
Subsystems Automata Syntax Conclusion

Computational Computational Linguistics

Thomas Graf
mail@thomasgraf.net

http://thomasgraf.net

Department of Linguistics

December 4 2013



Subsystems Automata Syntax Conclusion

Two Types of Computational Linguistics

Computational Linguistics (NLP)
computers solving natural language tasks

machine translation
text summarization
OCR
speech recognition
dialog-driven user interfaces

...

Computational Linguistics
linguistics with methods from theoretical computer science

What are the computational properties of natural language?
(Marr Level 1 & 2)
What are the computational properties of linguistic theories?



Subsystems Automata Syntax Conclusion

Today’s Topic

Questions

How is natural language computed?

In particular, what kind of memory is required?

Answer

“Naive” perspective
different subsystems use different memory systems

Linguistic perspective
different subsystems use same memory system,
but different data structures



Subsystems Automata Syntax Conclusion

Today’s Topic

Questions

How is natural language computed?

In particular, what kind of memory is required?

Answer

“Naive” perspective
different subsystems use different memory systems

Linguistic perspective
different subsystems use same memory system,
but different data structures



Subsystems Automata Syntax Conclusion

Remark on Methodology

How these issues would be approached by

Experimentalists

Design and run
experiments

Carry out statistical
analysis

For bonus points:
Design model that
replicates the
statistical patterns

Computational linguists

Look at linguistic
patterns

What type of
grammar can
generate them?

What computational
resources does the
grammar need?



Subsystems Automata Syntax Conclusion

Outline

1 Linguistic Subsystems: Syntax and Phonology

2 Strings, Automata, and Memory
Formal Language Theory
Automata
Memory Requirements of Phonology and Syntax

3 A Linguistically Informed Look at Syntax
Minimalist Syntax
A Quick Example
Tree Structures and Memory



Subsystems Automata Syntax Conclusion

Linguistic Subsystems

Linguists distinguish several areas of language.

Phonology: sounds and prosody

Morphology: word forms

Syntax: sentence structure

Semantics: logical meaning

Pragmatics: meaning in context

Computational linguists are mostly interested in structure
rather than meaning ⇒ phonology, morphology, syntax

1



Subsystems Automata Syntax Conclusion

Phonological Patterns

Only certain sound sequences are licit.

Vowel systems show regularities.
a-i-u, a-e-i-o-u, ∗e-o-i

Sounds can be affected by their contexts,
but only in specific ways.

intervocalic voicing nef+ið → nevið Icelandic
word-final devoicing rad → rat German

∗intervocalic devoicing aba → apa unattested

umlaut mamm+u → mömmu Icelandic
dissimilation lun+alis → lunaris Latin
∗anti-umlaut mömm+u → mammu unattested

2



Subsystems Automata Syntax Conclusion

Syntactic Patterns

Island effects

(1) a. Which man did John say that Mary kissed?

b. * Which man did John cry because Mary kissed?

Center-embedding

(2) a. The mouse that the cat that the dog chased
ate is dead.

b. * The mouse that the cat that the dog chased
ate is dead.

Crossing dependencies

(3) a. The mouse, the cat, and the dog survived,
slept, and chewed on a toy, respectively.

b. * The mouse, the cat, and the dog survived,
slept, and chewed on a toy, respectively.

3



Subsystems Automata Syntax Conclusion

The General Issue

Language is a harsh mistress, it’s not “anything goes”.

In every language only certain patterns are allowed.

Linguists devise models that account for those patterns
while also ruling out unattested ones.

But the kind of patterns differ between phonology and syntax.

Questions

What kind of computational device generates
all the correct patterns but none of the incorrect ones?

Does this device work for phonology as well as syntax?

