Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion

Islands Without Islands

Thomas Graf mail@thomasgraf.net http://thomasgraf.net

University of Delaware

Oct 4, 2013

Strong Islands	Optionality 0000000	Deriving Islands	Empirical Challenges	Conclusion O
Take-Home	Message			

- (1) a. Which book did John complain that he lost?
 - b. * Which book did John complain because he lost?
 - c. * Which book did John complain after losing?

Questions

- Why do some phrases block extraction?
- Can they be given a theory-neutral characterization?

A Bold Idea

- There are no (strong) island constraints in the grammar.
- Island effects are an inevitable consequence of optionality.

Strong Islands	Optionality 0000000	Deriving Islands	Empirical Challenges	Conclusion ○
Take-Home	Message			

- (1) a. Which book did John complain that he lost?
 - b. * Which book did John complain because he lost?
 - c. * Which book did John complain after losing?

Questions

- Why do some phrases block extraction?
- Can they be given a theory-neutral characterization?

A Bold Idea

- There are no (strong) island constraints in the grammar.
- Island effects are an inevitable consequence of optionality.

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
Outline				

Three Strong Islands

- Adjuncts
- Coordination
- Relative Clauses
- 2 The Math: Optionality and Grammaticality Inferences
 - Ojuncts: Formalizing Optionality
 - Optionality Closure
- 3 Deriving Island Effects
- 4 Empirical Challenges
 - Not all Constructions Satisfy Optionality
 - Optional Non-Islands?
- 5 Conclusion & Outlook

Strong Islands ●○○○	Optionality 0000000	Deriving Islands	Empirical Challenges	Conclusion O
Adjuncts				

- extraction usually blocked
 - (2) a. Which book did John complain that he lost t?
 - b. * Which book did John complain because he lost *t*?
 - c. * Which book did John complain after losing t?
- gaps licensed
 - (3) Which book did John burn *t* after reading *e*?
- usually optional
 - (Obviously) I will (easily) ace this ((very) challenging) exam (because I (really) am that smart).

Strong Islands ○●○○	Optionality 0000000	Deriving Islands	Empirical Challenges	Conclusion O
Coordinatio	on			

- extraction usually blocked
 - (5) a. Ed brewed beer and Greg drank it.
 - b. * Which beer did Ed brew t and Greg drink it?
 - c. * Which wine did Ed brew beer and Greg drink *t*?
- across-the-board extraction possible
 - (6) a. Which wine did **Ed brew** *t* and **Greg** drink *t*?
- mostly optional (modulo morphological/semantic agreement)
 - (7) a. Ed brewed beer and Greg drank it.
 - b. Ed brewed beer.
 - (8) a. Ed and Greg are brewing beer.
 - b. * Ed are brewing beer.
 - (9) a. Ed and Greg met.
 - b. * Ed met.

Strong Islands ○○●○	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
Relative C	lauses			

- usually block extraction
 - (10) * Which politician does John dislike the reporter that/who interviewed t?
- gaps only if created by movement
 - (11) a. Which politician does John dislike *t* that the reporter interviewed *e*?
 - b. * Which politician did John tell the reporter that/who interviewed e that Mark dislikes t?
- usually optional
 - (12) a. the man that John works with that I admire
 - b. the man that John works with
 - c. the man that I admire
 - d. the man

Strong Islands ○○○●	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
The Big F	Picture			

As a rule of thumb, adjuncts, coordinations and relative clauses

- block extraction,
- allow for gaps,
- 3 are optional.

The Big Question

Could (1) and (2) be related to optionality?

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
Outline				

1 Three Strong Islands

- Adjuncts
- Coordination
- Relative Clauses

2 The Math: Optionality and Grammaticality Inferences

- Ojuncts: Formalizing Optionality
- Optionality Closure
- 3 Deriving Island Effects
- 4 Empirical Challenges
 - Not all Constructions Satisfy Optionality
 - Optional Non-Islands?
- 5 Conclusion & Outlook

Strong Islands	Optionality ●○○○○○○	Deriving Islands	Empirical Challenges	Conclusion O
Ojuncts				

The notion of an **ojunct** provides an abstract characterization of optional phrase markers.

