The Syntactic Algebra of Adjuncts

Thomas Graf tgraf@ucla.edu tgraf.bol.ucla.edu

University of California, Los Angeles

CLS 2013 University of Chicago

The Talk in a Nutshell

Neo-Davidsonian semantics: adjuncts are interpreted as conjuncts

- (1) a. John danced beautifully.
 - b. $\exists e[\operatorname{dance}(e, \operatorname{john}) \land \operatorname{beautiful}(e)]$

Take-Home Message

- Adjuncts behave syntacticially like logical and, too.
- Properties of adjuncts give rise to grammaticality inferences.
- Adjunct Island Constraint and parasitic gaps follow from these inferences.

Outline

- A Theory-Neutral Definition of Adjuncts
- Adjuncts and Grammaticality Inferences
 - Characterizing Adjunct Languages
 - Adjunct Algebras
- 3 Empirical Implications
 - Deriving the AIC
 - Parasitic Gaps
 - Some Open Problems
- Conclusion

Adjuncts in the Literature

Adjuncts . . .

- have no special operational status (CG; Cinque 1999),
- are pair-merged (Chomsky 1995),
- are late-merged (Stepanov 2001),
- are inserted but not merged immediately (Hunter 2012),
- involve asymmetric feature checking (Frey and Gärtner 2002),

Empirical Implications

Problem

Can we abstract away from these details? Properties that hold of every conceivable implementation?

Two Surface Properties of Adjuncts

Optionality

Defining Adjuncts

Adjuncts can be omitted.

(Obviously) I will (easily) ace this ((very) challenging) exam (because I (really) am that smart).

Independence

Independently well-formed adjuncts can be combined.

- (3) a. Obviously I will ace this exam.
 - b. I will easily ace this exam.
 - c. Obviously I will easily ace this exam.

Phrase marker a is an **Adjunct** iff it is optional and independent.

Two Surface Properties of Adjuncts

Optionality

Adjuncts can be omitted.

(2) (Obviously) I will (easily) ace this ((very) challenging) exam (because I (really) am that smart).

Independence

Independently well-formed adjuncts can be combined.

- (3) a. Obviously I will ace this exam.
 - b. I will easily ace this exam.
 - c. Obviously I will easily ace this exam.

Definition (Adjuncts)

Phrase marker a is an **Adjunct** iff it is optional and independent.

Defining Adjuncts

What do these properties tell us about grammars with Adjuncts? What is the general shape of the **generated language?**

Let s and t be (multi-dominance) trees.

Then t is an **Adjunct extension** of s for grammar G (s < t) iff t is the result of inserting one or more Adjuncts of G in s.

- Obviously I will ace this exam < G
 - Obviously I will easily ace this exam
- I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not \subset_G$ I will easily ace this exam
- I will ace this exam $\not <_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Defining Adjuncts

What do these properties tell us about grammars with Adjuncts? What is the general shape of the generated language?

Definition (Adjunct Extensions)

Let s and t be (multi-dominance) trees.

Then **t** is an **Adjunct extension** of **s** for grammar $G(s <_G t)$ iff t is the result of inserting one or more Adjuncts of G in s.

- Obviously I will ace this exam < G
 - Obviously I will easily ace this exam
- I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not \subset_G$ I will easily ace this exam
- I will ace this exam $\not <_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Adjunct Extension

Defining Adjuncts

What do these properties tell us about grammars with Adjuncts? What is the general shape of the **generated language?**

Definition (Adjunct Extensions)

Let s and t be (multi-dominance) trees.

Then t is an **Adjunct extension** of s for grammar G ($s <_G t$) iff t is the result of inserting one or more Adjuncts of G in s.

- Obviously I will ace this exam <_G Obviously I will easily ace this exam
- I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not \subset_G$ I will easily ace this exam
- I will ace this exam $\not <_G$ I will easily ace this test
- exam will this I ace < easily exam will this I ace

Defining Adjuncts

What do these properties tell us about grammars with Adjuncts? What is the general shape of the **generated language?**

Definition (Adjunct Extensions)

Let **s** and **t** be (multi-dominance) trees.