4



Subsystems Automata Syntax Conclusion

Outline

1 Linguistic Subsystems: Syntax and Phonology

2 Strings, Automata, and Memory
Formal Language Theory
Automata
Memory Requirements of Phonology and Syntax

3 A Linguistically Informed Look at Syntax
Minimalist Syntax
A Quick Example
Tree Structures and Memory



Subsystems Automata Syntax Conclusion

Language as Sets

In computer science, a language is simply
a set of objects of a specific type:

graph: structure of connected nodes
flow chart, street network, Wikipedia,
internet, video game AI

tree: connected graph where every node
is reachable from at most one node
family tree, hard drive layout, XML file

string: sequence of nodes
telephone number, Python program,
human genome, Shakespeare’s oeuvre

A

B C

D E F

G

A

B C

D E F

A

B C

D E F

5



Subsystems Automata Syntax Conclusion

The Chomsky Hierarchy of String Languages

The perceivable output of language is strings
(sequences of sound waves, words, sentences).

The complexity of string languages is measured by
the (extended) Chomsky hierarchy. (Chomsky 1956, 1959)

recursively enumerable

context-sensitive

mildly context-sensitive

context-free

regular

subregular

6



Subsystems Automata Syntax Conclusion

Languages and Automata

For every language class there is a computational model
that can generate all languages in the class, and only those.

Such a model is called an automaton.

Example Language Automaton Model
RE theorems of first-order logic Turing Machine
CS all prime numbers linear bounded automaton
MCS crossing dependencies embedded pushdown autom.
CF center embedding pushdown automaton
REG all strings of even length finite-state automaton
subREG umlaut, voicing

7



Subsystems Automata Syntax Conclusion

Finite-State Automata

A finite-state automaton (FSA) assigns every node in a string
one of finitely many states, depending on

the label of the node, and

the state of the preceding node (if it exists).

The FSA accepts the string if the last state is a final state.

Cognitive Intuition

States are a metaphor for memory configurations.

Every symbol in the input induces a change from one memory
configuration into another.

Only finitely many memory configurations are needed.
Thus the amount of working memory used by the automaton
is finitely bounded.

