Closure Properties of Minimalist Derivation Tree Languages

Thomas Graf
tgraf@ucla.edu
tgraf.bol.ucla.edu
University of California, Los Angeles

LACL 2011
June 30, 2011

Outline

(1) Regular Tree Languages
(2) Minimalist Grammars

- Derived Tree Languages
- Derivation Trees
(3) Closure Properties of Minimalist Derivation Tree Languages
- Non-Closure Under Intersection with REG
- P-Closure Under Intersection with REG
- Further P-Closure Properties
(4) Applications

Regular $=$ Recognized by Bottom-Up Tree Automaton

- Bottom-up tree automata generalize finite-state automata from strings to trees.
- Only significant change in the transition function: domain extended from pairs of symbols and states to $n+1$ tuples $\left\langle q_{1}, \ldots, q_{n}, \sigma^{(n)}\right\rangle$, where $\sigma^{(n)}$ is a symbol of arity $n \geq 0$.

Deterministic Bottom-Up Tree Automata

A deterministic bottom-up tree automaton is a 4-tuple $A:=\langle\Sigma, Q, F, \delta\rangle$, where

- Σ is a ranked alphabet,
- Q is a finite set of states (i.e. of unary symbols $q \notin \Sigma$),
- $F \subseteq Q$ is the set of final states,
- $\delta:\left(\bigcup_{n \geq 0} Q^{n} \times \Sigma^{(n)}\right) \rightarrow Q$ is the transition function.

ODD: A Regular Tree Language

Let $O D D$ be the language of all (at most) binary branching trees over alphabet $\Sigma:=\left\{a^{(0)}, a^{(1)}, a^{(2)}\right\}$ such that every tree has an odd number of nodes.

Automaton for ODD

$A_{O D D}:=\left\langle\left\{a^{(0)}, a^{(1)}, a^{(2)}\right\},\{O, E\},\{O\}, \delta\right\rangle$, where δ is given by the following rules:

$$
\begin{aligned}
a \rightarrow O & (O, O, a) \rightarrow O \\
(O, a) \rightarrow E & (O, E, a) \rightarrow E \\
(E, a) \rightarrow O & (E, O, a) \rightarrow E \\
& (E, E, a) \rightarrow O
\end{aligned}
$$

ODD: A Regular Tree Language

Let $O D D$ be the language of all (at most) binary branching trees over alphabet $\Sigma:=\left\{a^{(0)}, a^{(1)}, a^{(2)}\right\}$ such that every tree has an odd number of nodes.

Automaton for ODD

$A_{O D D}:=\left\langle\left\{a^{(0)}, a^{(1)}, a^{(2)}\right\},\{O, E\},\{O\}, \delta\right\rangle$, where δ is given by the following rules:

$$
\begin{aligned}
a \rightarrow O & (O, O, a) \rightarrow O \\
(O, a) \rightarrow E & (O, E, a) \rightarrow E \\
(E, a) \rightarrow O & (E, O, a) \rightarrow E \\
& (E, E, a) \rightarrow O
\end{aligned}
$$

Two Runs of $A_{O D D}$

Two Runs of $A_{O D D}$

Two Runs of $A_{O D D}$

Two Runs of $A_{O D D}$

Two Runs of $A_{O D D}$

Two Runs of $A_{O D D}$

Two Runs of $A_{O D D}$

Regular Tree Languages/Automata for Linguistics

- Just like regular string languages, regular tree languages are very well-behaved mathematically
\Rightarrow attractive from a computational perspective
- Almost all parts of Government-and-Binding theory can be expressed by bottom-up automata (Rogers 1998) \Rightarrow regular tree languages sufficiently powerful for most syntactic generalizations/constraints
- But the string yield of a regular tree language is context-free \Rightarrow too weak for natural language
- Minimalist grammars (MGs) generate MCFLs, yet can be fully specified by regular tree languages. But is it possible to add regular constraints to MGs without increasing their weak generative capacity?

The Atoms of a Minimalist Grammar

Minimalist Grammars (MGs; Stabler 1997)

An MG is a 5 -tuple $G:=\langle\Sigma$, Feat, F, Lex, Op \rangle, where

- Σ is an alphabet,
- Feat is a non-empty finite set of
- category features f,
- selector features $=f$,
- movement licensee features $-f$,
- movement licensor features $+f$,
- $F \subseteq$ Feat is a set of final category features,
- the lexicon Lex is a finite subset of $\Sigma^{*} \times$ Feat $^{+}$,
- Op $:=\{$ merge, move $\}$ is the set of structure-building operations.