Then t is an **Adjunct extension** of s for grammar G ($s <_G t$) iff t is the result of inserting one or more Adjuncts of G in s.

- Obviously I will ace this exam <_G Obviously I will easily ace this exam
- I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not \subset_G$ I will easily ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace < easily exam will this I ace

Defining Adjuncts

What do these properties tell us about grammars with Adjuncts? What is the general shape of the **generated language?**

Definition (Adjunct Extensions)

Let s and t be (multi-dominance) trees.

Then t is an **Adjunct extension** of s for grammar G ($s <_G t$) iff t is the result of inserting one or more Adjuncts of G in s.

- Obviously I will ace this exam <_G
 - Obviously I will easily ace this exam
- I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not \subset_G$ I will easily ace this exam
- I will ace this exam $\not <_G$ I will easily ace this test
- exam will this I ace < easily exam will this I ace

Adjunct Extension

Defining Adjuncts

What do these properties tell us about grammars with Adjuncts? What is the general shape of the **generated language?**

Definition (Adjunct Extensions)

Let s and t be (multi-dominance) trees.

Then t is an **Adjunct extension** of s for grammar G ($s <_G t$) iff t is the result of inserting one or more Adjuncts of G in s.

- Obviously I will ace this exam <_G
 - Obviously I will easily ace this exam
- I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not \subset_G$ I will easily ace this exam
- I will ace this exam $\not <_G$ I will easily ace this test
- exam will this I ace < easily exam will this I ace

Adjunct Extension

Defining Adjuncts

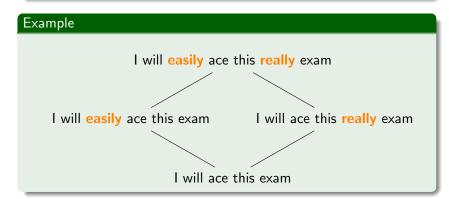
What do these properties tell us about grammars with Adjuncts? What is the general shape of the generated language?

Definition (Adjunct Extensions)

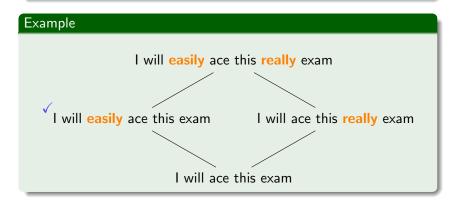

Let s and t be (multi-dominance) trees.

Then t is an **Adjunct extension** of s for grammar G ($s <_G t$) iff t is the result of inserting one or more Adjuncts of G in s.

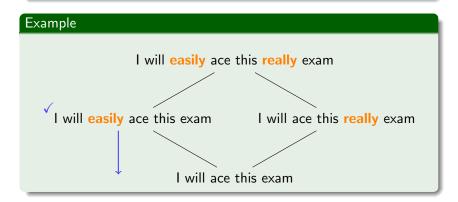
- Obviously I will ace this exam <_G
 - Obviously I will easily ace this exam
- I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not \subset_G$ I will easily ace this exam
- I will ace this exam $\not <_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace


Defining Adjuncts

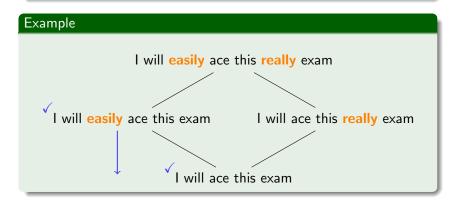
Theorem (Optionality Closure)


Defining Adjuncts

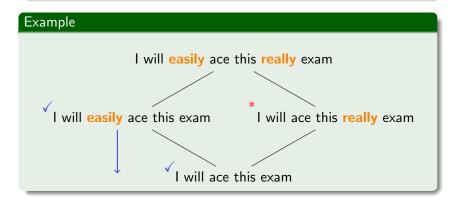
Theorem (Optionality Closure)