8



Subsystems Automata Syntax Conclusion

Example 1: Counting Symbols

FSA for strings over a and b where a occurs at least 2 times

1

a

10

a

2∗1

a

2∗2∗

a

0

b

00

b

11

b

2∗2∗

b

b a b a a b

9



Subsystems Automata Syntax Conclusion

Example 1: Counting Symbols

FSA for strings over a and b where a occurs at least 2 times

1

a

10

a

2∗1

a

2∗2∗

a

0

b

00

b

11

b

2∗2∗

b

b a b a a b

9



Subsystems Automata Syntax Conclusion

Example 1: Counting Symbols

FSA for strings over a and b where a occurs at least 2 times

1

a

10

a

2∗1

a

2∗2∗

a

0

b

00

b

11

b

2∗2∗

b

b a b a a b

0

9



Subsystems Automata Syntax Conclusion

Example 1: Counting Symbols

FSA for strings over a and b where a occurs at least 2 times

1

a

10

a

2∗1

a

2∗2∗

a

0

b

00

b

11

b

2∗2∗

b

b a b a a b

0 1

9



Subsystems Automata Syntax Conclusion

Example 1: Counting Symbols

FSA for strings over a and b where a occurs at least 2 times

1

a

10

a

2∗1

a

2∗2∗

a

0

b

00

b

11

b

2∗2∗

b

b a b a a b

0 1 1

9



Subsystems Automata Syntax Conclusion

Example 1: Counting Symbols

FSA for strings over a and b where a occurs at least 2 times

1

a

10

a

2∗1

a

2∗2∗

a

0

b

00

b

11

b

2∗2∗

b

b a b a a b

0 1 1 2

9



Subsystems Automata Syntax Conclusion

Example 1: Counting Symbols

FSA for strings over a and b where a occurs at least 2 times

1

a

10

a

2∗1

a

2∗2∗

a

0

b

00

b

11

b

2∗2∗

b

b a b a a b

0 1 1 2 2

9



Subsystems Automata Syntax Conclusion

Example 1: Counting Symbols

FSA for strings over a and b where a occurs at least 2 times

1

a

10

a

2∗1

a

2∗2∗

a

0

b

00

b

11

b

2∗2∗

b

b a b a a b

0 1 1 2 2 2

9



Subsystems Automata Syntax Conclusion

Example 2: Remembering Symbols

Strings over a, b, c where no b occurs between a and c

1∗

a

1∗0∗

a

1∗1∗

a

0∗2∗

a

0∗

b

0∗0∗

b

2∗1∗

b

2∗2∗

b

0∗

c

0∗0∗

c

0∗1∗

c

b c a b b a c

10



Subsystems Automata Syntax Conclusion

Example 2: Remembering Symbols

Strings over a, b, c where no b occurs between a and c

1∗

a

1∗0∗

a

1∗1∗

a

0∗2∗

a

0∗

b

0∗0∗

b

2∗1∗

b

2∗2∗

b

0∗

c

0∗0∗

c

0∗1∗

c

b c a b b a c

10



Subsystems Automata Syntax Conclusion

Example 2: Remembering Symbols

Strings over a, b, c where no b occurs between a and c

1∗

a

1∗0∗

a

1∗1∗

a

0∗2∗

a

0∗

b

0∗0∗

b

2∗1∗

b

2∗2∗

b

0∗

c

0∗0∗

c

0∗1∗

c

b c a b b a c

0

10



Subsystems Automata Syntax Conclusion

Example 2: Remembering Symbols

Strings over a, b, c where no b occurs between a and c

1∗

a

1∗0∗

a

1∗1∗

a

0∗2∗

a

0∗

b

0∗0∗

b

2∗1∗

b

2∗2∗

b

0∗

c

0∗0∗

c

0∗1∗

c

b c a b b a c

0 0

10



Subsystems Automata Syntax Conclusion

Example 2: Remembering Symbols

Strings over a, b, c where no b occurs between a and c

1∗

a

1∗0∗

a

1∗1∗

a

0∗2∗

a

0∗

b

0∗0∗

b

2∗1∗

b

2∗2∗

b

0∗

c

0∗0∗

c

0∗1∗

c

b c a b b a c

0 0 1

10



Subsystems Automata Syntax Conclusion

Example 2: Remembering Symbols

Strings over a, b, c where no b occurs between a and c

1∗

a

1∗0∗

a

1∗1∗

a

0∗2∗

a

0∗

b

0∗0∗

b

2∗1∗

b

2∗2∗

b

0∗

c

0∗0∗

c

0∗1∗

c

b c a b b a c

0 0 1 2

10



Subsystems Automata Syntax Conclusion

Example 2: Remembering Symbols

Strings over a, b, c where no b occurs between a and c

1∗

a

1∗0∗

a

1∗1∗

a

0∗2∗

a

0∗

b

0∗0∗

b

2∗1∗

b

2∗2∗

b

0∗

c

0∗0∗

c

0∗1∗

c

b c a b b a c

0 0 1 2 2

10



Subsystems Automata Syntax Conclusion

Example 2: Remembering Symbols

Strings over a, b, c where no b occurs between a and c

1∗

a

1∗0∗

a

1∗1∗

a

0∗2∗

a

0∗

b

0∗0∗

b

2∗1∗

b

2∗2∗

b

0∗

c

0∗0∗

c

0∗1∗

c

b c a b b a c

0 0 1 2 2 0

10



Subsystems Automata Syntax Conclusion

Example 2: Remembering Symbols

Strings over a, b, c where no b occurs between a and c

1∗

a

1∗0∗

a

1∗1∗

a

0∗2∗

a

0∗

b

0∗0∗