Intuitive Definition (Ojunct)

A phrase marker is an **ojunct** iff it can be removed from every well-formed tree without affecting grammaticality.

Under most Minimalist conceptions of movement, ojuncts are necessarily islands:

Theorem (Islandhood)

No ojunct can be extracted from if the extraction step involves checking a dependency at the target site.

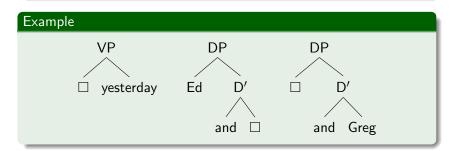
Strong Islands	Optionality ●○○○○○○	Deriving Islands	Empirical Challenges	Conclusion O
Ojuncts				

The notion of an **ojunct** provides an abstract characterization of optional phrase markers.

Intuitive Definition (Ojunct)

A phrase marker is an **ojunct** iff it can be removed from every well-formed tree without affecting grammaticality.

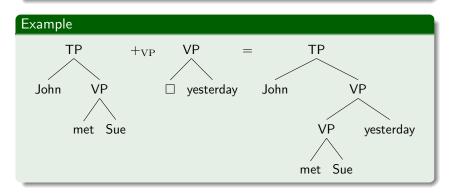
Under most Minimalist conceptions of movement, ojuncts are necessarily islands:


Theorem (Islandhood)

No ojunct can be extracted from if the extraction step involves checking a dependency at the target site.

Footed Trees	Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion
Formal Torres		000000			
	Easted T				

Definition (Footed Tree)


A **footed tree** is a tree that contains exactly one instance of the placeholder symbol \Box .

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
Tree Subs	titution			

Footed trees are combined with other trees via tree substitution.

Definition (Tree Substitution) For **s** a tree and **t** a footed tree, $\mathbf{s} +_n \mathbf{t}$ is the tree obtained by inserting **t** above node *n* in **s** such that \Box in **t** is replaced by *n*.

Strong Islands	Optionality ○○○●○○○	Deriving Islands	Empirical Challenges	Conclusion O
Optionality				

Definition (Optionality)

Given a grammar G, a footed tree t is **optional** wrt G iff it holds for every tree of the form $\mathbf{s} +_n \mathbf{t}$ that $\mathbf{s} +_n \mathbf{t}$ is generated by G only if \mathbf{s} is generated by G.

Definition (Ojunct)

A phrase marker is an **ojunct** of grammar G iff it is the result of removing \Box from a footed tree that is optional wrt G.

Strong Islands	Optionality ○○○●○○	Deriving Islands	Empirical Challenges	Conclusion O
Oiunct Ex	tension			

Definition (Adjunct Extensions)

Let **s** and **t** be trees.

Then **t** is an **ojunct extension** of **s** for grammar G (**s** <_G **t**) iff

t is the result of inserting one or more ojuncts of G in s.

Example

• Obviously I will ace this exam <_G

- I will ace this exam $<_G$ Obviously I will easily ace this exam
- **Obviously** I will ace this exam \measuredangle_G I will **easily** ace this exam
- I will ace this exam \measuredangle_G I will easily ace this test
- exam will this I ace <_G easily exam will this I ace

Strong Islands	Optionality ○○○○●○○	Deriving Islands	Empirical Challenges	Conclusion O
Oiunct Ex	tension			

Definition (Adjunct Extensions)

Let s and t be trees.

Then t is an **ojunct extension** of s for grammar G (s <_G t) iff t is the result of inserting one or more ojuncts of G in s.

Example

• Obviously I will ace this exam <_G

- I will ace this exam $<_G$ Obviously I will easily ace this exam
- **Obviously** I will ace this exam \leq_G I will **easily** ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace <_G easily exam will this I ace

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
Oiunct Ex	tension			

Definition (Adjunct Extensions)

Let s and t be trees.

