Defining Adjuncts	Empirical Implications	Big Picture	Conclusion

The Price of Freedom: Why Adjuncts are Islands

> Thomas Graf tgraf@ucla.edu tgraf.bol.ucla.edu

University of California, Los Angeles

DGfS 2013 University of Potsdam

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
The Talk in a Nut	tshell		

- (1) a. Which book did John complain that he lost?
 - b. * Which book did John complain because he lost?
 - c. * Which book did John complain after losing?

Take-Home Message

Why do adjuncts constitute islands? Because they are not as tightly integrated as arguments.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
Outline			

1 A Theory-Neutral Definition of Adjuncts

- Defining Adjuncts
- Characterizing Adjunct Languages
- 2 Empirical Implications
 - Deriving the AIC
 - Parasitic Gaps
- 3 The Big Picture: Structure & Information Flow
 - Constraints through Operations
 - Adjuncts: The Price of Freedom

Conclusion

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
•••••			
Adjuncts in th	ne literature		

Adjuncts ...

- have no special operational status (CG; Cinque 1999),
- are pair-merged (Chomsky 1995),
- are late-merged (Stepanov 2001),
- are inserted but not merged immediately (Hunter 2012),
- involve asymmetric feature checking (Frey and Gärtner 2002),

Problem

Can we abstract away from these details? Properties that hold of every conceivable implementation?

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
00000			

Two Surface Properties of Adjuncts

• Optionality

Adjuncts can be omitted.

- (2) (Obviously) I will (easily) ace this ((very) challenging) exam (because I (really) am that smart).
- Independence

Independently well-formed adjuncts can be combined.

- (3) a. **Obviously** I will ace this exam.
 - b. I will easily ace this exam.
 - c. Obviously I will easily ace this exam.

Definition (Adjuncts)

Phrase marker a is an **Adjunct** iff it is optional and independent.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
00000			

Two Surface Properties of Adjuncts

• Optionality

Adjuncts can be omitted.

- (2) (Obviously) I will (easily) ace this ((very) challenging) exam (because I (really) am that smart).
- Independence

Independently well-formed adjuncts can be combined.

- (3) a. **Obviously** I will ace this exam.
 - b. I will easily ace this exam.
 - c. Obviously I will easily ace this exam.

Definition (Adjuncts)

Phrase marker a is an **Adjunct** iff it is optional and independent.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
00000			

What do these properties tell us about grammars with Adjuncts? What is the general shape of the **generated language**?

Definition (Adjunct Extensions)

Let **s** and **t** be (multi-dominance) trees. Then **t** is an **Adjunct extension** of **s** for grammar G (**s** <_G **t**) iff **t** is the result of inserting one or more Adjuncts of G in **s**.

Example

• Obviously I will ace this exam <_G

- I will ace this exam $<_G$ Obviously I will easily ace this exam
- **Obviously** I will ace this exam \leq_G I will **easily** ace this exam
- I will ace this exam \measuredangle_G I will easily ace this test
- exam will this I ace <_G easily exam will this I ace

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
00000			

What do these properties tell us about grammars with Adjuncts? What is the general shape of the **generated language**?

Definition (Adjunct Extensions)

Let **s** and **t** be (multi-dominance) trees. Then **t** is an **Adjunct extension** of **s** for grammar G (**s** <_G **t**) iff **t** is the result of inserting one or more Adjuncts of G in **s**.

Example

• Obviously I will ace this exam <_G

- I will ace this exam $<_G$ Obviously I will easily ace this exam
- **Obviously** I will ace this exam \leq_G I will **easily** ace this exam
- I will ace this exam \measuredangle_G I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
00000			

What do these properties tell us about grammars with Adjuncts? What is the general shape of the **generated language**?

Definition (Adjunct Extensions)

Let **s** and **t** be (multi-dominance) trees. Then **t** is an **Adjunct extension** of **s** for grammar G (**s** <_G **t**) iff **t** is the result of inserting one or more Adjuncts of G in **s**.

