Strong Islands

Adjuncts, Islands, Algebra (with a Sprinkling of Semantics)

Thomas Graf mail@thomasgraf.net http://thomasgraf.net

Nov 4, 2014

Take-Home Message

The Strong Island Puzzle

Adjuncts and conjuncts are hard to extract from — why?

- (1) a. Which book did John complain that he lost?
 - b. *Which book did John complain because he lost?
 - c. * Which book did John complain after losing?
- (2) * Which book does John like Ke\$ha and the author of?

Mathematical Solution

- Island effects are an inevitable consequence of optionality.
- Non-islands lack optionality wrt syntax or semantics.

Take-Home Message

The Strong Island Puzzle

Adjuncts and conjuncts are hard to extract from — why?

- (1) a. Which book did John complain that he lost?
 - b. * Which book did John complain because he lost?
 - c. * Which book did John complain after losing?
- (2) * Which book does John like Ke\$ha and the author of?

Mathematical Solution

- Island effects are an inevitable consequence of optionality.
- Non-islands lack optionality wrt syntax or semantics.

Outline

- 1 Two Strong Islands
 - Adjuncts
 - Coordination
- 2 The Math: Optionality and Grammaticality Inferences
 - Ojuncts: Formalizing Optionality
 - Optionality Closure
- Oeriving Island Effects
- 4 How to Deal With Optional Non-Islands
- 5 Linking the Syntactic and Semantic Ojunct-Algebras
 - Semantic Algebra
- 6 Conclusion & Outlook

Adjuncts

Strong Islands

- extraction usually blocked
 - (3) a. Which book did John complain that he lost t?
 - b. * Which book did John complain because he lost *t*?
 - c. * Which book did John complain after losing *t*?
- gaps licensed
 - (4) Which book did John burn t after reading e?
- usually optional
 - (5) (Obviously) I will (easily) ace this ((very) challenging) exam (because I (really) am that smart).

Coordination

Strong Islands

- extraction usually blocked
 - (6) Ed brewed beer and Greg drank it.
 - * Which beer did **Ed** brew t and **Greg** drink it?

Exceptions

* Which wine did

Ed brew beer and Greg drink t?

- across-the-board extraction possible
 - a. Which wine did **Ed brew** t and **Greg drink** t?
- mostly optional (modulo morphological/semantic agreement)
 - (8) Ed brewed beer and Greg drank it.
 - h. Ed brewed beer.
 - (9)Ed and Greg are brewing beer.
 - * Ed are brewing beer.
 - (10)Ed and Greg met.
 - * Ed met.

The Big Picture

As a rule of thumb, adjuncts and coordinations

- block extraction.
- allow for gaps,
- are optional.

The Big Question

Could (1) and (2) be related to optionality?

Outline

- 1 Two Strong Islands
 - Adjuncts
 - Coordination
- 2 The Math: Optionality and Grammaticality Inferences
 - Ojuncts: Formalizing Optionality
 - Optionality Closure
- 3 Deriving Island Effects
- 4 How to Deal With Optional Non-Islands
- Linking the Syntactic and Semantic Ojunct-AlgebrasSemantic Algebra
- 6 Conclusion & Outlook

Adjuncts in the Literature

Adjuncts . . .

Strong Islands

- have no special operational status (CG; Cinque 1999),
- are pair-merged (Chomsky 1995),
- are late-merged (Stepanov 2001),
- are inserted but not merged immediately (Hunter 2012),
- involve asymmetric feature checking (Frey and Gärtner 2002),

Problem

Can we abstract away from these details? Properties that hold of every conceivable implementation?

Ojuncts

The notion of an **ojunct** provides an abstract characterization of optional phrase markers.

Ojunct (Intuitive Definition)

A phrase marker is an **ojunct** iff it is implemented by some operation that captures optionality.

Under most Minimalist conceptions of movement, ojuncts are necessarily islands:

Theorem (Islandhood)

No ojunct can be extracted from if the extraction step involves checking a dependency at the target site.

Ojuncts

The notion of an **ojunct** provides an abstract characterization of optional phrase markers.

Ojunct (Intuitive Definition)

A phrase marker is an **ojunct** iff it is implemented by some operation that captures optionality.

Under most Minimalist conceptions of movement, ojuncts are necessarily islands:

Theorem (Islandhood)

No ojunct can be extracted from if the extraction step involves checking a dependency at the target site.

Ojunct Extension

Due to optinality, grammars with ojuncts generate languages with a special **algebraic shape**.

Definition (Ojunct Extensions)

Let **s** and **t** be trees.

Then **t** is an **ojunct extension** of **s** for grammar G ($s <_G t$) iff **t** is the result of inserting one or more ojuncts of G in **s**.

- ullet Obviously I will ace this exam $<_G$
 - Obviously I will easily ace this exam
- I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not<_G$ I will easily ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Ojunct Extension

Due to optinality, grammars with ojuncts generate languages with a special **algebraic shape**.

Definition (Ojunct Extensions)

Let s and t be trees.