Then t is an **ojunct extension** of s for grammar G (s <_G t) iff t is the result of inserting one or more ojuncts of G in s.

is the result of inserting one or more of

- Obviously I will ace this exam <_G
 Obviously I will easily ace this exam
- I will ace this exam $<_{G}$ Obviously I will easily ace this exam
- **Obviously** I will ace this exam $\not\leq_G$ I will **easily** ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
Oiunct Ex	tension			

Definition (Adjunct Extensions)

Let s and t be trees.

Then **t** is an **ojunct extension** of **s** for grammar G (**s** <_{*G*} **t**) iff

 \mathbf{t} is the result of inserting one or more ojuncts of G in \mathbf{s} .

Example

• Obviously I will ace this exam <_G

- I will ace this exam $<_{G}$ Obviously I will easily ace this exam
- **Obviously** I will ace this exam \leq_G I will **easily** ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace <_G easily exam will this I ace

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
Oiunct Ex	tension			

Definition (Adjunct Extensions)

Let s and t be trees.

Then t is an **ojunct extension** of **s** for grammar G (**s** <_G **t**) iff

 \mathbf{t} is the result of inserting one or more ojuncts of G in \mathbf{s} .

Example

• Obviously I will ace this exam <_G

- I will ace this exam $<_{G}$ Obviously I will easily ace this exam
- Obviously I will ace this exam \measuredangle_G I will easily ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace <_G easily exam will this I ace

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
Oiunct Ex	tension			

Definition (Adjunct Extensions)

Let s and t be trees.

Then t is an **ojunct extension** of **s** for grammar G (**s** <_G **t**) iff

 \mathbf{t} is the result of inserting one or more ojuncts of G in \mathbf{s} .

Example

• Obviously I will ace this exam <_G

- I will ace this exam $<_{G}$ Obviously I will easily ace this exam
- Obviously I will ace this exam \measuredangle_G I will easily ace this exam
- I will ace this exam $\not\leq_G$ I will easily ace this test
- exam will this I ace <_G easily exam will this I ace

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
Oiunct Ex	tension			

Definition (Adjunct Extensions)

Let s and t be trees.

Then t is an **ojunct extension** of **s** for grammar G (**s** <_G **t**) iff

 \mathbf{t} is the result of inserting one or more ojuncts of G in \mathbf{s} .

Example

• Obviously I will ace this exam <_G

- I will ace this exam $<_{G}$ Obviously I will easily ace this exam
- Obviously I will ace this exam \measuredangle_G I will easily ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Strong Islands	Optionality	Deriving Islands Empirical Challenges	Conclusion	
	0000000			

Theorem (Optionality Closure)

If \mathbf{t} is an ojunct extension of \mathbf{s} for G and G generates \mathbf{t} , then G generates \mathbf{s} .

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion

Theorem (Optionality Closure)

If \mathbf{t} is an ojunct extension of \mathbf{s} for G and G generates \mathbf{t} , then G generates \mathbf{s} .

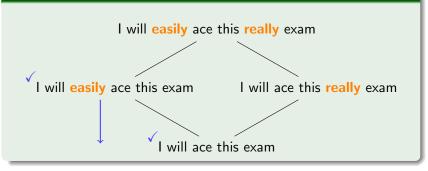
Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion

Theorem (Optionality Closure)

If \mathbf{t} is an ojunct extension of \mathbf{s} for G and G generates \mathbf{t} , then G generates \mathbf{s} .

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion

Theorem (Optionality Closure)


If \mathbf{t} is an ojunct extension of \mathbf{s} for G and G generates \mathbf{t} , then G generates \mathbf{s} .

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion

Theorem (Optionality Closure)


If \mathbf{t} is an ojunct extension of \mathbf{s} for G and G generates \mathbf{t} , then G generates \mathbf{s} .

