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Take-Home Message

Questions

How do constraints fit into syntax?

What are their properties?

This Talk

Constraints are closely related to operations.

A formal perspective makes this connection explicit.

Linking constraints to operations limits their power
and makes new empirical predictions.
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Constraints and Operations

The two essential tools of linguistics: Constraints and Operations

GB Minimalism TAG
HPSG EST CCG
LFG Gov. Phon. SPE
OT Harm. Serial.

constraints operations

Some Naive Questions

What distinguishes constraints from operations?

Is one superior to the other?
(Kisseberth 1970; Brody 2002; Epstein and Seely 2002)

How do they interact?
(Epstein et al. 1998; Bailyn 2010)

Does it make a difference for empirical work?
(Pullum and Scholz 2001, 2005)
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Müller-Sternefeld Hierarchy of Constraints

Representational (output filters/interface conditions)
stated over phrase structure trees

ECP: “Every trace is properly governed at LF.”
Full Interpretation: “No uninterpretable features at LF.”
Linearizability: “All leaves are linearly ordered at PF.”

Derivational
stated over derivations

Relativized Minimality: “X moves to Z only if there is no Y
closer to Z that could have moved there.”

Transderivational (economy conditions; cf. OT)
picks optimal tree out of set of competing candidates

Shortest Derivation Principle: “Given a set of competing
derivations, pick the one with the fewest instances of Move.”

MS-Hierarchy (Müller and Sternefeld 2000; Müller 2005)

representational < derivational < transderivational
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Shortcomings of the MS-Hierarchy

based on case studies of specific constraints
⇒ lack of generality

no clear characterization of power of constraints

Why do constraints exist in the first place?
What does this tell us about language?
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Minimalist Grammars (MGs)

formalization of Minimalist syntax without Agree/phases
(Stabler 1997)

many extensions to make them more faithful
(Frey and Gärtner 2002; Graf 2012b; Kobele 2002, 2012;
Stabler 2003, 2006, 2011, among others)

original version suffices for our purposes

Core Idea of MGs

Operations: Merge and Move

lexical items annotated with features

features come in two polarities

each operation must check two features of opposite polarity
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Merge: Example 1

Assembling [DP the men]

the men

the
N+ D−

men
N−

Merge

Merge triggered by features of opposite polarities

Label points to branch leading to projecting head

Head must have a category feature (N−, D−, V−, . . . )

Derivation tree differs only with respect to labels
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Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−

men

N−

like

D+ D+ V−

which

N+ D−

men

N−

the and men merged as before

same steps for which men

like selects which men

like selects the men

like needs a category feature
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Merge: Example 2 [cont.]
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Move (Multi-Dominance Implementation)

Assembling “which men do the men like?”

the
N+ D−

men
N−

like
D+ D+ V−

which
N+ D−

wh−

men
N−

do

V+ wh+ C−

< <

<

>

Merge do

Move triggered by features of opposite polarity

do must have a category feature
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Derivation Trees with Move

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D− wh−
men

N−

do

V+ wh+ C−

< <

<

>

<

>

the

N+ D−

men

N−

like

D+ D+ V−

which

N+ D− wh−

men

N−

do

V+ wh+ C−

Merge[N]

Merge[D]

Merge[N]

Merge[D]

Merge[V]

Move[wh]
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MG Summary

An MG is given by a set of feature-annotated lexical items.
It generates all (multi-dominance) trees that are CPs built from
the available lexical items.

Example

men

N−
the

D+ N−
which

D+ N− wh−

like

D+ D+ V−
do

V+ wh+ C−

ε

V+ C−

Generated sentences: The men like the men.
Which men do the men like.
Which men do like the men.
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Formalizing Constraints

Constraint statement c that must be satisfied in order for a
tree to be well-formed

Logical Formula statement φ that must be satisfied in order for a
structure to be a model of φ

⇒ Constraints ≡ Logical Formulas
(Kracht 1995; Rogers 1998; Potts 2001; Pullum 2007)

First-Order Logic for Trees (FO)

x , y , z , . . . variables x , y , z , . . .
∧, ∨, ¬, →, ↔ and, or, not, implies, iff
∃, ∀ there is, for all
l(x) x has label l
/ dominance
≈ equivalence
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Example: Stating Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

anaphor(x) ↔ himself(x) ∨ herself(x) ∨ itself(x)

“x is an anaphor iff x is labeled himself
or x is labeled herself or x is labeled itself.”

c-com(x , y) ↔ ¬ (x ≈ y) ∧ ¬ (x / y) ∧ ∀z [z / x → z / y ]

“x c-commands y iff
it is not the case that x and y are the same node,

and it is not the case that x dominates y ,
and every z that dominates x also dominates y .”