For every MGs it suffices to specify Lex and F.

Bare Phrase Structure Trees

- My definition of merge and move is tree-based.
- It builds on the notion of Bare Phrase Structure trees and Headedness.

Extended Lexicon

Given a lexicon Lex, its extended lexicon Elex is the smallest set such that, for $\sigma \in \Sigma^{*}, f \in$ Feat, and $\delta \in$ Feat*

- $I \in L e x \rightarrow I \in$ Elex
- I $:=\langle\sigma, f \delta\rangle \in$ Elex $\rightarrow I^{\prime}:=\langle\sigma, \delta\rangle \in$ Elex

Bare Phrase Structure Trees (BPS Trees)

The set of BPS trees over Elex consists of all strictly binary branching trees over the ranked alphabet $\left\{\left\langle^{(2)},>{ }^{(2)}\right\} \cup\left\{I^{(0)} \mid I \in\right.\right.$ Elex $\}$.

Bare Phrase Structure Trees

- My definition of merge and move is tree-based.
- It builds on the notion of Bare Phrase Structure trees and Headedness.

Extended Lexicon

Given a lexicon Lex, its extended lexicon Elex is the smallest set such that, for $\sigma \in \Sigma^{*}, f \in$ Feat, and $\delta \in$ Feat*

- $I \in L e x \rightarrow I \in$ Elex
- $I:=\langle\sigma, f \delta\rangle \in$ Elex $\rightarrow I^{\prime}:=\langle\sigma, \delta\rangle \in$ Elex

Bare Phrase Structure Trees (BPS Trees)

The set of BPS trees over Elex consists of all strictly binary branching trees over the ranked alphabet
$\left\{\left\langle^{(2)},>^{(2)}\right\} \cup\left\{I^{(0)} \mid I \in\right.\right.$ Elex $\}$.

Bare Phrase Structure Trees

- My definition of merge and move is tree-based.
- It builds on the notion of Bare Phrase Structure trees and Headedness.

Extended Lexicon

Given a lexicon Lex, its extended lexicon Elex is the smallest set such that, for $\sigma \in \Sigma^{*}, f \in$ Feat, and $\delta \in$ Feat*

- $I \in L e x \rightarrow I \in$ Elex
- $I:=\langle\sigma, f \delta\rangle \in$ Elex $\rightarrow I^{\prime}:=\langle\sigma, \delta\rangle \in$ Elex

Bare Phrase Structure Trees (BPS Trees)

The set of BPS trees over Elex consists of all strictly binary branching trees over the ranked alphabet $\left\{\left\langle^{(2)},>^{(2)}\right\} \cup\left\{I^{(0)} \mid I \in\right.\right.$ Elex $\}$.

Headedness

Headedness

Given a BPS tree t, the head of t is given by

$$
\operatorname{head}(t):= \begin{cases}t & \text { if } t \in \text { Elex } \\ \operatorname{head}\left(t_{1}\right) & \text { if } t:=>t_{1}^{\prime} / t_{2} \\ \operatorname{head}\left(t_{2}\right) & \text { if } t:=t_{t_{1}}^{>} t_{2}\end{cases}
$$

Notation t^{δ} denotes that head (t) carries feature string δ

Defining Merge \& Move

Let $\gamma, \delta \in$ Feat ${ }^{*}$.

$$
\operatorname{merge}\left(s^{=f \gamma}, t^{f \delta}\right):= \begin{cases}s^{\gamma}>t^{\delta} & \text { if } s \in \text { Elex } \\ t^{\delta^{\delta} / \backslash} s^{\gamma} & \text { otherwise }\end{cases}
$$

Shortest Move Constraint (SMC)

Every tree $s^{+f \gamma}$ in the domain of move has exactly one subtree t such that the first feature of head (t) is $-f$.

Thanks to the SMC, both Merge and Move are deterministic.

Defining Merge \& Move

Let $\gamma, \delta \in$ Feat ${ }^{*}$.

$$
\operatorname{merge}\left(s^{=f \gamma}, t^{f \delta}\right):= \begin{cases}s^{\gamma}>t^{\delta} & \text { if } s \in \text { Elex } \\ { }_{t^{\delta} / \backslash} s^{\gamma} & \text { otherwise }\end{cases}
$$

Shortest Move Constraint (SMC)

Every tree $s^{+f \gamma}$ in the domain of move has exactly one subtree t such that the first feature of $\operatorname{head}(t)$ is $-f$.

