D +P −V
M

a picture of

+N −D −nom

who

−N −wh

RCs Formal SDP Discussion Concl References

Step 3: Application of 	O to output of 	f for (4)–(7)

M

ε

+T +wh −C
M

was

+V +nom −T
M

M

by

+D −P

John

−D

M

taken

+D +P −V
M

a picture of

+N −D −nom

who

−N −wh

RCs Formal SDP Discussion Concl References

Step 3: Application of 	O to output of 	f for (8)

M

ε

+T −C
M

was

+V +nom −T
M

M

by

+D −P

John

−D

M

taken

+D +P −V
M

a picture of

+N −D −nom

who

−N −wh

RCs Formal SDP Discussion Concl References

Step 4: Reinsert Movement Nodes via ⊕O and Filter

By reinserting movement nodes and throwing away all trees
that we have not encountered so far, the Merge-only derivations
are once again turned into one of the following three:

	f (4) = 	f (5) = 	f (6)

	f (7)

	f (8)

Crucial Fact

Removing and reinserting movement nodes has changed the
reference sets for some trees. We now have:

RS(4) = RS(5) = RS(6) = RS(7) = {	f (4),	f (7)}
RS(8) = {	f (8)}

This is exactly the distribution of reference sets we want.

RCs Formal SDP Discussion Concl References

Step 4: Reinsert Movement Nodes via ⊕O and Filter

By reinserting movement nodes and throwing away all trees
that we have not encountered so far, the Merge-only derivations
are once again turned into one of the following three:

	f (4) = 	f (5) = 	f (6)

	f (7)

	f (8)

Crucial Fact

Removing and reinserting movement nodes has changed the
reference sets for some trees. We now have:

RS(4) = RS(5) = RS(6) = RS(7) = {	f (4),	f (7)}
RS(8) = {	f (8)}

This is exactly the distribution of reference sets we want.

RCs Formal SDP Discussion Concl References

Step 5: Ranking via ⊕O
The economy metric for the SDP is straight-forward: pick the
candidate with the fewest Move-nodes. But how is this
implemented as a transducer?

Transducers for Rankings

We say that a derivation d is optimal wrt transducer τ if
there is no competing derivation d ′ such that τ rewrites d ′ as
d .

A transducer τ is well-founded if every reference set contains
at least one derivation that is optimal wrt τ .

Given a well-founded transducer τ , we can construct a
transducer τ ′ that rewrites no derivation as a candidate
that is not optimal wrt τ (Jäger 2002).

Transducer ⊕O is well-founded and gives us the right metric:
A derivation is optimal wrt ⊕O if there is no competing derivation
with fewer instances of Move.

RCs Formal SDP Discussion Concl References

Step 5: Ranking via ⊕O
The economy metric for the SDP is straight-forward: pick the
candidate with the fewest Move-nodes. But how is this
implemented as a transducer?

Transducers for Rankings

We say that a derivation d is optimal wrt transducer τ if
there is no competing derivation d ′ such that τ rewrites d ′ as
d .

A transducer τ is well-founded if every reference set contains
at least one derivation that is optimal wrt τ .

Given a well-founded transducer τ , we can construct a
transducer τ ′ that rewrites no derivation as a candidate
that is not optimal wrt τ (Jäger 2002).

Transducer ⊕O is well-founded and gives us the right metric:
A derivation is optimal wrt ⊕O if there is no competing derivation
with fewer instances of Move.

RCs Formal SDP Discussion Concl References

Step 5: Ranking via ⊕O
The economy metric for the SDP is straight-forward: pick the
candidate with the fewest Move-nodes. But how is this
implemented as a transducer?

Transducers for Rankings

We say that a derivation d is optimal wrt transducer τ if
there is no competing derivation d ′ such that τ rewrites d ′ as
d .

A transducer τ is well-founded if every reference set contains
at least one derivation that is optimal wrt τ .

Given a well-founded transducer τ , we can construct a
transducer τ ′ that rewrites no derivation as a candidate
that is not optimal wrt τ (Jäger 2002).

Transducer ⊕O is well-founded and gives us the right metric:
A derivation is optimal wrt ⊕O if there is no competing derivation
with fewer instances of Move.