12
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Linguistics Formal Concepts Results Binding Conclusion

Set Quantification: Talking About Domains

Problem: domains are sets of nodes ⇒ move beyond FO

Monadic Second-Order Logic for Trees (MSO)

Extension of FO with

X ,Y ,Z , . . . set variables X ,Y ,Z , . . .
YP(X ) set X is a YP
∃, ∀ there is a set, for all sets
∈,⊂ set containment, proper subset

b-dom(X , y) ↔ TP(X ) ∧ y ∈ X ∧ ¬∃Z [y ∈ Z ∧ TP(Z ) ∧ Z ⊂ X ]

“X is the binding domain of y iff X is a TP and X contains y
and there is no Z that contains y and is a TP and

is a proper subset of X .”
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Principle A Again

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [b-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor it holds that
there is a y that c-commands x and is labeled DP, and

there is a Z that is the binding domain of x and contains y .”
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Linguistics Formal Concepts Results Binding Conclusion

Further Remarks on the Power of MSO

MSO provides good fit for syntactic constraints, but not perfect:

can state many unnatural constraints (too strong)

cannot state some natural constraints (too weak)

Definable Unnatural Constraints

Symmetric analog: “Every anaphor c-commands a DP”,

Unrelated properties: “The subject is plural if T is [+past]”,

Analogs from phonology: “The total number of nodes is even”

Undefinable Natural Constraints

“Subtrees A and B are identical”
⇒ problematic for ellipsis as deletion under (syntactic) identity

“The meaning of subtree A implies the meaning of B”
⇒ problematic for semantic constraints in syntax

15
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Computing MSO-Constraints

MSO & Tree Automata (Thatcher and Wright 1968; Doner 1970)

A constraint is MSO-definable iff it can be computed by a
(finite-state) tree automaton.

A tree automaton

assigns each node in a tree one of finitely many states, and
accepts the tree iff its root is assigned a final state.

the

N+ D−

men

N−

like

D+ D+ V−

which

N+ D− wh−

men

N−

do

V+ wh+ C−

Merge[N]

Merge[D]

Merge[N]

Merge[D]

Merge[V]

Move[wh]
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Section Summary

Minimalist Syntax

Formalized in terms of MGs

Operations: Merge and Move (Agree omitted for convenience)

Triggered by checking features of opposite polarities

Constraints

Constraints ≡ MSO formulas ≡ tree automata

MSO can talk about both nodes and sets of nodes
⇒ expressive enough for syntax

Tree automata compute constraints in a local way
using finitely bounded number of states (≈ working memory)
⇒ cognitive plausibility
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The Central Result

MSO-Constraints ≡ Merge (Graf 2011; Kobele 2011)

A constraint C can be expressed by an MG iff C is MSO-definable.

Proof idea

convert constraint C into tree automaton A
incorporate states of A into feature calculus
⇒ “refined” grammar expresses C via Merge

the
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Uniformity of Constraint Classes

Reminder: Müller-Sternefeld Hierarchy of Constraints

representational < derivational < transderivational

Formal Result: Uniformity of MSO-Constraints

For every MG

representational ≡ derivational ≡ transderivational (≡ local)

(Graf 2010, 2011, 2012a,b; Kobele 2011)
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Recap: What Just Happened?

Monadic Second-Order logic as description language:

powerful enough for stating syntactic constraints
computable with finite working-memory

Every MSO-constraint expressible purely through Merge
Metaphor: Put memory states into category features

Corollary: constraint types conflate into one

The New Perspective on Constraints

Existence of MSO-definable constraints unsurprising given
power of Merge

But are there really only MSO-constraints in syntax?
What would the implications be?

20



Linguistics Formal Concepts Results Binding Conclusion

Recap: What Just Happened?

