MSO	MGs	Model Theory	Generalizing Move	Conclusion	References

Movement-Generalized Minimalist Grammars

Thomas Graf tgraf@ucla.edu tgraf.bol.ucla.edu

University of California, Los Angeles

LACL 2012 July 2, 2012

MSO 0000	MGs 00000	Model Theory	Generalizing Move	Conclusion O	References
Outline	2				

- 2 Minimalist Grammars (MGs)
- 3 Model-Theoretic Perspective on MGs

MSO ●○○○	MGs 00000	Model Theory	Generalizing Move	Conclusion O	References
MSO a	as a Gra	ph Descripti	on Language		

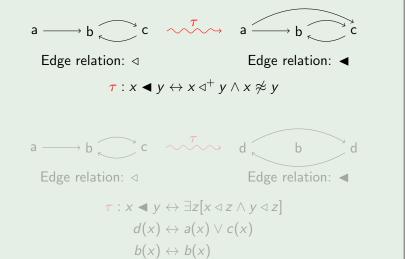
- $\bullet~\text{MSO} = \text{extension}$ of FO with quantification over sets
- A set L of graphs is MSO-definable iff there is an MSO-formula φ such that L is the set of models of φ.
- A tree language is regular iff it is MSO-definable.

Common Predicates						
Symbol	Relation					
\triangleleft	immediate dominance					
\triangleleft^+	proper dominance					
\approx	equivalence					
σ	label σ					

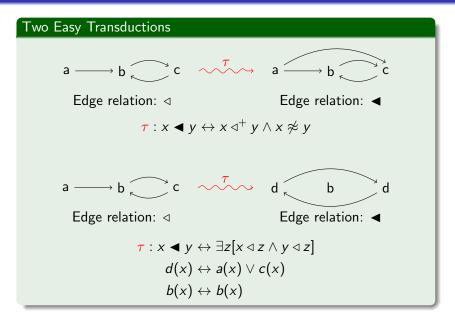
MSO ○●○○	MGs 00000	Model Theory	Generalizing Move	Conclusion O	References
MSO	Graph T	ransductions			

Basic Idea

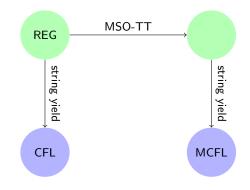
Interpret output graph as (sub)structure of the input graph


Definition (MSO graph transduction)

A (non-copying) MSO graph transduction τ consists of


- ullet an MSO formula ϕ defining the domain of the input graph,
- $\bullet\,$ an MSO formula ψ defining the domain of the output graph,
- a family of MSO formulas defining the relations in the output graph in terms of the relations in the input graph.

A graph transduction from trees to trees is called an MSO tree transduction (MSO-TT).


MSO ○○●○	MGs 00000	Model Theory	Generalizing Move	Conclusion O	References
Examp	les				

MSO ○○○●	MGs 00000	Model Theory	Generalizing Move	Conclusion O	References
MSO a	and MC	FLs			

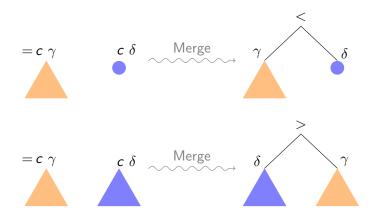
- Regular tree languages yield CFLs.
- However, the class of MCFLs is identical to the string yield of the image of the regular tree languages under MSO tree transductions (cf. Mönnich 2006).

$\begin{array}{l} \mathsf{MCFL} \equiv \\ \mathsf{str}(\mathsf{MSO}\text{-}\mathsf{TT}(\mathsf{REG})) \end{array}$

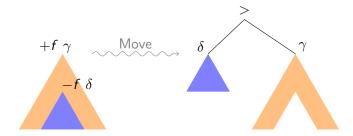
MSO 0000	MGs ●0000	Model Theory	Generalizing Move	Conclusion O	References
Minim	alist Gra	mmars			

- Originally formulated in Stabler (1997)
- Highly lexicalized formalism inspired by Minimalist syntax (Chomsky 1995).
- Weakly equivalent to MCFGs (Harkema 2001; Michaelis 1998, 2001)
- More succinct than MCFGs (Stabler 2012)
- Derivation trees provide compact finite-state representation (Michaelis 2001; Kobele et al. 2007)
- Attractive closure properties (Graf 2011; Kobele 2011)
- Very extensible while preserving weak generative capacity

The 4	toms of a	a Minimalist	Grammar		
MSO 0000	MGs ○●○○○	Model Theory	Generalizing Move	Conclusion O	References