RCs Formal SDP Discussion Concl References

Step 6: Application of ⊕f and Filtering

To ensure that the end result of the transduction is a
Minimalist derivation tree licensed by the original grammar,
we have to reinstantiate the features that 	f stripped away
⇒ ⊕f
⊕f ≈ ⊕O for features: Non-deterministically add
random features and throw away all outputs we haven’t
encountered before.

In the case at hand, no features have to be reinstantiated
because we only stripped away s-features, yet no instances of
s-movement occur in the trees that 	f (7) and 	f (8) were
obtained from. So we’re all done!

RCs Formal SDP Discussion Concl References

Uhm. . . What Just Happened?

A sequence of mini-transducers computes the same mapping
from inputs to optimal outputs as the SPD.

The range of the composed transducer is a subset of
the original derivation tree language.

This subset can be computed by an MG without reference-set
computation. In particular, this new MG can be obtained
from the old MG by addition of a single local constraint.

It follows that the SPD is equivalent to some local constraint.

Further Applications (cf. Graf 2010b)

Focus Economy

Merge-over-Move (without needing subarrays)

a limited variant of Scope Economy
(sufficient for all the data discussed in the literature)

the Accord-Maximization-Principle

RCs Formal SDP Discussion Concl References

Uhm. . . What Just Happened?

A sequence of mini-transducers computes the same mapping
from inputs to optimal outputs as the SPD.

The range of the composed transducer is a subset of
the original derivation tree language.

This subset can be computed by an MG without reference-set
computation. In particular, this new MG can be obtained
from the old MG by addition of a single local constraint.

It follows that the SPD is equivalent to some local constraint.

Further Applications (cf. Graf 2010b)

Focus Economy

Merge-over-Move (without needing subarrays)

a limited variant of Scope Economy
(sufficient for all the data discussed in the literature)

the Accord-Maximization-Principle

RCs Formal SDP Discussion Concl References

Arguments Against RCs in Syntax Revisited

Why no RCs in Syntax?

1 allegedly too computationally demanding
(Johnson and Lappin 1999)

2 new, peculiar class of constraints ⇒ stipulative

3 conceptually inconsistent (Collins 1996)

4 leaves notion of simplicity unexplained (Jacobson 1997)

(1)—(3) are immediately disproved by the fact that

linear transductions are efficiently computable,
every reference-set constraint can be translated into
a local constraint,
the composed transducer never computes any of the
suboptimal candidates, it directly rewrites every input as an
optimal output.

RCs Formal SDP Discussion Concl References

Arguments Against RCs in Syntax Revisited

Why no RCs in Syntax?

1 allegedly too computationally demanding
(Johnson and Lappin 1999)

2 new, peculiar class of constraints ⇒ stipulative

3 conceptually inconsistent (Collins 1996)

4 leaves notion of simplicity unexplained (Jacobson 1997)

(1)—(3) are immediately disproved by the fact that

linear transductions are efficiently computable,
every reference-set constraint can be translated into
a local constraint,
the composed transducer never computes any of the
suboptimal candidates, it directly rewrites every input as an
optimal output.

RCs Formal SDP Discussion Concl References

Notion of Simplicity

Complexity of a transducer measured by its number of states.

The fewer states we need to capture the economy metric,
the simpler it is.

Example: Variants of the SDP

Original SDP: ⊕O used for ranking, uses only one state

Accord-Maximization Principle: 	O for ranking, only one
state

SDP that prefers second-shortest derivations: first compute
⊕O, then filter out optimal candidates and apply ⊕O;
number of states might grow exponentially with complexity of
set of candidates that are optimal wrt first run of ⊕O
SDP that keeps only better half of all candidates: undefinable

RCs Formal SDP Discussion Concl References

Notion of Simplicity

Complexity of a transducer measured by its number of states.

The fewer states we need to capture the economy metric,
the simpler it is.