Example

• Obviously I will ace this exam <_G

- I will ace this exam $<_G$ Obviously I will easily ace this exam
- **Obviously** I will ace this exam \leq_G I will **easily** ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
00000			

What do these properties tell us about grammars with Adjuncts? What is the general shape of the **generated language**?

Definition (Adjunct Extensions)

Let **s** and **t** be (multi-dominance) trees. Then **t** is an **Adjunct extension** of **s** for grammar G (**s** <_G **t**) iff **t** is the result of inserting one or more Adjuncts of G in **s**.

Example

• Obviously I will ace this exam <_G

- I will ace this exam $<_{G}$ Obviously I will easily ace this exam
- **Obviously** I will ace this exam \measuredangle_G I will **easily** ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
00000			

What do these properties tell us about grammars with Adjuncts? What is the general shape of the **generated language**?

Definition (Adjunct Extensions)

Let **s** and **t** be (multi-dominance) trees. Then **t** is an **Adjunct extension** of **s** for grammar G (**s** <_G **t**) iff **t** is the result of inserting one or more Adjuncts of G in **s**.

Example

• Obviously I will ace this exam <_G

- I will ace this exam $<_{G}$ Obviously I will easily ace this exam
- Obviously I will ace this exam \measuredangle_G I will easily ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
00000			

What do these properties tell us about grammars with Adjuncts? What is the general shape of the **generated language**?

Definition (Adjunct Extensions)

Let **s** and **t** be (multi-dominance) trees. Then **t** is an **Adjunct extension** of **s** for grammar G (**s** <_G **t**) iff **t** is the result of inserting one or more Adjuncts of G in **s**.

Example

• Obviously I will ace this exam <_G

- I will ace this exam $<_{G}$ Obviously I will easily ace this exam
- Obviously I will ace this exam \measuredangle_G I will easily ace this exam
- I will ace this exam $\not\leq_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
00000			

What do these properties tell us about grammars with Adjuncts? What is the general shape of the **generated language**?

Definition (Adjunct Extensions)

Let **s** and **t** be (multi-dominance) trees. Then **t** is an **Adjunct extension** of **s** for grammar G (**s** <_G **t**) iff **t** is the result of inserting one or more Adjuncts of G in **s**.

Example

• Obviously I will ace this exam <_G

- I will ace this exam $<_{G}$ Obviously I will easily ace this exam
- Obviously I will ace this exam \measuredangle_G I will easily ace this exam
- I will ace this exam $\not\leq_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000			

Theorem (Optionality Closure)

If t is an Adjunct extension of s for G and G generates t, then G generates s.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000	000	0000	00

Theorem (Optionality Closure)

If t is an Adjunct extension of s for G and G generates t, then G generates s.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000	000	0000	00

Theorem (Optionality Closure)

If t is an Adjunct extension of s for G and G generates t, then G generates s.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000	000	0000	00

Theorem (Optionality Closure)

If t is an Adjunct extension of s for G and G generates t, then G generates s.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000	000	0000	00

Theorem (Optionality Closure)

If t is an Adjunct extension of s for G and G generates t, then G generates s.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000	000	0000	00

Theorem (Optionality Closure)

If t is an Adjunct extension of s for G and G generates t, then G generates s.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000			

Theorem (Optionality Closure)

If t is an Adjunct extension of s for G and G generates t, then G generates s.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000			

Theorem (Optionality Closure)

If t is an Adjunct extension of s for G and G generates t, then G generates s.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000			

Theorem (Independence Closure)

For **s** and **t** adjunct extensions of some tree, G generates the "fusion" of s and t $(s \lor t)$ if it generates both s and t.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000			

Theorem (Independence Closure)

For **s** and **t** adjunct extensions of some tree, G generates the "fusion" of **s** and **t** $(s \lor t)$ if it generates both **s** and **t**.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000			

Theorem (Independence Closure)

For **s** and **t** adjunct extensions of some tree, G generates the "fusion" of **s** and **t** $(s \lor t)$ if it generates both **s** and **t**.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000			

Theorem (Independence Closure)

For **s** and **t** adjunct extensions of some tree, G generates the "fusion" of **s** and **t** $(s \lor t)$ if it generates both **s** and **t**.