Monadic Second-Order logic as description language:

powerful enough for stating syntactic constraints
computable with finite working-memory

Every MSO-constraint expressible purely through Merge
Metaphor: Put memory states into category features

Corollary: constraint types conflate into one

The New Perspective on Constraints

Existence of MSO-definable constraints unsurprising given
power of Merge

But are there really only MSO-constraints in syntax?
What would the implications be?

20



Linguistics Formal Concepts Results Binding Conclusion

Implications for Processing

derivational ≡ local
solves problem of parsing long-distance dependencies
in a local, incremental manner (cf. Alcocer and Phillips 2012)

derivational ≡ representational
allows parsing derivations rather than phrase structure trees
⇒ increased performance (Stabler 2012)

correctly predicts processing difficulties (Kobele et al. 2012)
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Syntactic Binding: No Semantics

Canonical Binding Theory:
is sentence grammatical with respect to specific reading?

requires storing referent for each pronoun

number of pronouns per sentence unbounded
⇒ no upper bound on number of referents
⇒ needs unbounded amount of working memory

Syntactic Binding (preliminary)

Does a given sentence have some grammatical reading?
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Syntactic Binding: No Discourse

Discourse-mechanisms arguably not part of syntax
⇒ syntax only regulates pronouns that must be
syntactically bound (cf. aapan. in Marathi; Kiparsky 2002)
Technical assumption
English has discourse-bound himd and syntactically bound
hims ; only the latter is of interest here

Syntactic Binding (final)

Is there some syntactically grammatical reading?

Example

(1) a. Every patient said that hed should sedate hims .

b. * Every patient said that hes should sedate hims .

c. Every patient told some doctor that hes should
sedate hims .
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Principle A is Easy

already saw how Principle A can be expressed in MSO
⇒ SE/SELF anaphors no problem

What about long distance reflexives?

Icelandic type: usually allows local binding ⇒ like SE/SELF

(2) Jóni

Jon
segir
says

að
that

Maŕıaj

Maria
elski
loves.subj

sigi/j .
SE

‘Jon says that Maria loves him/herself.’

Swedish type: no local binding allowed ⇒ like pronouns

(3) Generaleni

General.the
tvingade
forced

överstenj

colonel.the
PROj

PRO
att
to

hjälpa
help

sigi/∗j .
se

‘The general forced the colonel to help him(∗self).’
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Principle B: Limited Obviation

While Principle A is easy, Principle B is difficult because of its
obviation requirement (= no local binding).

Syntactic Binding and MSO

Syntactic Binding is MSO-definable iff Limited Obviation holds.

Limited Obviation

For every binding domain, its syntactically bound pronouns need
at most a total of n antecedents to yield a grammatical reading.

So, what does that mean?

If a binding domain contains more than n bound pronouns,
those additional pronouns can be coreferent with
pronouns in the same domain ⇒ Principle B exceptions
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How would one Falsify Limited Obviation?

All binding proposals agree that there is some domain
within which pronouns may not be syntactically bound
≈ binding/obviation domain

binding domain ≤ CP

Within a single CP, there are three ways of introducing
an unbounded number of pronominal DPs:

adjuncts
nested TPs/vPs, VPs, and DPs
coordination

Limited Obviation is violated only if the pronouns
in these configurations all obviate each other
(i.e. are mandatorily disjoint in reference).
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Adjuncts

Pronouns contained by adjuncts usually lack obviation.

(4) Every/No/Some woman put the box down in front of her.

But even when obviation can be observed, pronouns contained by
distinct adjuncts do not obviate each other.

(5) a. * Every/No/Some priest sacrificed a goat for him.

b. Every/No/Some Egyptian goddess asked of some
priest that he sacrifice a goat for her in honor of her.

Hence adjuncts increase the required number of antecedents
only by a limited amount.
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Nested TPs/VPs

Nested TPs/vPs
In English, TPs establish new obviation domains
(although overlap is possible for Spec,TP).

(6) a. * Every/No/Some patient said that he wants him
to sedate him.

b. Every/No/Some patient told some doctor that
he wants him (to convince him) to sedate him.

Nested VPs
Nested VPs, if they exist at all in English, behave like
nested TPs.