Example: Variants of the SDP

Original SDP: ⊕O used for ranking, uses only one state

Accord-Maximization Principle: 	O for ranking, only one
state

SDP that prefers second-shortest derivations: first compute
⊕O, then filter out optimal candidates and apply ⊕O;
number of states might grow exponentially with complexity of
set of candidates that are optimal wrt first run of ⊕O
SDP that keeps only better half of all candidates: undefinable

RCs Formal SDP Discussion Concl References

In Favor of Reference-Set Constraints in Syntax

Translating an MG with a reference-set constraint into a canonical
MG, we might see a blowup in the size of the lexicon that is
exponential in the number of states of the transducer that
computes the reference-set constraint
⇒ reference-set constraints provide extremely succinct descriptions

Example: Blow-Up in the Lexicon

Assume MG G has a lexicon with 11 entries:

5 lexical items with no selection features

3 with exactly 1 selection feature

3 with exactly 2 selection features

Assume further that the transducer has 4 states.
In the worst case, the corresponding canonical MG
has a lexicon of size 260 (≈ 24-times the original size).

RCs Formal SDP Discussion Concl References

In Favor of Reference-Set Constraints in Syntax

Translating an MG with a reference-set constraint into a canonical
MG, we might see a blowup in the size of the lexicon that is
exponential in the number of states of the transducer that
computes the reference-set constraint
⇒ reference-set constraints provide extremely succinct descriptions

Example: Blow-Up in the Lexicon

Assume MG G has a lexicon with 11 entries:

5 lexical items with no selection features

3 with exactly 1 selection feature

3 with exactly 2 selection features

Assume further that the transducer has 4 states.
In the worst case, the corresponding canonical MG
has a lexicon of size 260 (≈ 24-times the original size).

RCs Formal SDP Discussion Concl References

In Favor of Reference-Set Constraints in Syntax (Cont.)

The local correspondents of a reference-set constraint
vary depending on the input grammar
⇒ reference-set constraints allow us to express new generalizations

Example: Correspondents of SDP

Original grammar: remove all lexical items with an s-feature

Add lexical item le :: −D− s, but not le :: −D: A verb
carries +s only if it selects le.

Does not carry over to grammars where +s may occur on
lexical items that aren’t verbs.

Further seemingly unrelated effects of SDP: favor “chunking,
interdependencies between movement-steps, etc.

RCs Formal SDP Discussion Concl References

In Favor of Reference-Set Constraints in Syntax (Cont.)

The local correspondents of a reference-set constraint
vary depending on the input grammar
⇒ reference-set constraints allow us to express new generalizations

Example: Correspondents of SDP

Original grammar: remove all lexical items with an s-feature

Add lexical item le :: −D− s, but not le :: −D: A verb
carries +s only if it selects le.

Does not carry over to grammars where +s may occur on
lexical items that aren’t verbs.

Further seemingly unrelated effects of SDP: favor “chunking,
interdependencies between movement-steps, etc.

RCs Formal SDP Discussion Concl References

Arguments for RC-Processing Connection Revisited

Why RCs in the Parser?

1 RC = race

2 race-effects due to parallel computation

3 ample evidence for parallel computation

4 simplicity = fastest to compute

Some General Remarks Against Grammar in the Parser

Transparent parser as null-hypothesis: abstracted away from
resource-limitations, the parser successfully parses
all grammatical sentences, and only those

Parsing is about acceptability, ambiguity resolution and
processing speed, but not grammaticality

Processing literature abstracts away from specific assumptions
about grammar, little interest in grammaticality

RCs Formal SDP Discussion Concl References

Arguments for RC-Processing Connection Revisited

Why RCs in the Parser?

1 RC = race

2 race-effects due to parallel computation

3 ample evidence for parallel computation

4 simplicity = fastest to compute

Some General Remarks Against Grammar in the Parser

Transparent parser as null-hypothesis: abstracted away from
resource-limitations, the parser successfully parses
all grammatical sentences, and only those

Parsing is about acceptability, ambiguity resolution and
processing speed, but not grammaticality

Processing literature abstracts away from specific assumptions
about grammar, little interest in grammaticality

RCs Formal SDP Discussion Concl References

RC 6= race

The notion of race is more complex than anticipated:

The Accord-Maximization Principle maximizes
agreement-relations, i.e. favors the longest derivation
⇒ inverse of the SDP
⇒ in how far race-like?