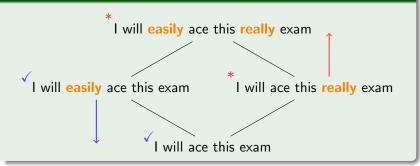
Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion

Theorem (Optionality Closure)

If \mathbf{t} is an ojunct extension of \mathbf{s} for G and G generates \mathbf{t} , then G generates \mathbf{s} .

Strong Islands	Optionality	Deriving Islands	ands Empirical Challenges	Conclusion O
	0000000			
01				

Theorem (Optionality Closure)


If \mathbf{t} is an ojunct extension of \mathbf{s} for G and G generates \mathbf{t} , then G generates \mathbf{s} .

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion
0000	0000000	0000	0000000000	

Theorem (Optionality Closure)

If \mathbf{t} is an ojunct extension of \mathbf{s} for G and G generates \mathbf{t} , then G generates \mathbf{s} .

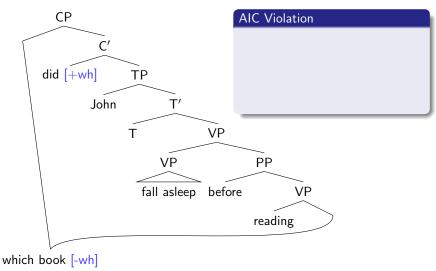
Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
Interim Su	ummary			

Intuitive Definition (Ojunct)

A phrase marker is an **ojunct** iff it can be removed from every well-formed tree without affecting grammaticality.

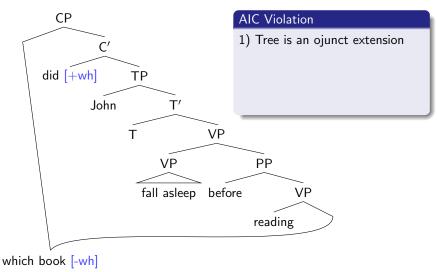
Any grammar with ojuncts has the following inference patterns:

- \downarrow grammaticality is downward entailing with respect to $<_G$,
- \uparrow ungrammaticality is upward entailing with respect to $<_G$.

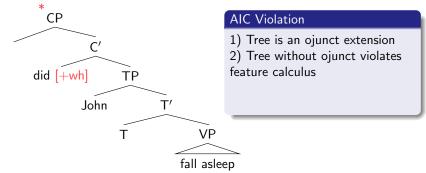

Strong Islands	Optionality 0000000	Deriving Islands	Empirical Challenges	Conclusion O
Outline				

Three Strong Islands

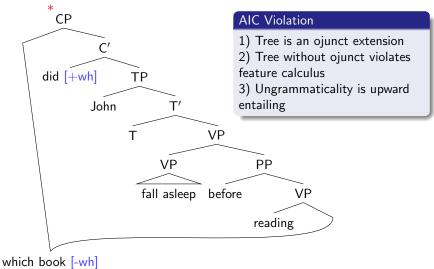
- Adjuncts
- Coordination
- Relative Clauses
- 2 The Math: Optionality and Grammaticality Inferences
 - Ojuncts: Formalizing Optionality
 - Optionality Closure
- Oeriving Island Effects
 - 4 Empirical Challenges
 - Not all Constructions Satisfy Optionality
 - Optional Non-Islands?
- 5 Conclusion & Outlook



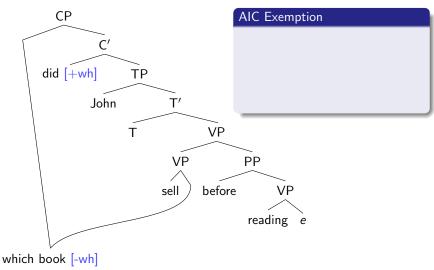
Deriving the Adjunct Island Constraint


Deriving the Adjunct Island Constraint

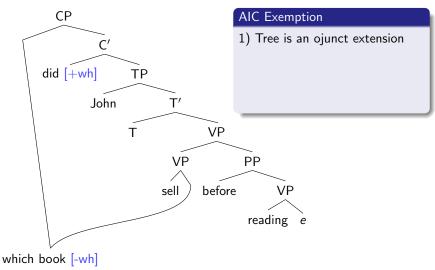
 Strong Islands
 Optionality
 Deriving Islands
 Empirical Challenges
 Conclusion