b

2∗1∗

b

2∗2∗

b

0∗

c

0∗0∗

c

0∗1∗

c

b c a b b a c

0 0 1 2 2 0 0

10



Subsystems Automata Syntax Conclusion

Example 3: More Sophisticated Counting

Strings over a, b, c with an even number of as and a c at the end

1

a

10

a

01

a

0

b

00

b

11

b

0

c

00

c

11

c

2∗0

c

b c a b b a c

11



Subsystems Automata Syntax Conclusion

Example 3: More Sophisticated Counting

Strings over a, b, c with an even number of as and a c at the end

1

a

10

a

01

a

0

b

00

b

11

b

0

c

00

c

11

c

2∗0

c

b c a b b a c

11



Subsystems Automata Syntax Conclusion

Example 3: More Sophisticated Counting

Strings over a, b, c with an even number of as and a c at the end

1

a

10

a

01

a

0

b

00

b

11

b

0

c

00

c

11

c

2∗0

c

b c a b b a c

0

11



Subsystems Automata Syntax Conclusion

Example 3: More Sophisticated Counting

Strings over a, b, c with an even number of as and a c at the end

1

a

10

a

01

a

0

b

00

b

11

b

0

c

00

c

11

c

2∗0

c

b c a b b a c

0 0

11



Subsystems Automata Syntax Conclusion

Example 3: More Sophisticated Counting

Strings over a, b, c with an even number of as and a c at the end

1

a

10

a

01

a

0

b

00

b

11

b

0

c

00

c

11

c

2∗0

c

b c a b b a c

0 0 1

11



Subsystems Automata Syntax Conclusion

Example 3: More Sophisticated Counting

Strings over a, b, c with an even number of as and a c at the end

1

a

10

a

01

a

0

b

00

b

11

b

0

c

00

c

11

c

2∗0

c

b c a b b a c

0 0 1 1

11



Subsystems Automata Syntax Conclusion

Example 3: More Sophisticated Counting

Strings over a, b, c with an even number of as and a c at the end

1

a

10

a

01

a

0

b

00

b

11

b

0

c

00

c

11

c

2∗0

c

b c a b b a c

0 0 1 1 1

11



Subsystems Automata Syntax Conclusion

Example 3: More Sophisticated Counting

Strings over a, b, c with an even number of as and a c at the end

1

a

10

a

01

a

0

b

00

b

11

b

0

c

00

c

11

c

2∗0

c

b c a b b a c

0 0 1 1 1 0

11



Subsystems Automata Syntax Conclusion

Example 3: More Sophisticated Counting

Strings over a, b, c with an even number of as and a c at the end

1

a

10

a

01

a

0

b

00

b

11

b

0

c

00

c

11

c

2∗0

c

b c a b b a c

0 0 1 1 1 0 2

11



Subsystems Automata Syntax Conclusion

(Embedded) Pushdown Automata

A pushdown automaton (PDA) is an FSA augmented with
an unbounded stack of symbols. For every node in the string,

the PDA assigns it a state depending on

the label of the node, and
the state of the preceding node (if it exists), and
the highest symbol on the stack (if it exists),

depending on the state, the PDA may change the stack by

removing the top-most symbol, or
adding a new symbol on top of it.

The string is accepted if the last node is assigned a final state.

An embedded pushdown automaton is a PDA with a stack of
stacks.

12



Subsystems Automata Syntax Conclusion

Cognitive Comparison

FSAs are simple.

specification of how a memory configuration changes into
another depending on input symbol
only use finitely bounded amount of working memory

PDAs are complex.

finite memory (states) and infinite memory (stack)
configuration of finite and infinite memory are interlocked
infinite memory follows “first one in = last one out” principle

FSAs are cognitively a lot more plausible than PDAs.

13



Subsystems Automata Syntax Conclusion

Memory Requirements of Phonology and Syntax

Phonology
Phonological patterns are regular. (Kaplan and Kay 1994)
A small number of patterns is not sub-regular. (Graf 2010)
Hence phonology can be computed by FSAs,
but nothing weaker.

Syntax
Syntax is not regular due to center embedding.
It is not context-free due to crossing dependencies.
(Shieber 1985)
Computing syntactic dependencies over strings hence requires
embedded pushdown automata, at the very least.