Defining Adjuncts

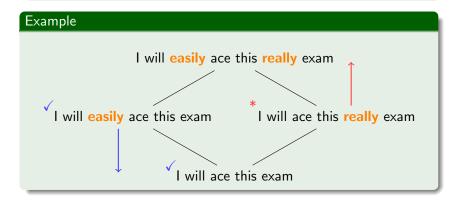
Theorem (Optionality Closure)


Defining Adjuncts

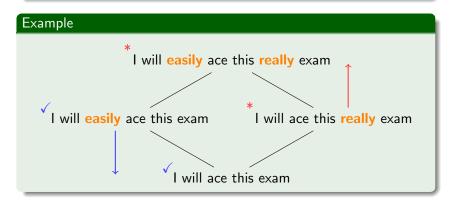
Theorem (Optionality Closure)


Defining Adjuncts

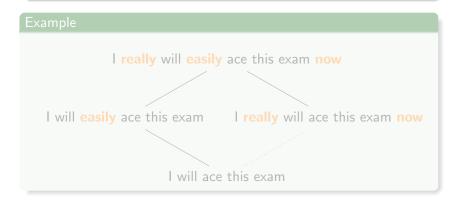
Theorem (Optionality Closure)


Defining Adjuncts

Theorem (Optionality Closure)

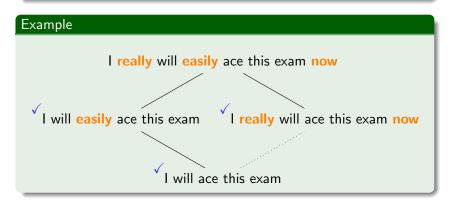

Defining Adjuncts

Theorem (Optionality Closure)


Defining Adjuncts

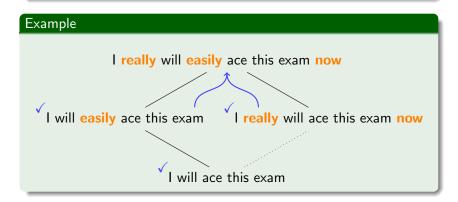
Theorem (Optionality Closure)

Defining Adjuncts


Theorem (Independence Closure)

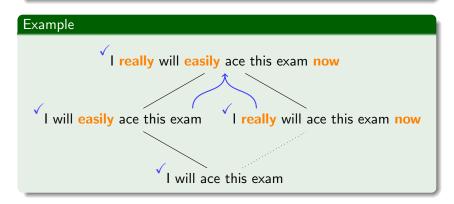
Independence Closure

Defining Adjuncts

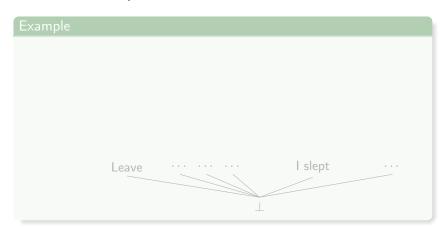

Theorem (Independence Closure)

Independence Closure

Defining Adjuncts


Theorem (Independence Closure)

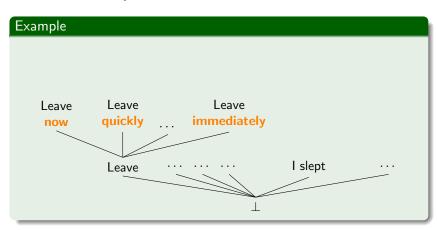
Independence Closure


Defining Adjuncts

Theorem (Independence Closure)

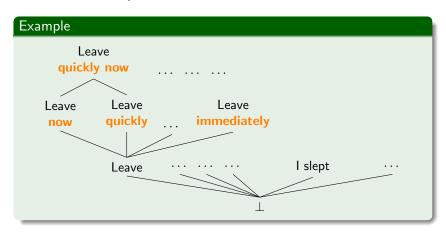
Defining Adjuncts

- Order the set of all possible (not necessarily grammatical) trees by G's Adjunct extension relation.
- Add a dummy element \perp at the bottom.