Thanks to the SMC, both Merge and Move are deterministic.

Derived Tree Language \& Expressivity

Derived Tree Language

The tree language $L(G)$ derived by MG G with lexicon Lex_{G} is the largest set of BPS trees such that

- $L(G) \subseteq \operatorname{closure}\left(L^{\prime}{ }_{G},\{\right.$ merge, move $\left.\}\right)$,
- for every $t \in L(G)$, there is some $f \in F_{G}$ such that the feature component of head (t) consists only of f,
- all other leaves have an empty feature component.

Generated String Language
 The string language generated by MG G is the string yield of $L(G)$.

Theorem (Harkema 2001; Michaelis 1998, 2001)

MCFGs and MGs are weakly equivalent.

Derived Tree Language \& Expressivity

Derived Tree Language

The tree language $L(G)$ derived by MG G with lexicon Lex $_{G}$ is the largest set of BPS trees such that

- $L(G) \subseteq \operatorname{closure}\left(L_{e x}^{G},\{\right.$ merge, move $\left.\}\right)$,
- for every $t \in L(G)$, there is some $f \in F_{G}$ such that the feature component of head (t) consists only of f,
- all other leaves have an empty feature component.

Generated String Language

The string language generated by MG G is the string yield of $L(G)$.

Theorem (Harkema 2001; Michaelis 1998, 2001)

MCFGs and MGs are weakly equivalent.

Derived Tree Language \& Expressivity

Derived Tree Language

The tree language $L(G)$ derived by MG G with lexicon Lex $_{G}$ is the largest set of BPS trees such that

- $L(G) \subseteq$ closure $\left(L_{e x},\{\right.$ merge, move $\left.\}\right)$,
- for every $t \in L(G)$, there is some $f \in F_{G}$ such that the feature component of head (t) consists only of f,
- all other leaves have an empty feature component.

Generated String Language

The string language generated by MG G is the string yield of $L(G)$.

Theorem (Harkema 2001; Michaelis 1998, 2001)

MCFGs and MGs are weakly equivalent.

A Toy Example (Without Recursion)

MG with $F=\{C\}$

```
men :: N
the :: = N D
what :: D - wh
```

like $::=\mathrm{D}=\mathrm{D}$ V
$\varepsilon::=\mathrm{V}$ C
do :: $=\mathrm{V}+\mathrm{wh} \mathrm{C}$

A Toy Example (Without Recursion)

MG with $F=\{C\}$

$$
\begin{array}{ll}
\text { men }:: \mathrm{N} & \text { like }::=\mathrm{D}=\mathrm{D} \mathrm{~V} \\
\text { the }::=\mathrm{N} \mathrm{D} & \varepsilon::=\mathrm{V} \mathrm{C} \\
\text { what }:: \mathrm{D}-\text { wh } & \text { do }::=\mathrm{V}+\text { wh } \mathrm{C}
\end{array}
$$

$\frac{\text { the }}{=\text { N D }} \quad \frac{\text { men }}{\mathrm{N}} \quad \frac{\text { like }}{=\mathrm{D}=\mathrm{D} \mathrm{V}} \quad \frac{\text { what }}{\mathrm{D}-\text { wh }}$

A Toy Example (Without Recursion)

MG with $F=\{C\}$

$$
\begin{array}{ll}
\text { men }:: \mathrm{N} & \text { like }::=\mathrm{D}=\mathrm{D} \mathrm{~V} \\
\text { the }::=\mathrm{N} \mathrm{D} & \varepsilon::=\mathrm{V} \mathrm{C} \\
\text { what }:: \mathrm{D}-\text { wh } & \text { do }::=\mathrm{V}+\text { wh } \mathrm{C}
\end{array}
$$

$\frac{\text { like }}{=\mathrm{D}=\mathrm{D} \mathrm{V}} \quad \frac{\text { what }}{\mathrm{D}-\text { wh }}$

A Toy Example (Without Recursion)

MG with $F=\{C\}$

$$
\begin{array}{ll}
\text { men }:: \mathrm{N} & \text { like }::=\mathrm{D}=\mathrm{D} \mathrm{~V} \\
\text { the }::=\mathrm{N} \mathrm{D} & \varepsilon::=\mathrm{V} \mathrm{C} \\
\text { what }:: \mathrm{D}-\text { wh } & \text { do }::=\mathrm{V}+\text { wh } \mathrm{C}
\end{array}
$$