Merge-over-Move has no effect on the length or complexity of
a derivation
⇒ why should we see a difference in processing speed?

Quite generally, since reference-set constraints are reducible to
local constraints, are local constraints race-like, too?

This also cast doubt on the idea that simplicity equals
speed of computation (which is vacuous anyhow in the absence of
a specific model of computation)

RCs Formal SDP Discussion Concl References

RC 6= race

The notion of race is more complex than anticipated:

The Accord-Maximization Principle maximizes
agreement-relations, i.e. favors the longest derivation
⇒ inverse of the SDP
⇒ in how far race-like?

Merge-over-Move has no effect on the length or complexity of
a derivation
⇒ why should we see a difference in processing speed?

Quite generally, since reference-set constraints are reducible to
local constraints, are local constraints race-like, too?

This also cast doubt on the idea that simplicity equals
speed of computation (which is vacuous anyhow in the absence of
a specific model of computation)

RCs Formal SDP Discussion Concl References

Status of Parallel Computation in Processing Literature

The distinction between serial and parallel is only meaningful
wrt specific parameter settings (data structure operated on by
the parser, deterministic or probabilistic, +/− exhaustive,
+/− competitive, +/− reanalysis, +/− predictive, mode of
memory access); every piece of data I know can be explained
by both serial and parallel models, depending on the choice of
parameters.

If one makes standard assumptions (data structure=tree
representations, non-exhaustive, limited non-determinism for
parallel, determinism + reanalysis for serial, no predictions),
the evidence seems to favor parallel models, but crucially
non-competitive parallel models (Pearlmutter and Mendelsohn
1999; Gibson and Pearlmutter 2000; Clifton and Staub 2008)

RCs Formal SDP Discussion Concl References

What About Connectionist Approaches?

There is interesting work relating OT/HG to connectionist
networks and parallel computation at the subsymbolic level
(Hendriks et al. 2007; Smolensky et al. 2010)

Reference-set constraints can be viewed as a special kind of
OT-grammar (Graf 2010a,b)

Doesn’t that derive them from parallel computation?

Objections

Even the most powerful connectionist networks compute only
functions that are computable by the serial Turing machine.
⇒ parallel grammar does not imply parallel computation

Also, we can take a completely serial grammar and implement
it as a neural network
⇒ parallel computation does not imply parallel grammar

So there is no causality here that would derive anything.

RCs Formal SDP Discussion Concl References

What About Connectionist Approaches?

There is interesting work relating OT/HG to connectionist
networks and parallel computation at the subsymbolic level
(Hendriks et al. 2007; Smolensky et al. 2010)

Reference-set constraints can be viewed as a special kind of
OT-grammar (Graf 2010a,b)

Doesn’t that derive them from parallel computation?

Objections

Even the most powerful connectionist networks compute only
functions that are computable by the serial Turing machine.
⇒ parallel grammar does not imply parallel computation

Also, we can take a completely serial grammar and implement
it as a neural network
⇒ parallel computation does not imply parallel grammar

So there is no causality here that would derive anything.

RCs Formal SDP Discussion Concl References

Some Loose Threads

Acquisition
If reference-set constraints are just local constraints, then
what about the language acquisition phenomena that
have been conjectured to be due to the complexity of
reference-set computation?

Empirical Application
Since reference-set constraints open up new generalizations
that hold across grammars, they should be the ideal tool for
cross-linguistic comparisons. But so far they have not been
used in this area.

Semantics
Many reference-set constraints require identity of meaning.
But this condition isn’t computable even for weak fragments
of first-order logic. If context is taken into account (Rule I),
the problem becomes unsolvable even for propositional logic.

RCs Formal SDP Discussion Concl References

Conclusion

Reference-set constraints = different way of defining local
constraints.

We showed this using mathematical properties of Minimalist
grammars and linear tree transductions.
The general approach was to implement reference-set
constraints as transducers using a strategy of
underspecification and filtration.

It follows that there is no reason to locate them in some
syntax-external module.

In fact, there are good reasons to keep them in syntax
(succinctness, generality).

It might be possible to derive them from parallel computation,
but it will require special assumptions that are difficult
to defend on independent grounds.