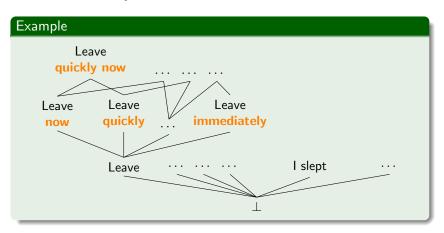


Defining Adjuncts

- Order the set of all possible (not necessarily grammatical) trees by G's Adjunct extension relation.
- Add a dummy element \perp at the bottom.



- Order the set of all possible (not necessarily grammatical) trees by G's Adjunct extension relation.
- Add a dummy element \perp at the bottom.


Defining Adjuncts

- Order the set of all possible (not necessarily grammatical) trees by G's Adjunct extension relation.
- Add a dummy element \perp at the bottom.

Defining Adjuncts

- Order the set of all possible (not necessarily grammatical) trees by G's Adjunct extension relation.
- Add a dummy element \perp at the bottom.

Adjunct Languages are Collections of Ideals

Definition (Ideal)

A non-empty subset S of a poset $\langle A, \leq \rangle$ is an **ideal** iff

- for every $x \in S$, $y \le x$ implies $y \in S$, and
- for all $x, y \in S$ there is some $z \in S$ such that x < z and y < z.

$\mathsf{Theorem}$

Defining Adjuncts

The tree language generated by grammar G is a collection of ideals over the Adjunct Algebra induced by G (modulo \perp).

Interim Summary

Any implementation of Adjunction that captures Optionality and Independence yields a grammar formalism where

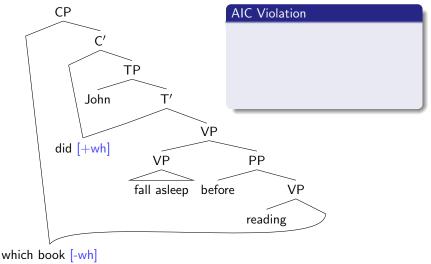
- ullet grammaticality is downward entailing with respect to $<_G$,
- ullet ungrammaticality is upward entailing with respect to $<_G$,
- V grammaticality is preserved under "fusion".

Parallels to Logical And

- Grammaticality is Downward Entailing $a \wedge b = 1$ implies a = 1
- Ungrammaticality is Upward Entailing a = 0 implies $a \wedge b = 0$
- Grammaticality is Preserved Under "Fusion" $a \wedge b = 1$ and $a \wedge c = 1$ jointly imply $a \wedge b \wedge c = 1$

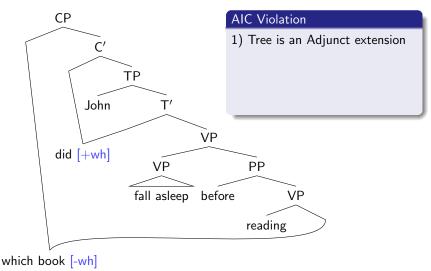
Interim Summary

Any implementation of Adjunction that captures Optionality and Independence yields a grammar formalism where


- ullet grammaticality is downward entailing with respect to $<_G$,
- ullet ungrammaticality is upward entailing with respect to $<_G$,
- V grammaticality is preserved under "fusion".

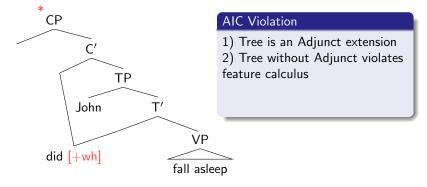
Parallels to Logical And

- Grammaticality is Downward Entailing $a \wedge b = 1$ implies a = 1
- Ungrammaticality is Upward Entailing a = 0 implies $a \wedge b = 0$
- Grammaticality is Preserved Under "Fusion" $a \wedge b = 1$ and $a \wedge c = 1$ jointly imply $a \wedge b \wedge c = 1$

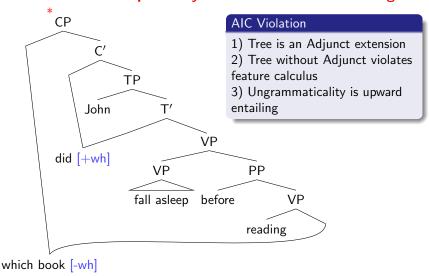

Defining Adjuncts

The AIC follows from optionality closure and feature checking.