 0000
 0000000
 0000
 00000000000
 0

Deriving the Adjunct Island Constraint

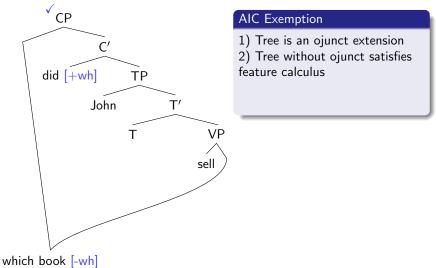

Deriving the Adjunct Island Constraint

 Strong Islands
 Optionality
 Deriving Islands
 Empirical Challenges
 Conclusion

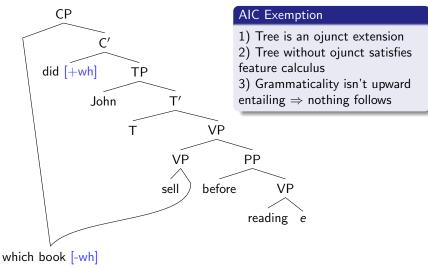

 Why Parasitic Gaps are Different

PGs piggyback on a mandatory feature checker.

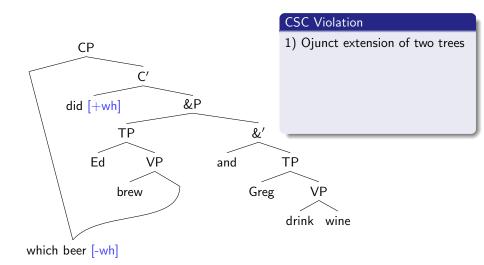
Why Parasitic Gaps are Different


PGs piggyback on a mandatory feature checker.

Strong Islands Deriving Islands **Empirical Challenges** Conclusion Optionality 0000

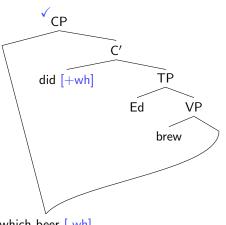

Why Parasitic Gaps are Different

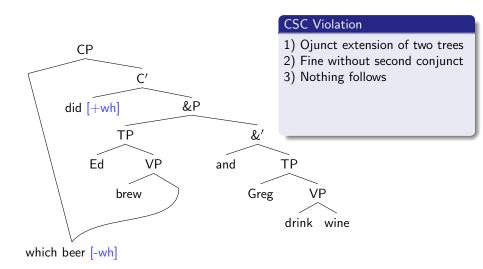
PGs piggyback on a mandatory feature checker.



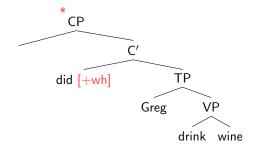
Why Parasitic Gaps are Different

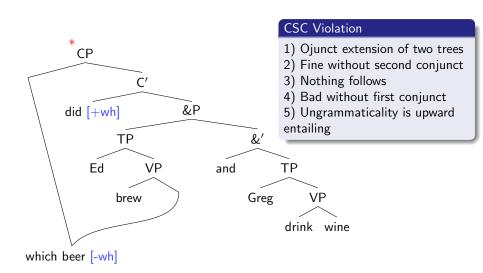
PGs piggyback on a mandatory feature checker.