A Toy Example (Without Recursion)

MG with $F=\{C\}$

$$
\begin{array}{ll}
\text { men }:: \mathrm{N} & \text { like }::=\mathrm{D}=\mathrm{D} \mathrm{~V} \\
\text { the }::=\mathrm{N} \mathrm{D} & \varepsilon::=\mathrm{V} \mathrm{C} \\
\text { what }:: \mathrm{D}-\text { wh } & \text { do }::=\mathrm{V}+\text { wh } \mathrm{C}
\end{array}
$$

A Toy Example (Without Recursion)

MG with $F=\{C\}$

$$
\begin{array}{ll}
\text { men }:: \mathrm{N} & \text { like }::=\mathrm{D}=\mathrm{D} \mathrm{~V} \\
\text { the }::=\mathrm{N} \mathrm{D} & \varepsilon::=\mathrm{V} \mathrm{C} \\
\text { what }:: \mathrm{D}-\text { wh } & \text { do }::=\mathrm{V}+\text { wh } \mathrm{C}
\end{array}
$$

A Toy Example (Without Recursion)

MG with $F=\{C\}$

$$
\begin{array}{ll}
\text { men }:: \mathrm{N} & \text { like }::=\mathrm{D}=\mathrm{D} \mathrm{~V} \\
\text { the }::=\mathrm{N} \mathrm{D} & \varepsilon::=\mathrm{V} \mathrm{C} \\
\text { what }:: \mathrm{D}-\text { wh } & \text { do }::=\mathrm{V}+\text { wh } \mathrm{C}
\end{array}
$$

A Toy Example (Without Recursion)

MG with $F=\{C\}$

$$
\begin{array}{ll}
\text { men }:: \mathrm{N} & \text { like }::=\mathrm{D}=\mathrm{D} \mathrm{~V} \\
\text { the }::=\mathrm{N} \mathrm{D} & \varepsilon::=\mathrm{V} \mathrm{C} \\
\text { what }:: \mathrm{D}-\text { wh } & \text { do }::=\mathrm{V}+\text { wh } \mathrm{C}
\end{array}
$$

Derivation Trees

Useful Fact

Every MG is fully specified by its set of derivation trees, which is regular (Kobele et al. 2007).

Defining Derivation Trees: The Intuition

- Defining well-formed derivation trees of MG G only requires keeping track of the feature calculus \Rightarrow deterministic bottom-up automaton with sequences of feature strings as states (and $F_{A}:=\left\{\langle f\rangle \mid f \in F_{G}\right\}$)
- Due to the SMC, the number of feature strings per state is bounded \Rightarrow finite number of states

Defining Derivation Trees: The Intuition

- Defining well-formed derivation trees of MG G only requires keeping track of the feature calculus \Rightarrow deterministic bottom-up automaton with sequences of feature strings as states (and $F_{A}:=\left\{\langle f\rangle \mid f \in F_{G}\right\}$)
- Due to the SMC, the number of feature strings per state is bounded \Rightarrow finite number of states

Non-Closure Under Intersection with REG

Theorem

The class of MDTLs is not closed under intersection with regular tree languages.

Proof.

- Let ODD contain all trees with an odd number of nodes.
- Let G be the $M G$ given by $F_{G}=\{c\}$ and $L e x_{G}$:

a : : a $-k$
- Then there are derivation trees s and t in the closure of Lex_{G} under \{merge, move $\}$ that both end in a final category and contain the same lexical items. It is easy to see that $s \in \operatorname{mder}\left(G^{\prime}\right)$ iff $t \in \operatorname{mder}\left(G^{\prime}\right)$ for any MG G^{\prime}, yet $s \notin \operatorname{mder}(G) \cap O D D \ni t$.

Non-Closure Under Intersection with REG

Theorem

The class of MDTLs is not closed under intersection with regular tree languages.

Proof.