RCs Formal SDP Discussion Concl References

Thank you!

RCs Formal SDP Discussion Concl References

References I

Chomsky, Noam. 1995. The minimalist program. Cambridge, Mass.: MIT
Press.

Chomsky, Noam. 2000. Minimalist inquiries: The framework. In Step by step:
Essays on minimalist syntax in honor of Howard Lasnik, ed. Roger Martin,
David Michaels, and Juan Uriagereka, 89–156. Cambridge, Mass.: MIT
Press.

Clifton, Charles, and Adrian Staub. 2008. Parallelism and competition in
syntactic ambiguity resolution. Language and Linguistics Compass
2:234–250.

Collins, Chris. 1994. Economy of derivation and the generalized proper binding
condition. Linguistic Inquiry 25:45–61.

Collins, Chris. 1996. Local economy . Cambridge, Mass.: MIT Press.

Fox, Danny. 2000. Economy and semantic interpretation. Cambridge, Mass.:
MIT Press.

Gibson, Edward, and Neal J. Pearlmutter. 2000. Distinguishing serial and
parallel processing. Journal of Psycholinguistic Research 29:231–240.

RCs Formal SDP Discussion Concl References

References II

Graf, Thomas. 2010a. Reference-set constraints as linear tree transductions via
controlled optimality systems. In Proceedings of the 15th Conference on
Formal Grammar . To appear.

Graf, Thomas. 2010b. A tree transducer model of reference-set computation.
UCLA Working Papers in Linguistics 15:1–53.

Graf, Thomas. 2011. Closure properties of minimalist derivation tree languages.
To appear in Proceedings of LACL2011.

Hendriks, Petra, Hedderik van Rijn, and Bea Valkenier. 2007. Learning to
reason about speakers’ alternatives in sentence comprehension: A
computational account. Lingua 117:1879–1896.

Jacobson, Pauline. 1997. Where (if anywhere) is transderivationality located?
In The limits of syntax , ed. Brian D. Joseph, Carl Pollard, Peter Culicover,
and Louise McNally, 303–336. Burlington, MA: Academic Press.

Johnson, David, and Shalom Lappin. 1999. Local constraints vs. economy .
Stanford: CSLI.

RCs Formal SDP Discussion Concl References

References III

Jäger, Gerhard. 2002. Gradient constraints in finite state OT: The
unidirectional and the bidirectional case. In More than words. A festschrift
for Dieter Wunderlich, ed. I. Kaufmann and B. Stiebels, 299–325. Berlin:
Akademie Verlag.

Kobele, Gregory M. 2011. Minimalist tree languages are closed under
intersection with recognizable tree languages. To appear in Proceedings of
LACL2011.

Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An
automata-theoretic approach to minimalism. In Model Theoretic Syntax at
10 , ed. James Rogers and Stephan Kepser, 71–80.

Pearlmutter, Neal J., and Aurora Alma Mendelsohn. 1999. Serial versus parallel
sentence comprehension. Ms., Northeastern University.

Reinhart, Tanya. 2006. Interface strategies: Optimal and costly computations.
Cambridge, Mass.: MIT Press.

Smolensky, Paul, Matthew Goldrick, and Donald Mathis. 2010. Optimization
and quantization in gradient symbol systems: A framework for integrating
the continuous and the discrete in cognition. Ms., John Hopkins and
Northwestern.

RCs Formal SDP Discussion Concl References

References IV

Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of
computational linguistics: First international conference, LACL ’96, Nancy,
France, September 23-25, 1996. Selected papers, ed. Christian Retoré,
68–95. Berlin: Springer.

RCs Formal SDP Discussion Concl References

Appendix

RCs Formal SDP Discussion Concl References

Scope Economy 6= Semantic SDP

Scope Economy

QR is licit only if it induces a change in meaning.

Scope Economy (Rephrased)

Given convergent derivations d1, . . . , dn that are identical modulo
QR and have identical meaning, prefer the one with
the fewest instances of Move.

Checking semantic identity is hard.

Even if we ignore semantics, Scope Economy needs more
power than the SDP because the number of QR-able phrases
per CP is not finitely bounded!