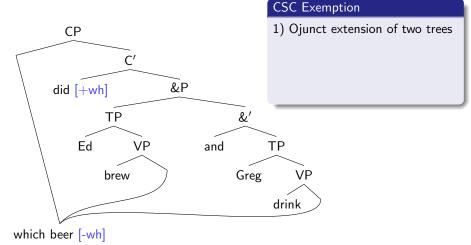




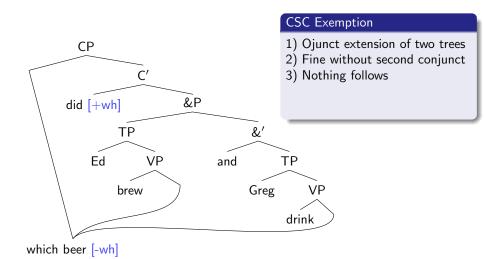
CSC Violation


- 1) Ojunct extension of two trees
- 2) Fine without second conjunct

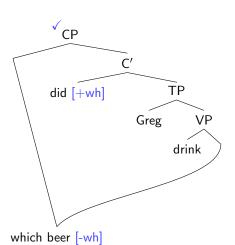

Deriving the Coordinate Structure Constraint


CSC Violation

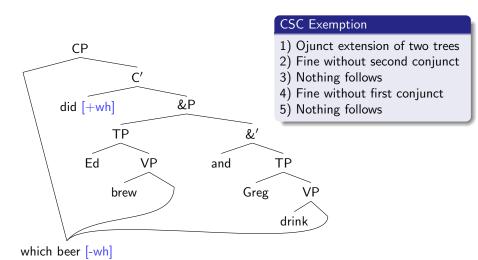

- 1) Ojunct extension of two trees
- 2) Fine without second conjunct
- 3) Nothing follows
- 4) Bad without first conjunct



CSC Exemption


- 1) Ojunct extension of two trees
- 2) Fine without second conjunct

 Strong Islands
 Optionality
 Deriving Islands
 Empirical Challenges
 Conclusion


 Why ATB Extraction is Different

CSC Exemption

- 1) Ojunct extension of two trees
- 2) Fine without second conjunct
- 3) Nothing follows
- 4) Fine without first conjunct

Strong Islands	Optionality 0000000	Deriving Islands	Empirical Challenges	Conclusion \circ
Outline				

1 Three Strong Islands

- Adjuncts
- Coordination
- Relative Clauses
- 2 The Math: Optionality and Grammaticality Inferences
 - Ojuncts: Formalizing Optionality
 - Optionality Closure
- **3** Deriving Island Effects
- 4 Empirical Challenges
 - Not all Constructions Satisfy Optionality
 - Optional Non-Islands?

5 Conclusion & Outlook

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
The Accour	nt So Far			

• Mathematical Fact

With minimal assumptions about Move, all ojuncts are islands while still allowing for parasitic gaps and ATB extraction.

Empirical Assumption

Adjuncts, coordinations and relative clauses are ojuncts. But is this true?

Two Issues

- Not all relevant constructions qualify as ojuncts.
- Some phrases look like ojuncts yet are not islands.

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
The Accour	nt So Far			

• Mathematical Fact

With minimal assumptions about Move, all ojuncts are islands while still allowing for parasitic gaps and ATB extraction.

Empirical Assumption

Adjuncts, coordinations and relative clauses are ojuncts. But is this true?

Two Issues

- Not all relevant constructions qualify as ojuncts.
- Some phrases look like ojuncts yet are not islands.

Strong Islands	Optionality 0000000	Deriving Islands	Empirical Challenges	Conclusion O
Obligatory	Adjuncts			

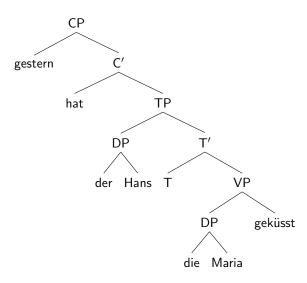
Not all adjuncts are optional.

- (13) a. This child reads well.
 - b. This book reads *(well).
 - c. John laughed a [?](quiet) laugh.
 - d. John behaved *(badly) to Chris.

These adverbs trivially do not allow for extraction, so they pose no challenge.