14



Subsystems Automata Syntax Conclusion

Interim Summary

String languages can be classified according to their
complexity and matched up with specific automata models.

These automata give us some basic cognitive facts about
memory usage and architecture.

The string patterns we find in phonology and syntax
differ significantly with respect to these parameters.

Phonology Syntax
Lang. Class regular ≥ mildly context-sensitive
Automaton finite-state embedded pushdown
Memory finite finite coupled with infinite

15



Subsystems Automata Syntax Conclusion

Interim Summary

String languages can be classified according to their
complexity and matched up with specific automata models.

These automata give us some basic cognitive facts about
memory usage and architecture.

The string patterns we find in phonology and syntax
differ significantly with respect to these parameters.

Phonology Syntax
Lang. Class regular ≥ mildly context-sensitive
Automaton finite-state embedded pushdown
Memory finite finite coupled with infinite

15



Subsystems Automata Syntax Conclusion

Outline

1 Linguistic Subsystems: Syntax and Phonology

2 Strings, Automata, and Memory
Formal Language Theory
Automata
Memory Requirements of Phonology and Syntax

3 A Linguistically Informed Look at Syntax
Minimalist Syntax
A Quick Example
Tree Structures and Memory



Subsystems Automata Syntax Conclusion

A Closer Look at Syntax

So far we have looked at syntactic patterns as string dependencies.
But syntacticians work with trees, not strings.

CP

C′

TP

T′

VP

V’

twV

kiss

tm

ti

DPm

Mary

C

Ti

did

C

DPw

N

man

D

which

16



Subsystems Automata Syntax Conclusion

A Closer Look at Syntax

So far we have looked at syntactic patterns as string dependencies.
But syntacticians work with trees, not strings.

CP

C′

TP

T′

VP

V’

twV

kiss

tm

ti

DPm

Mary

C

Ti

did

C

DPw

N

man

D

which

16



Subsystems Automata Syntax Conclusion

Minimalist Grammars

Minimalism is the dominant
syntactic theory. (Chomsky 1995)

Can Minimalism change the
computational picture of syntax?
Maybe, but first we need
a precise specification.

Minimalist grammars are such a
formalization, developed by
Ed Stabler. (Stabler 1997)

17



Subsystems Automata Syntax Conclusion

Syntax as Chemistry of Language

Minimalist grammars treat syntax like chemistry.

Chemistry Syntax
atoms words

electrons features
molecules sentences

stable grammatical
unstable ungrammatical

Every word is a collection of features.

Every feature has either positive or negative polarity.

Features of opposite polarity annihilate each other.

Feature annihilation drives the structure-building operations
Merge and Move.

18



Subsystems Automata Syntax Conclusion

Syntax as Chemistry of Language

Minimalist grammars treat syntax like chemistry.

Chemistry Syntax
atoms words

electrons features
molecules sentences

stable grammatical
unstable ungrammatical

Every word is a collection of features.

Every feature has either positive or negative polarity.

Features of opposite polarity annihilate each other.

Feature annihilation drives the structure-building operations
Merge and Move.

18



Subsystems Automata Syntax Conclusion

Merge: Example 1

Assembling [DP the men]

the
N+ D−

men
N−

the
N+ D−

men
N−

Merge[N]

Features of opposite polarities annihilate

Annihilation triggers Merge, which builds structure on top

19



Subsystems Automata Syntax Conclusion

Merge: Example 1

Assembling [DP the men]

the
N+ D−

men
N−

the
N+ D−

men
N−

Merge[N]

Features of opposite polarities annihilate

Annihilation triggers Merge, which builds structure on top

19



Subsystems Automata Syntax Conclusion

Merge: Example 1

Assembling [DP the men]

the
N+ D−

men
N−

the
N+ D−

men
N−

Merge[N]

Features of opposite polarities annihilate

Annihilation triggers Merge, which builds structure on top

19



Subsystems Automata Syntax Conclusion

Merge: Example 1

Assembling [DP the men]

the
N+ D−

men
N−

D

the
N+ D−

men
N−

Merge[N]