Minimalist Grammars (Stabler 1997)

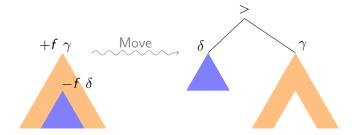
An MG is a 5-tuple $G := \langle \Sigma, Feat, F, Lex, Op \rangle$, where


- Σ is an alphabet,
- Feat is a non-empty finite set of
 - category features f,
 - selector features = f,
 - movement licensee features -f,
 - movement licensor features +f,
- $F \subseteq Feat$ is a set of final category features,
- the lexicon *Lex* is a finite subset of $\Sigma^* \times Feat^+$,
- Op := {merge, move} is the set of structure-building operations.

For every MGs it suffices to specify Lex and F.

MSO 0000	MGs ○○●○○	Model Theory	Generalizing Move	Conclusion O	References
Opera	tion 1: I	Merge			

MSO 0000	MGs 000●0	Model Theory	Generalizing Move	Conclusion O	References
Opera	tion 2: I	Move			



Shortest Move Constraint (SMC)

No two lexical items may have the same licensee feature as their first unchecked feature.

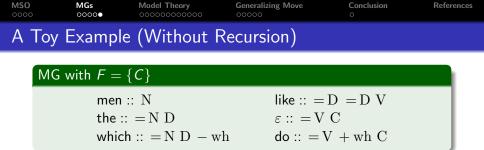
$$-f \gamma \qquad -f \delta$$

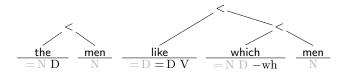
Shortest Move Constraint (SMC)

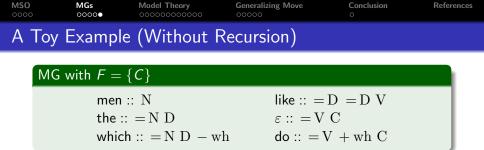
No two lexical items may have the same licensee feature as their first unchecked feature.

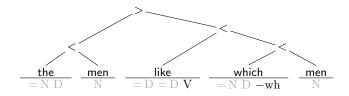
MSO 0000	MGs 0000●	Model Theory	Generalizing Move	Conclusion O	References
Α Το	/ Example	e (Without F	Recursion)		
M	G with $F = \frac{1}{2}$ men		like :: =	D = D V	
		= N D n :: = N D - w	$\varepsilon ::= V$ h do :: = '	C = C + wh C	

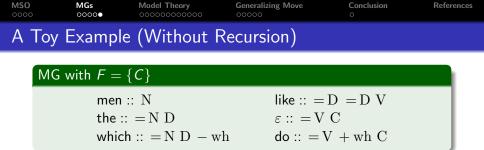
MSO 0000	MGs 0000●	Model Theory	Generalizing Move	Conclusion O	References
Α Το	/ Example	(Without F	Recursion)		
M	G with $F = \{$	[<i>C</i> }			
	men :: N		like :: =	D = D V	
	the ::	= N D	$\varepsilon :: = V$	C	
	which	$\therefore = N D - w$	h do :: =	V + wh C	

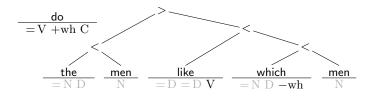

the	men	like	which	men
= N D	N	= D = D V	= N D $-$ wh	Ν

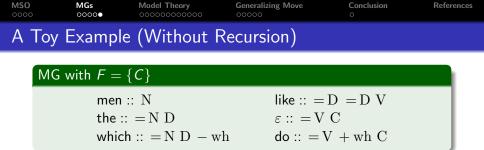

MSO 0000	MGs 0000●	Model Theory	Generalizing Move	Conclusion O	References			
A Toy Example (Without Recursion)								
М	G with $F =$	{ <i>C</i> }						
	men :: N		like :: =	D = D V				
	the :	:=N D	$\varepsilon :: = V$	С				
	whic	h :: = N D - w	'h do :: = '	V + wh C				

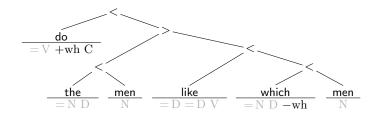


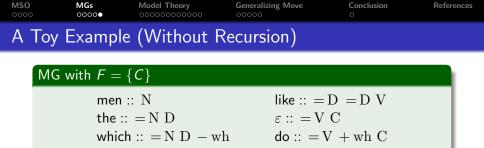

MSO 0000	MGs 0000●	Model Theory	Generalizing Move	Conclusion O	References			
A Toy Example (Without Recursion)								
М	G with $F =$	{ <i>C</i> }						
	men :: N		like :: =	D = D V				
	the :	= N D	$\varepsilon :: = V$	С				
	whic	h :: = N D - w	h do :: = '	V + wh C				