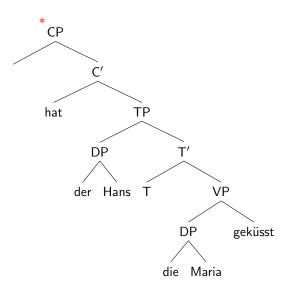
Strong Islands	Optionality 0000000	Deriving Islands	Empirical Challenges	Conclusion O
Word-Order	Restriction	S		

Optionality is not surface-true in V2 languages.

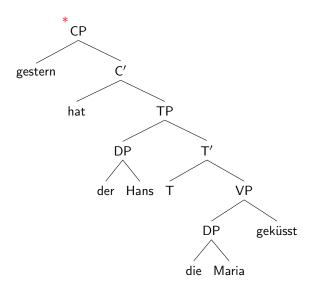

- (14) a. Gestern hat der Hans die Maria geküsst. yesterday has the Hans the Maria kissed 'Yesterday, John kissed Mary.'
 - b. Hat der Hans die Maria geküsst? has the Hans the Maria kissed'Did John kiss Mary?'
 - c. * Hat der Hans die Maria geküsst. has the Hans the Maria kissed'John kissed Mary.'

Possible Answers

- V2 is post-syntactic and thus irrelevant for optionality.
- V1 is grammatical, but restricted by discourse factors.



Incorrect Grammaticality Inference in German


Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O

Incorrect Grammaticality Inference in German

Incorrect Grammaticality Inference in German

Strong Islands	Optionality 0000000	Deriving Islands	Empirical Challenges	Conclusion O
Conjuncts	and Agree	ment		

At a surface-level, conjuncts matter for ϕ -agreement and semantic number requirements.

- (15) Ed *(and Greg) are brewing beer.
- (16) Ed *(and Greg) met.

Possible Answer

- Optionality must hold with respect to morphological dependencies, not specific feature values.
- Semantic requirements are ignored.

Strong Islands	Optionality	Deriving Islands 0000	Empirical Challenges	Conclusion O
י י				

Binding and NPIs in Coordinations

- (17) a. ? Every woman and no man has ever had a period.
 - b. * Every woman has ever had a period.
- (18) * (Jón og) afar sínir voru Jón and grandpas POSS-REFL.NOM.PL were glaðir. happy.NOM.PL '(Jón and) his grandpas were happy.'

Worrying, but all relevant examples are deviant for independent reasons:

- (19) a. * Which actress has (every TMZ reporter and) no fanboy of *t* ever talked to?
 - b. * Which field did the dean introduce every professor (of *t*) and no student of *t* to any senators?

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
Interim Su	ummary			

Optionality must be computed over **abstract structures** that allow us to ignore

- certain movement operations (at least V2),
- concrete ϕ -feature instantiations,
- some semantic requirements
 - size of set denoted by DP,
 - NPI-licensing,
 - binding requirements.

If one relegates these conditions to PF and LF, syntactic trees with Agree dependencies should work.

Problem

This still leaves us with ojuncts that are not islands!

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
Interim Su	ummary			

Optionality must be computed over **abstract structures** that allow us to ignore

- certain movement operations (at least V2),
- concrete ϕ -feature instantiations,
- some semantic requirements
 - size of set denoted by DP,
 - NPI-licensing,
 - binding requirements.

If one relegates these conditions to PF and LF, syntactic trees with Agree dependencies should work.

Problem

This still leaves us with ojuncts that are not islands!

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion O
Subject by	-Phrases and	Instrument	als	

In passives, *by*-phrases are optional but do not block extraction. The same holds for instrumentals.

- (20) a. Mary was assaulted (by John) (with a hammer).
 - b. Which man was Mary assaulted by t?
 - c. What kind of weapon was Mary assaulted with t?

However, these phrases are semantic arguments of the verb.

Strong Islands	Optionality 0000000	Deriving Islands	Empirical Challenges ○○○○○○○●○○	Conclusion O
Truswell S	Sentences			

Truswell adjuncts also allow for extraction (Truswell 2007).