Features of opposite polarities annihilate

Annihilation triggers Merge, which builds structure on top

19



Subsystems Automata Syntax Conclusion

Merge: Example 1

Assembling [DP the men]

the
N+ D−

men
N−

D

the
N+ D−

men
N−

Merge[N]

Features of opposite polarities annihilate

Annihilation triggers Merge, which builds structure on top

19



Subsystems Automata Syntax Conclusion

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

20



Subsystems Automata Syntax Conclusion

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

20



Subsystems Automata Syntax Conclusion

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

20



Subsystems Automata Syntax Conclusion

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

20



Subsystems Automata Syntax Conclusion

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D D

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

20



Subsystems Automata Syntax Conclusion

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D D

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

20



Subsystems Automata Syntax Conclusion

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D D

V

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

20



Subsystems Automata Syntax Conclusion

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D D

V

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

20



Subsystems Automata Syntax Conclusion

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D D

V

V

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

20



Subsystems Automata Syntax Conclusion

Merge: Example 2 [cont.]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D D

V

V

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

Merge[N] Merge[N]

Merge[D]

Merge[D]

21



Subsystems Automata Syntax Conclusion

Move

Assembling “which men do the men like?”

the
N+ D−

men
N−

like
D+ D+ V−

which
N+ D−wh−

men
N−

do
V+ wh+ C−

D D

V

V

Merge do

Move triggered by features of opposite polarity

22



Subsystems Automata Syntax Conclusion

Move

Assembling “which men do the men like?”

the
N+ D−

men
N−

like
D+ D+ V−

which
N+ D−wh−

men
N−

do
V+ wh+ C−

D D

V

V

Merge do

Move triggered by features of opposite polarity

22



Subsystems Automata Syntax Conclusion

Move

Assembling “which men do the men like?”

the
N+ D−

men
N−

like
D+ D+ V−

which
N+ D−wh−

men
N−

do
V+ wh+ C−

D D

V

V

C

Merge do

Move triggered by features of opposite polarity

22



Subsystems Automata Syntax Conclusion

Move

Assembling “which men do the men like?”

the
N+ D−

men
N−

like
D+ D+ V−

which
N+ D−wh−

men
N−

do
V+ wh+ C−

D D

V

V

C

Merge do

Move triggered by features of opposite polarity

22



Subsystems Automata Syntax Conclusion

Move

Assembling “which men do the men like?”

the
N+ D−

men
N−

like
D+ D+ V−

which
N+ D−wh−

men
N−

do
V+ wh+ C−

D t

D

V

V

C

C

Merge do

Move triggered by features of opposite polarity

22



Subsystems Automata Syntax Conclusion

Derivation Trees with Move

the

N+ D−
men

N−
like

D+ D+ V−

which

N+ D− wh−
men

N−

do

V+ wh+ C−

D t

D

V

V

C

C

the

N+ D−

men

N−

like

D+ D+ V−

which

N+ D− wh−

men

N−

do

V+ wh+ C−

Merge[N]

Merge[D]

Merge[N]

Merge[D]

Merge[V]

Move[wh]

23



Subsystems Automata Syntax Conclusion

What’s the Point?

Sentences aren’t just strings, they contain hidden structure.

Syntacticians usually look at the tree structure
that is built by the operations Merge and Move.

But: the history of how such a structure is built is also a tree
⇒ phrase structure trees and derivation trees as
two possible views of tree-based syntax

24



Subsystems Automata Syntax Conclusion

Finite-State Tree Automata

A finite-state tree automaton (FSTA) assigns every node
in a tree one of finitely many states, depending on

the label of the node, and

the states of the nodes immediately below it (if they exist).

The FSTA accepts the tree if the highest state is a final state.

Reminder: FSA Definition

A finite-state automaton (FSA) assigns every node in a string
one of finitely many states, depending on

the label of the node, and

the state of the preceding node (if it exists).

The FSA accepts the string if the last state is a final state.