(7) a. * Every/No/Some patient said that he made him
operate on him.

b. Every/No/Some doctor told some patient that
he made him (watch him) operate on him.
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Nested DPs with Possessors

Depending on your choice of binding theory,
one of the two holds:

possessed DPs establish a new obviation domain

pronouns inside possessed DPs are not obviative

Either way Limited Obviation is satisfied.

(8) a. Every/No/Some politician liked the photographer’s
picture of him.

b. Every/No/Some politician complained about [the
reporter’s article on him and [the photographer’s
picture of him]].
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Nested DPs without Possessors

There is no obviation effect with non-possessed DPs.

(9) a. Every/No/Some post-modern artist must paint at least
one [picture of [him and a picture of him]].

b. Every/No/Some client wanted to see a [presentation of
[a presentation to him] to him].
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Coordination

Coordination involving bound pronouns is ungrammatical
if the two pronouns are identical.

(10) a. Every/No/Some football player told every/no/some
cheerleader that the coach wants to see him and her
in the office.

b. * Every/No/Some football player told every/no/some
masseur that the coach wants to see him and him in
the office.

Since every language has only a finite number of distinct pronouns,
coordination can only introduce a bounded number of pronouns
that obviate each other.
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A Counterexample in ASL? (Graf and Abner 2012)

Coordination of bound pronouns is grammatical in ASL.

(11) ALLi WRESTLERi INFORMj SOMEONEj SWIMMERj THAT
IXi/j IXj/i WILL RIDE-IN-VEHICLE LIMO GO-TO DANCE
Every wrestleri told some swimmerj that himi/j and himj/i

would ride in a limo to the dance.

(12) EACHi WRESTLERi TELLj SOMEONEj SWIMMERj THAT
SOMEONEk FOOTBALLk PLAYERk ASK CAN IXi IXj IXk

THREE-HUMANS-GO-TO DANCE (TOGETHER)
Each wrestleri told some swimmerj that some football
playerk asked if himi and himj and himk could go to the
dance together.

Binding in ASL

Every DP can be assigned a locus in space.

Pronominal binding is realized by pointing at the locus
which a DP has been assigned to (transcribed as IX).
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The Role of Deixis

Pointing at referents in space resembles deictic pronouns
in English. And deictic pronouns can easily be coordinated.

(13) Every/No/Some football player told every/some/no
masseur that the coach wants to see himdeictic and
himdeictic in his office.

Since Limited Obviation only applies to syntactic binding,
(13) does not constitute a counterexample.

The Big Question

Are the coordinated pronouns in ASL syntactically bound?
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Non-empty Domain Restrictions

While pronouns can be discourse-bound by quantifiers in English,
the extension of the quantified DP must be non-empty.

(14) a. Every player is handed a card. He then has to role a
dice.

b. # No player is handed a card. He then has to role a
dice.

A similar pattern emerges for pronouns in ASL.

(15) EACH POLITICS PERSONi TELL-STORY (IXi) WANT WIN
Each politiciani said hei wants to win.

(16) NO POLITICS PERSONi TELL-STORY (?∗IXi) WANT WIN
No politiciani said hei wants to win.
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Section Summary

Are MSO-definable constraints sufficient?
Probably yes, if semantics isn’t involved:

Constraint results only hold for syntax
⇒ Syntactic fragment of binding theory

No discourse binding, no evaluation of specific readings

Even then a limit on the number of required antecedents
per binding domain is mandatory for MSO-computability ⇒
Limited Obviation

Satisfied in English and (probably) ASL

A new descriptive universal for binding theory?
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Conclusion

Questions
Why do constraints exist at all?
What kinds of constraints are there?
How powerful are they?
How do they fit into syntax?
What are the empirical implications?

Formal Answer
Constraints are a natural by-product of Merge.
The MG-expressible constraints are exactly those that can be
computed with a finitely bounded amount of working memory.
Within this class, all subtypes are interchangeable.