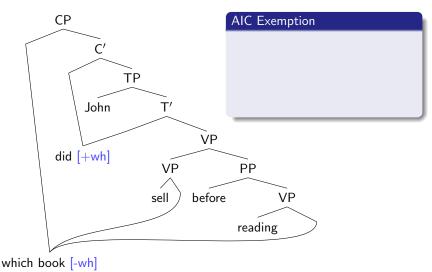
Defining Adjuncts


The AIC follows from optionality closure and feature checking.

Deriving the AIC


Defining Adjuncts

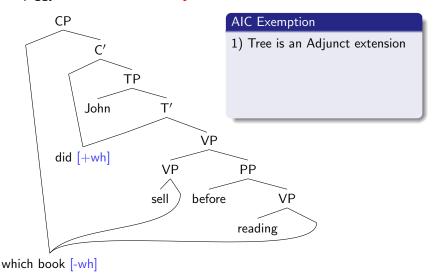
The AIC follows from optionality closure and feature checking.



Defining Adjuncts

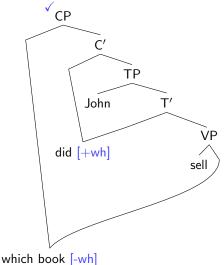
The AIC follows from optionality closure and feature checking.

PGs piggyback on a mandatory feature checker.



Empirical Implications

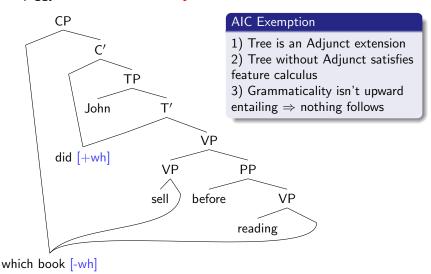
00000


Defining Adjuncts

PGs piggyback on a mandatory feature checker.

Defining Adjuncts

PGs piggyback on a mandatory feature checker.



AIC Exemption

- 1) Tree is an Adjunct extension
- 2) Tree without Adjunct satisfies feature calculus

Defining Adjuncts

PGs piggyback on a mandatory feature checker.

Why Parasitic Gaps are Idempotent

Multiple PGs may piggyback on a single mover.

Which movie did John whilst mocking throw in the trash after watching?

Follows from independence closure

- a. Which movie did John whilst mocking throw in the (5) trash?
 - b. Which movie did John throw in the trash after watching?

Not All adjuncts are Adjuncts

Defining Adjuncts

Some adjuncts can be extracted from (Truswell 2007):

(6) Which car did John drive Mary crazy trying to fix?

Truswell's event-based generalization \approx non-island adjuncts more tightly integrated semantically

	sem-argument	sem-adjunct
syn-adjunct	Truswell adjuncts	Adjuncts
syn-argument	arguments	ECM-marked adjuncts (?)

Not All adjuncts are Adjuncts

Defining Adjuncts

Some adjuncts can be extracted from (Truswell 2007):

(6) Which car did John drive Mary crazy trying to fix?

Truswell's event-based generalization \approx non-island adjuncts more tightly integrated semantically

	sem-argument	sem-adjunct
syn-adjunct	Truswell adjuncts	Adjuncts
syn-argument	arguments	ECM-marked adjuncts (?)

V2 in German

- (7)a. Gestern hat der Hans die Maria geküsst. vesterday has the Hans the Maria kissed 'Yesterday, John kissed Mary.'
 - b. Hat der Hans die Maria geküsst? has the Hans the Maria kissed 'Did John kiss Mary?'
 - * Hat der Hans die Maria geküsst. has the Hans the Maria kissed 'John kissed Mary.'

Possible Answers

- V2 is post-syntactic and thus irrelevant for Optionality.
- V1 is grammatical, but restricted by discourse factors (e.g. telling jokes).