We can move to a more powerful type of transducer that still
preserves regularity, but we lose closure under composition ⇒
Scope Economy structurally more demanding than SDP

RCs Formal SDP Discussion Concl References

Computing the Blow-Up

Given a lexicon Lex and n ≥ 0, let Lex (n) := {l ∈ Lex | l has
exactly n selector features}. Now if there is no m > k such that

Lex
(m)
G 6= ∅, then in the worst case

|LexG ′ | =
k∑

i=0

(
|Lex (i)G | · |Q|

i+1
)

RCs Formal SDP Discussion Concl References

Focus Economy

RCs Formal SDP Discussion Concl References

Example 1: Focus Economy

Focus Economy Rule (Reminder)

If the main stress has been shifted, a constituent containing
its carrier may be focused iff it cannot be focused in
the tree with unshifted stress.

Computing the Focus Sets

TPS

JohnW VPS

boughtW DPS

aW APS

redW carS

TPS

JohnW VPS

boughtW DPS

aW APS

redS carWcarS

APS

DPS

VPS

TPS

redS

APS

DPS

VPS

TPS

a) Neutral Stress b) Shifted Stress

RCs Formal SDP Discussion Concl References

Transducer Model: Gen

Step 1 & 2: Gen

Non-deterministically relabel input with S/W-subscripts.

Non-deterministically focus some node along the
“stress path”.

Transducing an Input into a Stress-Annotated Output with Focus

TP

John VP

bought DP

a AP

red car

RCs Formal SDP Discussion Concl References

Transducer Model: Gen

Step 1 & 2: Gen

Non-deterministically relabel input with S/W-subscripts.

Non-deterministically focus some node along the
“stress path”.

Transducing an Input into a Stress-Annotated Output with Focus

TP

John VP

bought DP

a AP

red car

S

W S

W S

W S

S W

RCs Formal SDP Discussion Concl References

Transducer Model: Gen

Step 1 & 2: Gen

Non-deterministically relabel input with S/W-subscripts.

Non-deterministically focus some node along the
“stress path”.

Transducing an Input into a Stress-Annotated Output with Focus

TP

John VP

bought DP

a AP

red car

S

W S

W S

W S

S W

DPS

RCs Formal SDP Discussion Concl References

Transducer Model: The Constraint

Focus Economy requires reference to the neutral stress pattern.
We allow this by implicitly representing the neutral stress within
the same tree!

Strategy

Define two paths StressPath and NeutralPath.

StressPath represents the path of the current stress.

NeutralPath represents the path of the neutral stress.

Add a constraint that requires focus to be in the stress path,
but unless StressPath and NeutralPath pick out
the same nodes, focus may not be in NeutralPath.

RCs Formal SDP Discussion Concl References

Example of φ

StressPath and NeutralPath

TP

John VP

bought DP

a AP

red car

S

W S

W S

W S

S W

RCs Formal SDP Discussion Concl References

Example of φ

StressPath and NeutralPath

TP

John VP

bought DP

a AP

red car

S

W S

W S

W S

S WredS

APS

DPS

VPS

TPS

RCs Formal SDP Discussion Concl References

Example of φ

StressPath and NeutralPath

TP

John VP

bought DP

a AP

red car

S

W S

W S

W S

S WredS

APS

DPS

VPS

TPS

carW

APS

DPS

VPS

TPS

RCs Formal SDP Discussion Concl References

Merge-over-Move

RCs Formal SDP Discussion Concl References

Merge-over-Move (MOM)

Merge-over-Move (MOM)

If two convergent derivations d and d ′ are built from the same
lexical items and identical up to step n, at which point d continues
with Merge and d ′ with Move, filter out d ′.

(9) a. There seems tthere to be a man in the garden.

b. * There seems a man to be ta man in the garden.

c. A man seems ta man to be ta man in the garden.

RCs Formal SDP Discussion Concl References

Derivation Trees of (9a) and (9b)

Example

M

C O

M

seems M

there M

to be M

M

a man

M

in M

the garden

RCs Formal SDP Discussion Concl References

Derivation Trees of (9a) and (9b)

Example

M

C M

there M

seems O

M

to be M

M

a man

M

in M

the garden

RCs Formal SDP Discussion Concl References

Transducer Model: Gen (Step 1)

Fuse the two derivations into one underspecified derivation.
Remove all features but the category feature.
Inside TP: Replace O or Merger of there by new label O/there.