Implications
offers new solutions to processing problems
prompts new descriptive universal for pronominal binding
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Outlook

Constraints through Merge

Uniformity of Constraints

Binding
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Outlook

Big Picture

Constraints through Merge Operations

MoveUniformity of Constraints

Binding

More Data

Adjunction

Island Constraints
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Representational ≡ Derivational

MSO over Representations MSO over Derivations
∧,∨,¬,→ ∧,∨,¬,→
∃,∀ ∃,∀
≡ ≡

standard dominance / derivational dominance J

x / y iff φ(x , y), where φ uses J but not /
⇒ replacing each occurrence of x / y by φ(x , y)
in representational constraint C yields derivational C ′

x J y iff ψ(x , y), where ψ uses / but not J
⇒ replacing each occurrence of x J y by ψ(x , y)
in derivational constraint C yields representational C ′
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Derivational ≡ Transderivational

A Different Perspective on Transderivationality

Transderivational constraints do not filter out suboptimal trees.
They rewrite suboptimal trees into optimal ones.

Rewrite procedure carried out by linear tree transducer

Given a set of Minimalist derivations as inputs,
transducer produces set of outputs that can be computed by
a tree automaton

Compile said automaton into the features as usual
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(Dis)Advantages of Constraint Classes

Are constraints redundant? Should we just use feature checking?

Shortcomings of Local Constraints
less succinct, often incomprehensible, hide generalizations

Shortcomings of Derivational Constraints
some constraints are significantly more complicated
when stated over derivations (e.g. ECP)

Advantages of Transderivational Constraints
can state generalizations across grammars that are not
expressible with derivational/representational constraints

Methodological Moral of the Story

Even though the constraint classes have the same power, they each
have their own advantages and disadvantages.
⇒ Use the type of constraint that is best suited to the task!
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A Purely Transderivational Generalization

Shortest Derivation Principle

Given a set of competing derivations, pick the one with
the fewest instances of Move.

Toy Grammar 1

At least one DP moves out of VP.

Two options:

Move to SpecYP, and YP then moves to SpecZP (roll-up)
Move directly to SpecZP (one-fell-swoop)

Result: Exactly one DP must move from VP to SpecZP.

Toy Grammar 2

At most one DP moves out of VP, directly into SpecZP.

Result: No DP may move from VP to SpecZP.
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Implications for Acquisition

“cognitive load explanations” for acquisition delays of
Principle B and Focus Projection
(Grodzinsky and Reinhart 1993; Szendrői 2004)

Certain processes involve transderivational constraints.
Comparing multiple trees too computationally demanding
for young children
⇒ delay in acquisition due to insufficient working memory

Implausible explanation if transderivational ≡ derivational
(no extra processing load)

Recent findings: Principle B delay an artifact of experimental
setup
(Papafragou and Musolino 2003; Papafragou and Tantalou
2004; Elbourne 2005; Conroy et al. 2009)

Same problem with Focus experiment?
A pilot study is in preparation.
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Two Common Questions on ASL Binding

What about other obviation domains in ASL?

Coordination and nested VP/TP domains provide the only true
ASL parallel to their English counterparts, the latter of which also
introduce new binding domains in ASL. Nested DP structures are
not well-attested in the language and comparable adjunct
structures are expressed in ASL through the use of complex
locative and classifier morphology.

Could spatial reference just be an elaborate case or gender system?

Then the grammatical coordination examples parallel the
coordination of him and her in English and are not a problem for
Limited Obviation. However, there is no sense in which spatial loci
are inherently associated with (pro)nominals in ASL, as is typical
of gender systems, nor are spatial loci reliably assigned in specific
syntactic environments, as is typical of case systems.
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More on Coordination in English

Some speakers accept (17) as grammatical.

(17) ?? Every/No/Some football player told every/no/some
masseur that the coach wants him to run six laps and
him to prepare the massage room.

If this pattern is a productive instance of coordinating syntactically
bound pronouns, it would falsify Limited Obviation.
But just like in ASL, the binding mechanism at play here arguably
isn’t (purely) syntactic in nature.

Most speakers need to put (contrastive) stress
on the respective pronouns.

No seems to be disprefered compared to every and some.

There is no c-command requirement
(even in configurations where QR is bounded).
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More on Coordination in English [cont.]

(18) a. A coach of every/some football player told a
receptionist of every/some masseur that the team’s
president wants him to get a massage and him to give
it.

b. An agent of every/some actress told a bodyguard of
every/some first lady that he wants her to do a movie
about Jackie Kennedy and her to be on the set as a
consultant.

c. An interview that every/some football player liked
included a quib, which every/some masseur had related
to the reporter at some point, that the coach always
ordered him to run six laps and him to prepare the
massage chair.
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