Then **t** is an **ojunct extension** of **s** for grammar G ($\mathbf{s} <_G \mathbf{t}$) iff **t** is the result of inserting one or more ojuncts of G in **s**.

- Obviously I will ace this exam <_G
 - Obviously I will easily ace this exam
- I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not<_G$ I will easily ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Ojunct Extension

Due to optinality, grammars with ojuncts generate languages with a special **algebraic shape**.

Definition (Ojunct Extensions)

Let s and t be trees.

Then **t** is an **ojunct extension** of **s** for grammar G ($s <_G t$) iff **t** is the result of inserting one or more ojuncts of G in **s**.

- ullet Obviously I will ace this exam $<_G$ Obviously I will easily ace this exam
- I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not<_G$ I will easily ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Ojunct Extension

Due to optinality, grammars with ojuncts generate languages with a special **algebraic shape**.

Definition (Ojunct Extensions)

Let s and t be trees.

Then **t** is an **ojunct extension** of **s** for grammar G ($s <_G t$) iff **t** is the result of inserting one or more ojuncts of G in **s**.

- ullet Obviously I will ace this exam $<_G$ Obviously I will easily ace this exam
- I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not<_G$ I will easily ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Ojunct Extension

Due to optinality, grammars with ojuncts generate languages with a special **algebraic shape**.

Definition (Ojunct Extensions)

Let s and t be trees.

Then **t** is an **ojunct extension** of **s** for grammar G ($s <_G t$) iff **t** is the result of inserting one or more ojuncts of G in **s**.

- Obviously I will ace this exam $<_G$ Obviously I will easily ace this exam
- I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not<_G$ I will easily ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace

Ojunct Extension

Due to optinality, grammars with ojuncts generate languages with a special **algebraic shape**.

Definition (Ojunct Extensions)

Let s and t be trees.

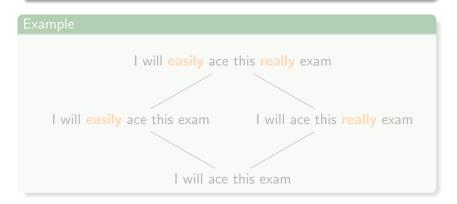
Then **t** is an **ojunct extension** of **s** for grammar G ($s <_G t$) iff **t** is the result of inserting one or more ojuncts of G in **s**.

- Obviously I will ace this exam $<_G$ Obviously I will easily ace this exam
- I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not<_G$ I will easily ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace < easily exam will this I ace

Ojunct Extension

Due to optinality, grammars with ojuncts generate languages with a special **algebraic shape**.

Definition (Ojunct Extensions)


Let s and t be trees.

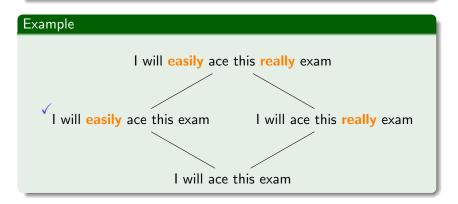
Then **t** is an **ojunct extension** of **s** for grammar G ($\mathbf{s} <_G \mathbf{t}$) iff **t** is the result of inserting one or more ojuncts of G in **s**.

- Obviously I will ace this exam <_G
 - Obviously I will easily ace this exam
- ullet I will ace this exam $<_G$ Obviously I will easily ace this exam
- Obviously I will ace this exam $\not<_G$ I will easily ace this exam
- I will ace this exam $\not<_G$ I will easily ace this test
- exam will this I ace $<_G$ easily exam will this I ace


Characterizing Ojunct Languages

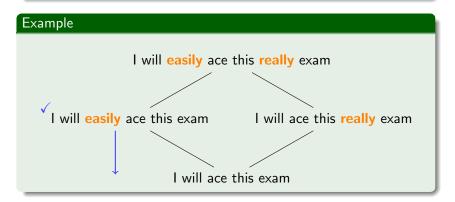
Theorem (Optionality Closure)

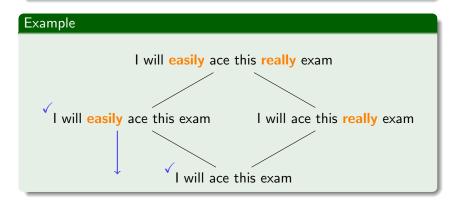
Strong Islands


Theorem (Optionality Closure)

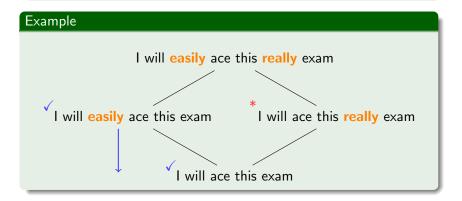
Characterizing Ojunct Languages

Theorem (Optionality Closure)

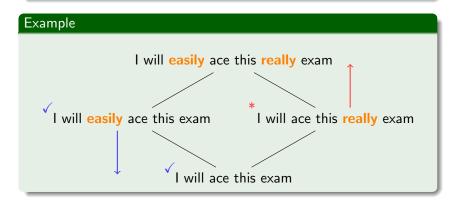

Strong Islands


Strong Islands

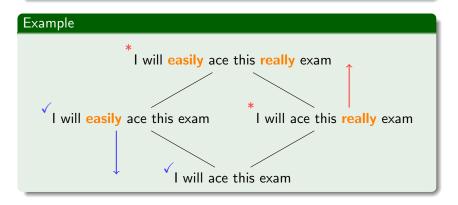
Theorem (Optionality Closure)