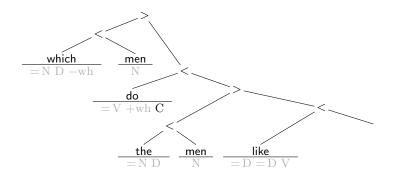


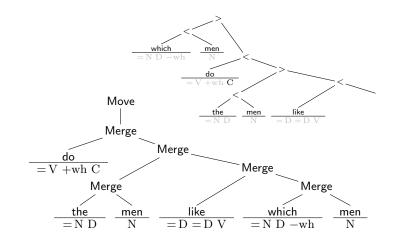












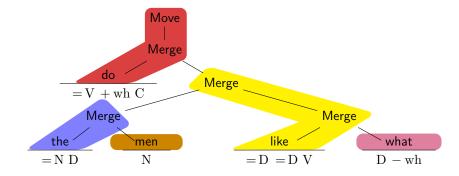
MSO 0000	MGs 00000	Model Theory ●00000000000	Generalizing Move	Conclusion O	References
A Mod	el-Theor	retic View of	MGs		

- Every MG is uniquely specified by its set of derivations.
- Derivations are trees \Rightarrow can be defined model-theoretically
- Each node in a derivation "belongs" to some lexical item \Rightarrow lexicon is a finite set of treelets called **slices**
- A derivation tree is a combination of slices that respects the constraints of the feature calculus.
- A given MG's derivation tree language is the largest set of such well-formed slice combinations.
- Crucially, the constraints of the feature calculus can be expressed in tree-geometric terms.

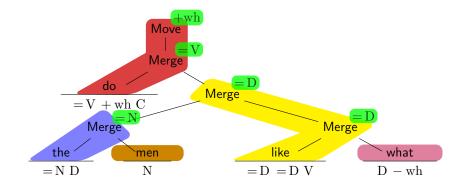
MSO 0000	MGs 00000	Model Theory ○●○○○○○○○○○○	Generalizing Move	Conclusion O	References
Deriva	ation Tre	es			

MSO 0000	MGs 00000	Model Theory ००●००००००००	Generalizing Move	Conclusion O	References
Slices					

Intuitively, slices are the **derivation tree equivalent of phrasal projection**: Each slice marks the subpart of the derivation that a lexical item has control over by virtue of its selector and licensor features.


Slices

Given a derivation tree t and lexical item l occurring in t, slice(l) is defined as follows:


- $I \in \text{slice}(I)$,
- if node n of t immediately dominates a node s ∈ slice(1), then n ∈ slice(1) iff the operation denoted by the label of n erased a selector or licensor feature of 1.

The unique $n \in \text{slice}(I)$ that isn't (properly) dominated by any $n' \in \text{slice}(I)$ is called the *slice root* of *I*.

MSO 0000	MGs 00000	Model Theory ०००●००००००००	Generalizing Move	Conclusion O	References
Exam	ble of Sl	ices			

MSO 0000	MGs 00000	Model Theory ०००●००००००००	Generalizing Move	Conclusion O	References
Exam	ple of SI	ices			

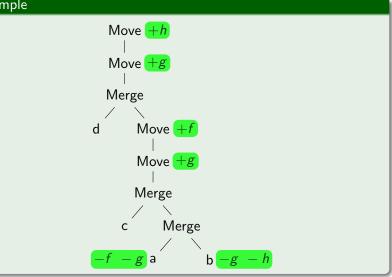
MSO 0000	MGs 00000	Model Theory ○○○○●○○○○○○○	Generalizing Move	Conclusion O	References
Regul	ating Me	erge			

Merge

If *n* is a Merge node associated to selector feature = f, it immediately dominates the slice root of some lexical item with category feature *f*.

MSO 0000	MGs 00000	Model Theory	Generalizing Move	Conclusion O	References
Regula	ting Mo	ove: Finding	Occurrences		

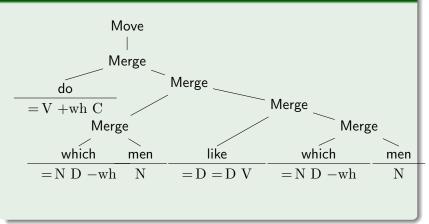
A Move node that checks a licensee feature of lexical item I is called an **occurrence** of I.