Defining Adjuncts ○○○○○●	Empirical Implications	Big Picture	Conclusion
Interim Summary			

Any implementation of Adjunction that captures Optionality and Independence yields a grammar formalism where

- \Downarrow grammaticality is downward entailing with respect to $<_{G}$,
- \uparrow ungrammaticality is upward entailing with respect to $<_G$,
- \lor grammaticality is preserved under "fusion".

Defining Adjuncts	Empirical Implications ●○○	Big Picture	Conclusion
Deriving the AIC			

The AIC follows from optionality closure and feature checking.

Defining Adjuncts	Empirical Implications ●○○	Big Picture	Conclusion
Deriving the AIC			

The AIC follows from optionality closure and feature checking.

which book [-wh]

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
	000		
Deriving the AIC			

Deriving the AIC

The AIC follows from optionality closure and feature checking.

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000	000	0000	00
Deal to a los AIC			

Deriving the AIC

The AIC follows from optionality closure and feature checking.

Defining Adjuncts Empirical Implications Big Picture Conclusion

Why Parasitic Gaps are Different

PGs piggyback on a mandatory feature checker.

Defining Adjuncts Empirical Implications Big Picture Conclusion

Why Parasitic Gaps are Different

PGs piggyback on a mandatory feature checker.

Defining Adjuncts

Empirical Implications 000

Big Picture

Conclusion

Why Parasitic Gaps are Different

PGs piggyback on a mandatory feature checker.

which book [-wh]

Defining Adjuncts

Empirical Implications

Big Picture

Conclusion

Why Parasitic Gaps are Different

PGs piggyback on a mandatory feature checker.

Defining Adjuncts	Empirical Implications ○○●	Big Picture	Conclusion
Why Parasitic Ga	ps are Idempotent		

Multiple PGs may piggyback on a single mover.

- (4) Which movie did John whilst mocking throw in the trash after watching?
- Follows from independence closure
 - (5) a. Which movie did John whilst mocking throw in the trash?
 - b. Which movie did John throw in the trash after watching?

Defining Adjund	cts	Empirical Implicat	ions	Big Picture ●○○○	Conclusion
-					

Constraints through Operations

Constraints and operations are **closely connected**.

Theorem (Graf 2011; Kobele 2011)

A constraint can be expressed via Merge iff it can be computed using only a finitely bounded amount of working memory.

- **Intuition**: Use feature calculus to emulate how information flows through the tree during computation
- Doable for almost all constraints from the syntactic literature
- Relies on symmetry of c-selection (category features & selection features)

head-argument relation \equiv information pipeline

Defining Adjund	Defining Adjuncts		Empirical Implications		Big Picture ●○○○	Conclusion
-						

Constraints through Operations

Constraints and operations are **closely connected**.

Theorem (Graf 2011; Kobele 2011)

A constraint can be expressed via Merge iff it can be computed using only a finitely bounded amount of working memory.

- **Intuition**: Use feature calculus to emulate how information flows through the tree during computation
- Doable for almost all constraints from the syntactic literature
- Relies on symmetry of c-selection (category features & selection features)

head-argument relation \equiv information pipeline

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
		0000	

Category	Selects	Selected by
D	Ν	V
V	D	Т
Т	V	С
С	Т	V.N

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
		0000	

Category	Selects	Selected by
D	Ν	V
V	D	Т
Т	V	С
С	Т	V, N
$D_{-\mathrm{wh}}$	Ν	

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
		0000	

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000	000	0000	00

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000	000	0000	00

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion
000000	000	0000	00

Defining Adjuncts	Empirical Implications	Big Picture ○○●○	Conclusion
Adjuncts:	The Price of Freedom		