- Let $O D D$ contain all trees with an odd number of nodes.
- Let G be the $M G$ given by $F_{G}=\{c\}$ and Lex_{G} :

$$
\mathrm{a}:: \mathrm{a} \quad \mathrm{~b}::=\mathrm{a}=\mathrm{a}+\mathrm{k} \mathrm{a} \quad \mathrm{c}::=\mathrm{a} \mathrm{c}
$$

a :: a - k

- Then there are derivation trees s and t in the closure of Lex $_{G}$ under $\{$ merge, move $\}$ that both end in a final category and contain the same lexical items. It is easy to see that $s \in \operatorname{mder}\left(G^{\prime}\right)$ iff $t \in m d e r\left(G^{\prime}\right)$ for any MG G^{\prime}, yet $s \notin \operatorname{mder}(G) \cap O D D \ni t$.

Choice of s and t

$$
\begin{gathered}
s=u \notin O D D \\
t=u+v \in O D D
\end{gathered}
$$

Defining P-Closure

Projection

Let $\lambda: \Sigma \rightarrow \Omega$ be a many-to-one map between alphabets, and π its extension from alphabets to trees.
Tree t is a projection of s iff there is a π such that $t=\pi(s)$. The notion extends to tree languages in the natural way.

P[rojection]-Closure

Given a class of languages \mathcal{L} and an operation O, \mathcal{L} is p-closed under O iff the result of applying O to some $L \in \mathcal{L}$ is a projection of some $L^{\prime} \in \mathcal{L}$.

P-Closure Under Intersection with REG

Theorem (REG Intersection P-Closure)

The class of MDTLs over alphabet Σ and features Feat is p-closed under intersection with regular tree languages.

Outline of Proof

- Inspired by Thatcher's theorem (translate recognizable sets into local ones by incorporating states into alphabet)
- Crux: Internal node labels of a derivation tree cannot be refined \Rightarrow slices as a way of relating interior nodes to features on lexical items
- Procedure for refining category and selector features so that they incorporate states of the deterministic bottom-up automaton recognizing regular language

Slices

Intuitively, slices are the derivation tree equivalent of phrasal projection: Each slice marks the subpart of the derivation that a lexical item has control over by virtue of its selector and licensor features.

Slices

Given a derivation tree t and lexical item / occurring in t, slice (I) is defined as follows:

- $I \in \operatorname{slice}(I)$,
- if node n of t immediately dominates a node $s \in$ slice (I), then $n \in \operatorname{slice}(I)$ iff the operation denoted by the label of n erased a selector or licensor feature of I.

The unique $n \in$ slice (I) that isn't (properly) dominated by any $n^{\prime} \in$ slice (I) is called the slice root of I.

Example of Slices

Simple Facts About Slices

- Every node of a derivation tree belongs to some slice.
- Slices are continuous.
- Moving from slice(I) to slice $\left(I^{\prime}\right)$ such that I^{\prime} was selected by I, one eventually reaches a slice of size 1 .

Category Refinement Strategy

- Assume we are given an MG G and deterministic bottom-up automaton A.
- Subscript interior node labels with state of automaton, following Thatcher's strategy.
- Move subscript from slice root of lexical item to its category feature.
- Refine selection features accordingly.
- The set of final categories of the new MG G^{\prime} is $\left\{c_{q} \mid c \in F_{G}, q \in F_{A}\right\}$.
- Note that only finitely many combinations of slices and states need to be considered, so the procedure can be carried out efficiently.

Two Examples of Category Refinement

MG G^{\prime} for $G \cap O D D$

$$
\begin{array}{ll}
a: a_{0} & b: \because=a_{0}=a_{0}+k a_{e} \\
a \because a_{0}-k & b:=a_{0}=a_{e}+k a_{0} \\
b: \because=a_{e}=a_{0}+k a_{0} \\
& b: \because=a_{e}=a_{e}+k a_{e}
\end{array}
$$

Two Examples of Category Refinement

MG G^{\prime} for $G \cap O D D$

$$
\begin{array}{ll}
a: \therefore a_{0} & b::=a_{0}=a_{0}+k a_{e} \\
a \because a_{0}-k & b: \because=a_{0}=a_{e}+k a_{0} \\
b: \because=a_{e}=a_{0}+k a_{0} \\
b: c_{0} \\
b=a_{e}=a_{e}+k a_{e}
\end{array}
$$

Two Examples of Category Refinement

MG G^{\prime} for $G \cap O D D$

$$
\begin{array}{ll}
a:: a_{0} & b: \because=a_{0}=a_{0}+k a_{e} \\
a \because a_{0}-k & b: \because=a_{0}=a_{e}+k a_{0} \\
b: \because=a_{e}=a_{0}+k a_{0} \\
b: \therefore=a_{0} & =a_{e}+k a_{e}
\end{array}
$$