25



Subsystems Automata Syntax Conclusion

Finite-State Tree Automata

A finite-state tree automaton (FSTA) assigns every node
in a tree one of finitely many states, depending on

the label of the node, and

the states of the nodes immediately below it (if they exist).

The FSTA accepts the tree if the highest state is a final state.

Reminder: FSA Definition

A finite-state automaton (FSA) assigns every node in a string
one of finitely many states, depending on

the label of the node, and

the state of the preceding node (if it exists).

The FSA accepts the string if the last state is a final state.

25



Subsystems Automata Syntax Conclusion

Example of an FSTA

FSTA for binary trees over a with an even number of as

oA

e∗

o

A o

e

A

o

ee

A o

oo

A

e∗

oe

A e∗

eo

A

26



Subsystems Automata Syntax Conclusion

Example State Assignment

A

A

A

AA

A

A

o

o

e

oe

o

o

27



Subsystems Automata Syntax Conclusion

Minimalism and FSTAs

Phrase structure trees cannot be handled by FSTAs.

But FSTAs are powerful enough for derivations trees.
(Michaelis 2001; Kobele et al. 2007; Graf 2012)

Since derivation trees are just a more abstract data structure
for encoding syntactic dependencies, this means that
all syntactic dependencies can be computed
with a finite amount of working memory.

A New Perspective on Syntax and Phonology

Phonology finite working memory computations over strings

Syntax finite working memory computations over trees

28



Subsystems Automata Syntax Conclusion

Minimalism and FSTAs

Phrase structure trees cannot be handled by FSTAs.

But FSTAs are powerful enough for derivations trees.
(Michaelis 2001; Kobele et al. 2007; Graf 2012)

Since derivation trees are just a more abstract data structure
for encoding syntactic dependencies, this means that
all syntactic dependencies can be computed
with a finite amount of working memory.

A New Perspective on Syntax and Phonology

Phonology finite working memory computations over strings

Syntax finite working memory computations over trees

28



Subsystems Automata Syntax Conclusion

Conclusion

A computational perspective gives us a rough idea about
memory usage.

But it is important to look at the right data structure.

Moving from strings to trees unearths a deep cognitive parallel
between phonology and syntax, even though they involve
very different dependencies.

29



References

References

Chomsky, Noam. 1956. Three models for the description of language. IRE
Transactions on Information Theory 2:113–124.

Chomsky, Noam. 1959. On certain formal properties of grammars. Information and
Control 2:137–167.

Chomsky, Noam. 1995. The minimalist program. Cambridge, Mass.: MIT Press.
Graf, Thomas. 2010. Logics of phonological reasoning . Master’s thesis, University of

California, Los Angeles.
Graf, Thomas. 2012. Locality and the complexity of minimalist derivation tree

languages. In Formal Grammar 2010/2011 , ed. Philippe de Groot and Mark-Jan
Nederhof, volume 7395 of Lecture Notes in Computer Science, 208–227.
Heidelberg: Springer.

Kaplan, Ronald M., and Martin Kay. 1994. Regular models of phonological rule
systems. Computational Linguistics 20:331–378.

Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An
automata-theoretic approach to minimalism. In Model Theoretic Syntax at 10 , ed.
James Rogers and Stephan Kepser, 71–80.

Michaelis, Jens. 2001. Transforming linear context-free rewriting systems into
minimalist grammars. Lecture Notes in Artificial Intelligence 2099:228–244.

Shieber, Stuart M. 1985. Evidence against the context-freeness of natural language.
Linguistics and Philosophy 8:333–345.

Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of
computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in
Computer Science, 68–95. Berlin: Springer.

30


	Linguistic Subsystems: Syntax and Phonology
	Strings, Automata, and Memory
	Formal Language Theory
	Automata
	Memory Requirements of Phonology and Syntax

	A Linguistically Informed Look at Syntax
	Minimalist Syntax
	A Quick Example
	Tree Structures and Memory

	Appendix