Definition (Occurrences)

For every combination t of slices and lexical item / in t with licensee features $-f_1 \cdots - f_n$, the **occurrences** of I in t are:

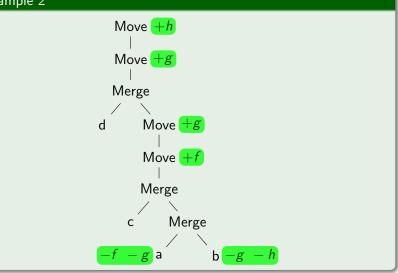
- $occ_0(I)$ is the mother of the slice root of I in t (if it exists).
- $occ_i(l)$ is the unique node *m* of *t* labeled Move such that
 - m is associated to $+f_i$, and
 - *m* properly dominates *occ*_{*i*-1}, and
 - there is no node *n* in *t* such that
 - n is associated to $+f_i$, and
 - n properly dominates occ_{i-1}, and
 - *n* is properly dominated by *m*.

Move

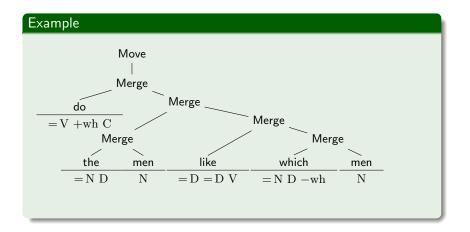

For every lexical item I with licensee features $-f_1 \cdots - f_n$, there exist nodes m_1, \ldots, m_n such that m_i (and no other node) is the *i*th occurrence of I.

SMC

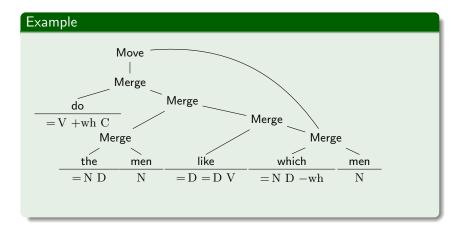
For every Move node m there is exactly one lexical item l such that m is an occurrence of l.


MSO 0000	MGs 00000	Model Theory ○○○○○○○●○○○	Generalizing Move	Conclusion O	References
Why t	he SMC	Works			

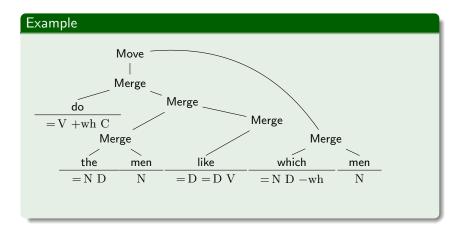
Example 1


MSO 0000	MGs 00000	Model Theory ○○○○○○○○○●○	Generalizing Move	Conclusion O	References
Mapp	oing to D	erived Trees			

- Derivation trees can be mapped to derived trees by a multi bottom-up transducer (Kobele et al. 2007)
- However, an MSO tree transduction is more intuitive.
- The transduction adds a dominance branch from an LI's highest occurrence to the root of its slice. The original dominance branch is removed.
- Linear order and interior node labels also need to be changed. See the paper for details.


The Transduction Formula

 $x \blacktriangleleft y \leftrightarrow x \triangleleft y \lor \exists I [f \text{-}occ(x, l) \land sliceroot(y, l)]$ f-occ(x, l) \leftrightarrow occurrence(x, l) $\land \neg \exists z [z \triangleleft^+ x \land occurrence(z, l)]$


MSO 0000	MGs 00000	Model Theory ○○○○○○○○○○●	Generalizing Move	Conclusion O	References
Examp	le Trans	sduction			

MSO 0000	MGs 00000	Model Theory ○○○○○○○○○○●	Generalizing Move	Conclusion O	References
Examp	ole Tran	sduction			

MSO 0000	MGs 00000	Model Theory ○○○○○○○○○○●	Generalizing Move	Conclusion O	References
Examp	ole Tran	sduction			

MSO 0000	MGs 00000	Model Theory	Generalizing Move ●0000	Conclusion O	References
The Ba	asic Idea	a			

- We now have a FO-definable theory of Minimalist derivations and a simple MSO transduction to derived trees.
- But there is wiggle room: MGs generate MCFLs, and MCFL = str(MSO-TT(REG)).
- So we can change certain parameters in the definitions, as long as MSO-definability is preserved

 \Rightarrow parametric template to create new variants of Move

MSO 0000	MGs 00000	Model Theory	Generalizing Move ○●○○○	Conclusion O	References
Parame	eters of	Move			