Two Examples of Category Refinement

MG G^{\prime} for $G \cap O D D$

$$
\begin{array}{ll}
a:: a_{0} & b: \because=a_{0}=a_{0}+k a_{e} \\
a \because a_{0}-k & b: \because=a_{0}=a_{e}+k a_{0} \\
b: \because=a_{e}=a_{0}+k a_{0} \\
b: \therefore=a_{0} & =a_{e}+k a_{e}
\end{array}
$$

Two Examples of Category Refinement

MG G^{\prime} for $G \cap O D D$

$$
\begin{aligned}
& \text { a }:: a_{o} \\
& \mathrm{~b}::=\mathrm{a}_{\mathrm{o}}=\mathrm{a}_{\mathrm{o}}+\mathrm{k} \mathrm{a}_{\mathrm{e}} \\
& \mathrm{c}::=\mathrm{a}_{\mathrm{o}} \mathrm{c}_{\mathrm{o}} \\
& \text { a :: } a_{o}-k \\
& \mathrm{~b}::=\mathrm{a}_{\mathrm{o}}=\mathrm{a}_{\mathrm{e}}+\mathrm{k} \mathrm{a}_{\mathrm{o}} \\
& \mathrm{~b}::=\mathrm{a}_{\mathrm{e}}=\mathrm{a}_{\mathrm{o}}+\mathrm{k} \mathrm{a}_{\mathrm{o}} \\
& \mathrm{~b}::=\mathrm{a}_{\mathrm{e}}=\mathrm{a}_{\mathrm{e}}+\mathrm{k} \mathrm{a}_{\mathrm{e}}
\end{aligned}
$$

Correctness of Procedure

- Suppose that $m \operatorname{der}\left(G^{\prime}\right) \neq \operatorname{mder}(G) \cap L(A)$.
- Then there must be some tree t such that $t \in \operatorname{mder}\left(G^{\prime}\right)$ iff $\pi(t) \notin m \operatorname{der}(G) \cap L(A)$. So head (t) has a category feature c_{q}, but A does not assign state q to the root of $\pi(t)$.
- Since A is deterministic, such a situation may arise only if A entered the slice in a state that differs from the subscripts on the corresponding selector feature of head (t).
- By induction on slices, we eventually reach a slice of size 1 to which A assigned a state that differs from the subscript of the category feature of its lexical item. But A is deterministic. Contradiction.

Further P-Closure Properties

P-Closure Corollaries

- The class of MDTLs over Σ, Feat is p-closed under
- intersection,
- relative complement.
- Given lexicon Lex, the class of MDTLs over subsets of Lex is p -closed under
- complement,
- union.
- For every regular tree language L and linear transduction τ with an MDTL as its co-domain, it holds that $\tau(L)$ is a projection of some MDTL.

Minimalist Grammars with Regular Control

Minimalist Grammars with Regular Control (MGRCs)

An MG is a 6 -tuple $G:=\langle\Sigma$, Feat, F, Lex, $O p, \mathcal{R}\rangle$, where

- Σ, Feat, F, Lex, and $O p$ are defined as usual, and
- \mathcal{R} is a finite collection of regular tree languages.

Its controlled derivation tree language is $\operatorname{cder}(G):=m \operatorname{der}(G) \cap \mathcal{R}$. The derived tree language of G (and its string yield) are obtained from $\operatorname{cder}(G)$ via the mbutt of Kobele et al. (2007).

- MGRCs are more succinct than their refined equivalent.
- Given a lexicon Lex and $n \geq 0$, let Lex ${ }^{(n)}:=\{I \in \operatorname{Lex} \mid I$ has exactly n selector features $\}$. In the worst case

$$
\mid \text { Lex }_{G^{\prime}} \mid=\sum_{i \geq 0}\left(\left|\operatorname{Lex}_{G}^{(i)}\right| \cdot|Q|^{i+1}\right)
$$

Minimalist Grammars with Regular Control

Minimalist Grammars with Regular Control (MGRCs)

An MG is a 6 -tuple $G:=\langle\Sigma$, Feat, F, Lex, $O p, \mathcal{R}\rangle$, where

- Σ, Feat, F, Lex, and $O p$ are defined as usual, and
- \mathcal{R} is a finite collection of regular tree languages.