(7)Gestern hat der Hans die Maria geküsst. a. vesterday has the Hans the Maria kissed 'Yesterday, John kissed Mary.'

Empirical Implications

- b. Hat der Hans die Maria geküsst? has the Hans the Maria kissed 'Did John kiss Mary?'
- * Hat der Hans die Maria geküsst. has the Hans the Maria kissed 'John kissed Mary.'

Possible Answers

- V2 is post-syntactic and thus irrelevant for Optionality.
- V1 is grammatical, but restricted by discourse factors (e.g. telling jokes).

Summary

- Adjuncts characterized by Optionality and Independence
- enforces certain grammatical inferences
 - ↓ grammaticality is preserved under Adjunct removal
 - † ungrammaticality is preserved under Adjunct insertion
 - V grammaticality is preserved under Adjunct combination
 - ⇒ AIC falls out naturally, yet allow for parasitic gaps

References

- Chomsky, Noam. 1995. The minimalist program. Cambridge, Mass.: MIT Press.
- Cinque, Guglielmo. 1999. Adverbs and functional heads: A cross-linguistic perspective. Oxford: Oxford University Press.
- Frey, Werner, and Hans-Martin Gärtner. 2002. On the treatment of scrambling and adjunction in minimalist grammars. In *Proceedings of the Conference on Formal Grammar (FGTrento)*, 41–52. Trento.
- Graf, Thomas. 2011. Closure properties of minimalist derivation tree languages. In LACL 2011, ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of Lecture Notes in Artificial Intelligence, 96–111. Heidelberg: Springer.
- Hunter, Tim. 2012. Deconstructing merge and move to make room for adjunction. Under review.
- Kobele, Gregory M. 2011. Minimalist tree languages are closed under intersection with recognizable tree languages. In *LACL 2011*, ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of *Lecture Notes in Artificial Intelligence*, 129–144.
- Stepanov, Arthur. 2001. Late adjunction and minimalist phrase structure. *Syntax* 4:94–125.
- Truswell, Robert. 2007. Tense, events, and extraction from adjuncts. In *Proceedings* of the 43rd Annual Meeting of the Chicago Linguistic Society.

Constraints through Operations

Constraints and operations are **closely connected**.

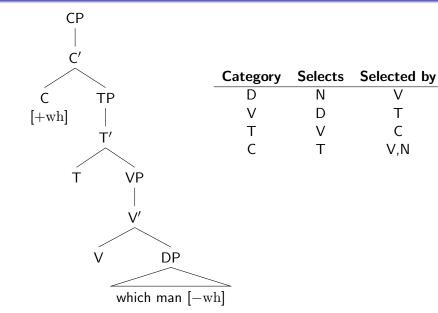
Theorem (Graf 2011; Kobele 2011)

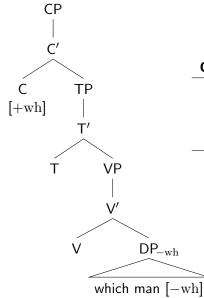
A constraint can be expressed via Merge iff it can be computed using only a finitely bounded amount of working memory.

- Intuition: Use feature calculus to emulate how information flows through the tree during computation
- Doable for almost all constraints from the syntactic literature
- Relies on symmetry of c-selection (category features & selection features)

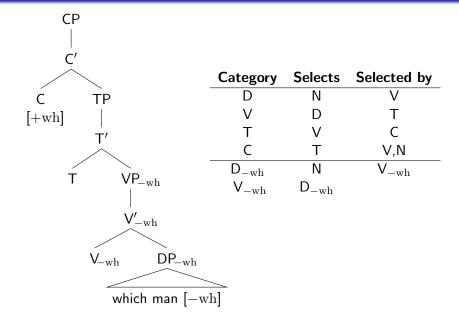
head-argument relation ≡ information pipeline