(21) Which car did John drive Mary crazy trying to fix?

Truswell's Generalization

Adjunct denotes an event e' that is related via R to the event e of the matrix clause

- \Rightarrow does not have standard (Neo-Davidsonian) denotation
- \Rightarrow adjunct behaves more like a semantic argument

Strong Islands	Optionality 0000000	Deriving Islands	Empirical Challenges ○○○○○○○○●○	Conclusion O
Resumptive	Pronouns			

No island violations with resumptive pronoun instead of trace (e.g. Lebanese Arabic)

(22) ha-l-muttahame tfeeʒa?to lamma/la?anno this-the-suspect.SGFEM surprised.2 when/because Srəfto ?ənno hiyye nhabasit. know.2 that she imprisoned.3SGFEM
'This suspect, you were surprised when/because you knew that she was imprisoned.' Aoun et al. (2001:575)

follows if binding rather than movement is involved

Problem

Antecedent and adjunct must both be dropped \Rightarrow discontinuous adjuncts?

Strong Islands	Optionality 0000000	Deriving Islands	Empirical Challenges ○○○○○○○○●○	Conclusion O		
Resumptive Pronouns						

No island violations with resumptive pronoun instead of trace (e.g. Lebanese Arabic)

(22) ha-l-muttahame tfeeʒa?to lamma/la?anno this-the-suspect.SGFEM surprised.2 when/because Srəfto ?ənno hiyye nhabasit. know.2 that she imprisoned.3SGFEM
'This suspect, you were surprised when/because you knew that she was imprisoned.' Aoun et al. (2001:575)

follows if binding rather than movement is involved

Problem

Antecedent and adjunct must both be dropped \Rightarrow discontinuous adjuncts?

Strong Islands	Optionality 0000000	Deriving Islands	Empirical Challenges ○○○○○○○○●	Conclusion O
The Big Pi	cture			

• Step 1

more fine-grained classification than just argument vs adjunct (cf. Dowty 2003; Needham and Toivonen 2011)

	sem-argument	sem-adjunct
syn-adjunct	Truswell adjuncts	ojuncts
syn-argument	arguments	case-marked adjuncts (?)

• Step 2

specify exactly which parameters are ignored for optionality, and why

Strong Islands	Optionality 0000000	Deriving Islands	Empirical Challenges ○○○○○○○○●	Conclusion O
The Big Pi	cture			

• Step 1

more fine-grained classification than just argument vs adjunct (cf. Dowty 2003; Needham and Toivonen 2011)

	sem-argument	sem-adjunct	
syn-adjunct	Truswell adjuncts	ojuncts	
syn-argument	arguments	case-marked adjuncts (?)	

• Step 2

specify exactly which parameters are ignored for optionality, and why

Strong Islands	Optionality	Deriving Islands	Empirical Challenges	Conclusion ●
Conclusion				

• Why do we see (strong) island effects? Because islandhood is a necessary consequence of optionality given standard feature checking requirements.

• Why are there exceptions?

- Because not all adjuncts/conjuncts are indeed optional.
- Because not all extractions involve movement. (cf. resumptive pronouns)
- So what counts as optional?

That's the \$10⁷ question!

Conjecture

Only syntactic and semantic subcategorization requirements block optionality. All other (non-local?) requirements are ignored.

- Aoun, Joseph, Lina Choueiri, and Norbert Hornstein. 2001. Resumption, movement and derivational economy. *Linguistic Inquiry* 32:371–403.
- Dowty, David. 2003. The dual analysis of adjuncts/complements in categorial grammar. Berlin: Mouton de Gruyter.
- Needham, Stephanie, and Ida Toivonen. 2011. Derived arguments. In *Proceedings of the LFG11 Conference*, ed. Miriam Butt and Tracy Holloway King, 401–421.
- Truswell, Robert. 2007. Tense, events, and extraction from adjuncts. In *Proceedings* of the 43rd Annual Meeting of the Chicago Linguistic Society.