The variants of Move discussed in the syntactic literature vary along several dimensions:

- Possible landing sites: raising, lowering, sidewards
- Size of moved constituent: phrase, head, pied-piped phrase
- Visibility: overt, covert
- Directionality: left, right

Loci of Parameters

Parameter	Locus
landing site	definition of occurrence
size	transduction
visibility	transduction
directionality	transduction

MSO 0000	MGs 00000	Model Theory	Generalizing Move ○○●○○	Conclusion O	References
Replaci	ng Proj	per Dominan	ice		

Reminder: Definition of Occurrence

 $occ_i(l)$ is the unique node m of t labeled Move such that

- m is associated to $+f_i$, and
- *m* properly dominates occ_{i-1}, and
- there is no node *n* in *t* such that
 - n is associated to $+f_i$, and
 - *n* properly dominates *occ*_{*i*-1}, and
 - *n* is properly dominated by *m*.

Alternative Instantiations

Relation

inverse proper dominance proper dominance across at most 1 slice slice containment slice containment restricted to wh-phrases Movement Type lowering antilocal raising sidewards wh-clustering

MSO 0000	MGs 00000	Model Theory	Generalizing Move 000●0	Conclusion O	References
Size o	f Moved	Constituent			

Reminder: The Transduction Formula

 $x \blacktriangleleft y \leftrightarrow x \triangleleft y \lor \exists I[f \text{-}occ(x, l) \land \text{sliceroot}(y, l)]$

Alternative Instantiations	
Formula	Movement Type
$y \approx I$	head movement
$\exists l'[sliceroot(y, l') \land selects(l', l)]$	pied-piping

MSO 0000	MGs 00000	Model Theory	Generalizing Move ○○○○●	Conclusion O	References	
Further Observations						

- With respect to directionality, all movement types can be **replaced by a combination of raising and lowering** (but new lexical items might be needed to furnish extra landing sites).
- In most cases, strong generative capacity is increased (e.g. lowering makes it possible to generate any given TAL with X'-like trees).
- Many MSO-definable relations do not yield useful movement types (e.g. all reflexive and all symmetric relations).

MSO 0000	MGs 00000	Model Theory	Generalizing Move	Conclusion ●	References
Concl	usion				

What was Accomplished?

- MSO definition of MGs as derivation tree languages with a mapping to derived trees.
- Definitions provide a parameterized template that can easily be tuned to create new movement types without increasing weak generative capacity.

Why Should You Care?

- Combined with the results of Graf (2011) and Kobele (2011), we now have a general system for adding constraints and movement types to MGs ⇒ extremely flexible framework (just about anything from the literature can be incorporated)
- New movement types make it possible to emulate other formalisms ⇒ resource sharing, new perspectives

MSO 0000	MGs 00000	Model Theory	Generalizing Move	Conclusion O	References
Referer	nces I				

Chomsky, Noam. 1995. The minimalist program. Cambridge, Mass.: MIT Press.

- Graf, Thomas. 2011. Closure properties of minimalist derivation tree languages. In LACL 2011, ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of Lecture Notes in Artificial Intelligence, 96–111.
- Harkema, Henk. 2001. A characterization of minimalist languages. In *Logical aspects of computational linguistics (lacl'01)*, ed. Philippe de Groote, Glyn Morrill, and Christian Retoré, volume 2099 of *Lecture Notes in Artificial Intelligence*, 193–211. Berlin: Springer.
- Kobele, Gregory M. 2011. Minimalist tree languages are closed under intersection with recognizable tree languages. In *LACL 2011*, ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of *Lecture Notes in Artificial Intelligence*, 129–144.
- Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An automata-theoretic approach to minimalism. In *Model Theoretic Syntax at 10*, ed. James Rogers and Stephan Kepser, 71–80.
- Michaelis, Jens. 1998. Derivational minimalism is mildly context-sensitive. *Lecture Notes in Artificial Intelligence* 2014:179–198.
- Michaelis, Jens. 2001. Transforming linear context-free rewriting systems into minimalist grammars. *Lecture Notes in Artificial Intelligence* 2099:228–244.

Mönnich, Uwe. 2006. Grammar morphisms. Ms. University of Tübingen.

MSO 0000	MGs 00000	Model Theory	Generalizing Move	Conclusion O	References
Refere	ences II				

Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in Computer Science, 68–95. Berlin: Springer.

Stabler, Edward P. 2012. Bayesian, minimalist, incremental syntactic analysis. Ms., UCLA.