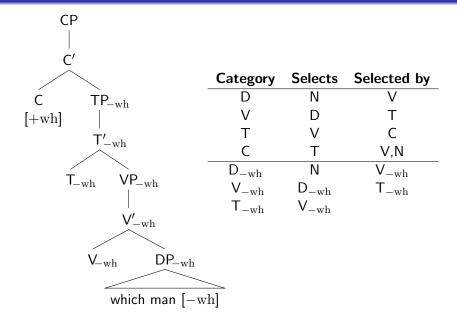
Constraints through Operations

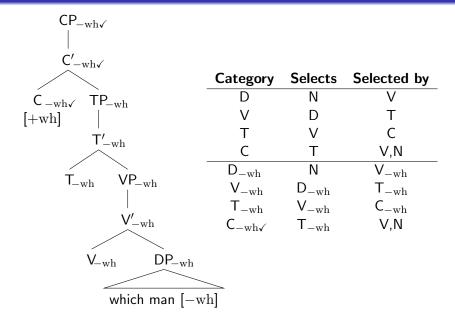

Constraints and operations are **closely connected**.

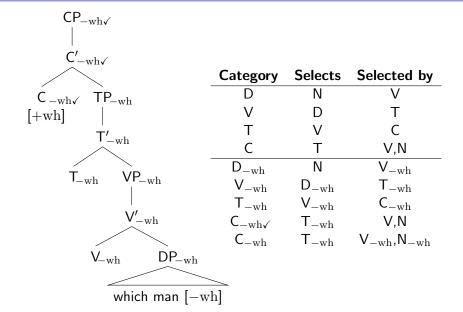

Theorem (Graf 2011; Kobele 2011)

A constraint can be expressed via Merge iff it can be computed using only a finitely bounded amount of working memory.


- Intuition: Use feature calculus to emulate how information flows through the tree during computation
- Doable for almost all constraints from the syntactic literature
- Relies on symmetry of c-selection (category features & selection features)

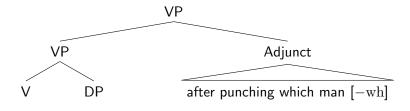

head-argument relation ≡ information pipeline





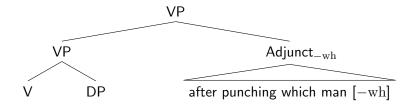
Category	Selects	Selected by
D	N	V
V	D	T
Т	V	C
C	T	V,N
$\overline{D_{-\mathrm{wh}}}$	N	

Adjuncts: The Price of Freedom

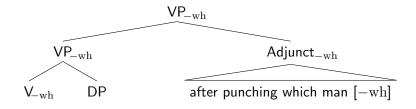

- Adjuncts very free due to Optionality and Independence
- Freedom reflected in feature calculus, limits information flow
 feature calculus cannot emulate all constraints correctly

Semi-Permeability

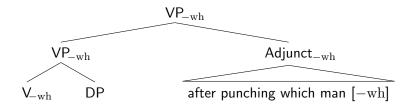
- Information flow into Adjuncts reliable
 - ⇒ Adjuncts can put restrictions on shape of tree (cf. parasitic gaps)
- Information flow out of Adjuncts unreliable
 - ⇒ Adjuncts cannot be depended on


Adjunct ≡ black hole

Adjunction as Asymmetric Selection


Category	Selects	Selected by
Adjunct	V	_
V	D	Т

Adjunction as Asymmetric Selection


Category	Selects	Selected by
Adjunct	V	_
V	D	T
Adjunct_wh	V	

Adjunction as Asymmetric Selection

Category	Selects	Selected by
Adjunct	V	_
V	D	T
$\overline{Adjunct_{-\mathrm{wh}}}$	$V_{-\mathrm{wh}}$	
$V_{-\mathrm{wh}}$	D	$T_{-\mathrm{wh}}$

Adjunction as Asymmetric Selection

Category	Selects	Selected by
Adjunct	V	_
V	D	T
$\overline{Adjunct_{-\mathrm{wh}}}$	$V_{-\mathrm{wh}}$	
$V_{-\mathrm{wh}}$	D	$T_{-\mathrm{wh}}$