M

C O/there

M

seems O/there

M

to be M

M

a man

M

in M

the garden

RCs Formal SDP Discussion Concl References

Transducer Model: Gen (Step 2)

Turn O/there back into O or Merge of there.

Use a transducer with states q∗, qO and qC .
In state q∗, the transducer non-deterministically rewrites
O/there as O or Merge of there.
If the transducer rewrites O/there as O, it switches into state
q0.
In state q0, every occurrence of O/there is rewritten just as O.
The transducer switches out of q0 only if it encounters a CP
(indicated by state qC ; cf. structured numerations).

Reinstantiate the features.

RCs Formal SDP Discussion Concl References

Transducer Model: Examples of Step 2

Example 1

M

C O/there

M

seems O/there

q∗

M

to be a man in the garden

RCs Formal SDP Discussion Concl References

Transducer Model: Examples of Step 2

Example 1

M

C O/there

M

seems q∗

M

there M

to be a man in the garden

RCs Formal SDP Discussion Concl References

Transducer Model: Examples of Step 2

Example 1

M

C O/there

M

q∗

seems

q∗

M

there M

to be a man in the garden

RCs Formal SDP Discussion Concl References

Transducer Model: Examples of Step 2

Example 1

M

C O/there

q∗

M

seems M

there M

to be a man in the garden

RCs Formal SDP Discussion Concl References

Transducer Model: Examples of Step 2

Example 1

M

qC

C

q0

O

M

seems M

there M

to be a man in the garden

RCs Formal SDP Discussion Concl References

Transducer Model: Examples of Step 2

Example 1

q∗

M

C O

M

seems M

there M

to be a man in the garden

RCs Formal SDP Discussion Concl References

Transducer Model: Examples of Step 2

Example 2

M

C O/there

M

seems O/there

q∗

M

to be a man in the garden

RCs Formal SDP Discussion Concl References

Transducer Model: Examples of Step 2

Example 2

M

C O/there

M

seems q0

O

M

to be a man in the garden

RCs Formal SDP Discussion Concl References

Transducer Model: Examples of Step 2

Example 2

M

C O/there

M

q∗

seems

q0

O

M

to be a man in the garden

RCs Formal SDP Discussion Concl References

Transducer Model: Examples of Step 2

Example 2

M

C O/there

q0

M

seems O

M

to be a man in the garden

RCs Formal SDP Discussion Concl References

Transducer Model: Examples of Step 2

Example 2

M

qC

C

q0

O

M

seems O

M

to be a man in the garden

RCs Formal SDP Discussion Concl References

Transducer Model: Examples of Step 2

Example 2

q∗

M

C O

M

seems O

M

to be a man in the garden

RCs Formal SDP Discussion Concl References

Transducer Model: The Induced Mapping

The output candidates for both (10a) and (10b) are now
(11a)–(11b).

(10) a. There seems tthere to be a man in the garden.

b. * There seems a man to be ta man in the garden.

(11) a. * There seems there to be a man in the garden.

b. There seems tthere to be a man in the garden.

c. A man seems ta man to be ta man in the garden.

We may extend the mapping such that (11c) is also assigned
this reference set.

(11a) still has to be ruled out.

RCs Formal SDP Discussion Concl References

Transducer Model: The Constraint

The only constraint is the input language itself!
By turning it into a transducer and composing it with Gen,
we remove all instances of overgeneration and filter out the illicit
MOM violators.

I

F
U

J

UnderspecifyUnderspecify

Partial RestorePartial Restore

	Formal Foundations and General Strategy
	Formal Foundation 1: Minimalist Grammars
	Formal Foundation 2: Linear Tree Transducers
	How to Model RCs with MGs and Transducers

	Example: Shortest Derivation Principle/Fewest Steps
	Definition & Empirical Motivation
	Implementation

	Discussion
	Why the Arguments Against RCs in Syntax Fail
	Problems of the Processing Account
	Some Loose Threads