Its controlled derivation tree language is $\operatorname{cder}(G):=m \operatorname{der}(G) \cap \mathcal{R}$. The derived tree language of G (and its string yield) are obtained from $\operatorname{cder}(G)$ via the mbutt of Kobele et al. (2007).

- MGRCs are more succinct than their refined equivalent.
- Given a lexicon Lex and $n \geq 0$, let Lex ${ }^{(n)}:=\{I \in \operatorname{Lex} \mid /$ has exactly n selector features $\}$. In the worst case

$$
\left|\operatorname{Lex}_{G^{\prime}}\right|=\sum_{i \geq 0}\left(\left|\operatorname{Lex}_{G}^{(i)}\right| \cdot|Q|^{i+1}\right)
$$

Application 1: Reference-Set Computation

- Reference-set constraints are economy conditions similar to OT: Given some input tree t
- compute the set of competing output candidates,
- rank them according to some economy metric,
- discard all sub-optimal candidates.
- Graf (2010a,b): Most reference-set constraints in the syntactic literature can be modelled by linear tree transductions. In particular, those constraints act as filters, so the transductions have MDTLs as their domain and co-domain.
- From the previous corollary for linear transductions it follows that the expressivity of MGs is not increased.

Application 2: Non-Local Dependencies without Movement

- Expletive constructions in English show subject-verb agreement even though no movement seems to be involved.
(1) a. There seems to be a man in the garden.
b. There seem to be three men in the garden.
- The subject position is filled by the expletive \Rightarrow arguably no movement

Proposal

Regular constraint operating on "pseudo-features" (not part of the MG itself) \Rightarrow enforce non-local dependencies without movement

- Quite generally, this allows us to enrich MGs with AGREE (Chomsky 2000).

Application 3: Relativized Minimality

- In Minimalist syntax, the contrast below is explained by Relativized Minimality: If a movement licensor feature can be checked by two different phrases, the closer one moves.
(2) Who/what bought t who/what?
(3) \quad Who/What bought who/what t ?
- Relativized Minimality relies on both who and what carrying a -wh feature. This idea conflicts with the SMC, and in order to derive (2), we must allow who/ what to appear without a - wh-feature. But then nothing in the MG blocks (3).

Proposal

Moving phrase XP with feature $-f$ to ZP is banned if there is a closer YP with pseudo feature $-f$.

Further Applications

- Island constraints
- Phases
- that-trace filter
- L-marking
- Limited feature percolation/Pied-Piping
- Control/Binding(?)

Conclusion

- MDTLs are not closed under intersection with regular tree languages.
- However, they enjoy p-closure properties akin to regular languages:
- intersection,
- intersection with regular tree languages,
- union,
- (relative) complement,
- certain linear transductions.
- Hence, enriching MGs with regular control over their derivations does not increase their generative capacity.
- Numerous applications; in particular, ideas from model-theoretic syntax can be easily incorporated

References

Chomsky, Noam. 2000. Minimalist inquiries: The framework. In Step by step: Essays on minimalist syntax in honor of Howard Lasnik, ed. Roger Martin, David Michaels, and Juan Uriagereka, 89-156. Cambridge, Mass.: MIT Press.
Graf, Thomas. 2010a. Reference-set constraints as linear tree transductions via controlled optimality systems. In Proceedings of the $15^{\text {th }}$ Conference on Formal Grammar. To appear.
Graf, Thomas. 2010b. A tree transducer model of reference-set computation. UCLA Working Papers in Linguistics 15:1-53.
Harkema, Henk. 2001. A characterization of minimalist languages. In Logical aspects of computational linguistics (lacl'01), ed. Philippe de Groote, Glyn Morrill, and Christian Retoré, volume 2099 of Lecture Notes in Artificial Intelligence, 193-211. Berlin: Springer.
Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An automata-theoretic approach to minimalism. In Model Theoretic Syntax at 10, ed. James Rogers and Stephan Kepser, 71-80.
Michaelis, Jens. 1998. Derivational minimalism is mildly context-sensitive. Lecture Notes in Artificial Intelligence 2014:179-198.
Michaelis, Jens. 2001. Transforming linear context-free rewriting systems into minimalist grammars. Lecture Notes in Artificial Intelligence 2099:228-244.
Rogers, James. 1998. A descriptive approach to language-theoretic complexity. Stanford: CSLI.
Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in Computer Science. 68-95. Berlin: Springer.