- Adjuncts very free due to Optionality and Independence
- Freedom reflected in feature calculus, limits information flow
 - \Rightarrow feature calculus cannot emulate all constraints correctly

Semi-Permeability

 Information flow into Adjuncts reliable
⇒ Adjuncts can put restrictions on shape of tree (cf. parasitic gaps)

- Information flow out of Adjuncts unreliable
 - \Rightarrow Adjuncts cannot be depended on

$\mathbf{Adjunct} \equiv \mathbf{black} \ \mathbf{hole}$

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion ●○
Summary			

- Adjuncts characterized by Optionality and Independence
- enforces certain grammatical inferences
 - $\bullet \ \Downarrow \ grammaticality$ is preserved under Adjunct removal
 - \bullet \Uparrow ungrammaticality is preserved under Adjunct insertion
 - $\bullet~\vee$ grammaticality is preserved under Adjunct combination
 - \Rightarrow AIC falls out naturally, yet allow for parasitic gaps
- Information flow metaphor: Adjuncts \equiv black holes

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion ○●
Work in Progress			

• Not all adjuncts are Adjuncts

Some adjuncts can be extracted from (Truswell 2007):

(6) Which car did John drive Mary crazy trying to fix?

Truswell's event-based generalization \approx

some adjuncts more tightly integrated semantically

	sem-argument	sem-adjunct
syn-adjunct	Truswell adjuncts	Adjuncts
syn-argument	arguments	???

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion ○●
Work in Progress			

• Not all adjuncts are Adjuncts

Some adjuncts can be extracted from (Truswell 2007):

(6) Which car did John drive Mary crazy trying to fix?

Truswell's event-based generalization \approx

some adjuncts more tightly integrated semantically

	sem-argument	sem-adjunct
syn-adjunct	Truswell adjuncts	Adjuncts
syn-argument	arguments	???

Defining Adjuncts	Empirical Implications	Big Picture	Conclusion ○●
Work in Progress			

• Not all adjuncts are Adjuncts

Some adjuncts can be extracted from (Truswell 2007):

(6) Which car did John drive Mary crazy trying to fix?

Truswell's event-based generalization \approx

some adjuncts more tightly integrated semantically

	sem-argument	sem-adjunct
syn-adjunct	Truswell adjuncts	Adjuncts
syn-argument	arguments	???

• Extension to Other Cases

DP-conjuncts are also optional and independent \Rightarrow CSC \equiv AIC & ATB extraction \equiv PGs

Caveat: agreement, binding, NPI-licensing

References

Chomsky, Noam. 1995. The minimalist program. Cambridge, Mass.: MIT Press.

- Cinque, Guglielmo. 1999. Adverbs and functional heads: A cross-linguistic perspective. Oxford: Oxford University Press.
- Frey, Werner, and Hans-Martin G\u00e4rtner. 2002. On the treatment of scrambling and adjunction in minimalist grammars. In Proceedings of the Conference on Formal Grammar (FGTrento), 41–52. Trento.
- Graf, Thomas. 2011. Closure properties of minimalist derivation tree languages. In LACL 2011, ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of Lecture Notes in Artificial Intelligence, 96–111. Heidelberg: Springer.
- Hunter, Tim. 2012. Deconstructing merge and move to make room for adjunction. Under review.
- Kobele, Gregory M. 2011. Minimalist tree languages are closed under intersection with recognizable tree languages. In *LACL 2011*, ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of *Lecture Notes in Artificial Intelligence*, 129–144.
- Stepanov, Arthur. 2001. Late adjunction and minimalist phrase structure. *Syntax* 4:94–125.
- Truswell, Robert. 2007. Tense, events, and extraction from adjuncts. In *Proceedings* of the 43rd Annual Meeting of the Chicago Linguistic Society.