Theorem (Optionality Closure)

Strong Islands


Theorem (Optionality Closure)

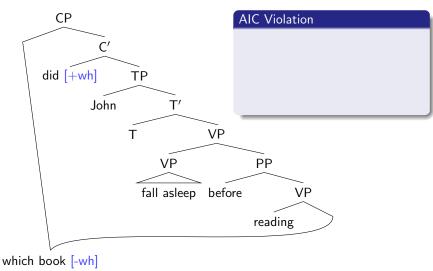
Strong Islands


Characterizing Ojunct Languages

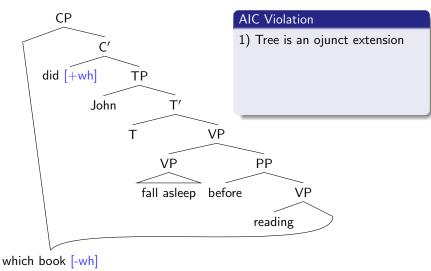
Theorem (Optionality Closure)

Characterizing Ojunct Languages

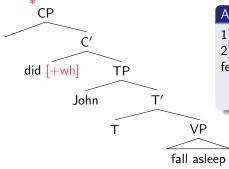
Theorem (Optionality Closure)


Interim Summary

- We abstract away from technical details of the grammar.
- Major Requirement
 implementation of adjuncts and conjuncts must capture their optionality ⇒ abstract notion of ojuncts
- Grammars with ojuncts show special inference patterns:
 - \downarrow grammaticality is downward entailing with respect to $<_G$,
 - \uparrow ungrammaticality is upward entailing with respect to $<_G$.

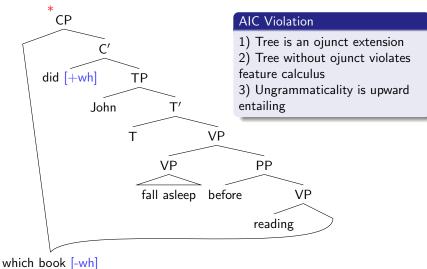

Outline

- 1 Two Strong Islands
 - Adjuncts
 - Coordination
- 2 The Math: Optionality and Grammaticality Inferences
 - Ojuncts: Formalizing Optionality
 - Optionality Closure
- 3 Deriving Island Effects
- 4 How to Deal With Optional Non-Islands
- 5 Linking the Syntactic and Semantic Ojunct-Algebras
 - Semantic Algebra
- 6 Conclusion & Outlook


The AIC follows from optionality closure and feature checking.

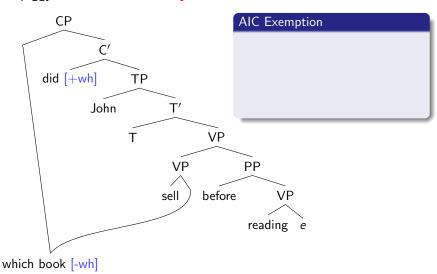
The AIC follows from optionality closure and feature checking.

The AIC follows from **optionality closure and feature checking**.

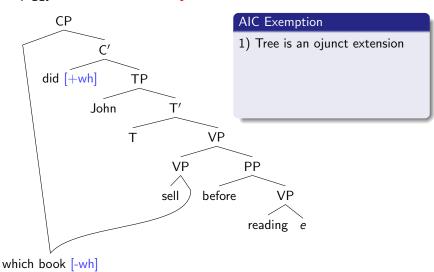


AIC Violation

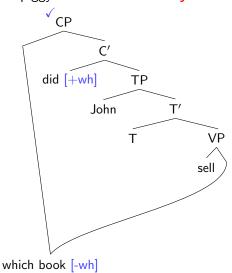
- 1) Tree is an ojunct extension
- 2) Tree without ojunct violates feature calculus


Strong Islands

The AIC follows from optionality closure and feature checking.


Why Parasitic Gaps are Different

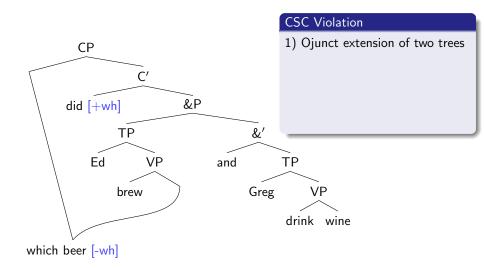
PGs piggyback on a mandatory feature checker.

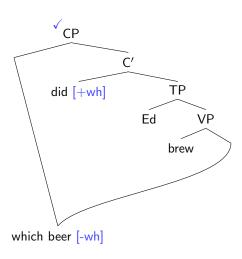


Why Parasitic Gaps are Different

PGs piggyback on a mandatory feature checker.

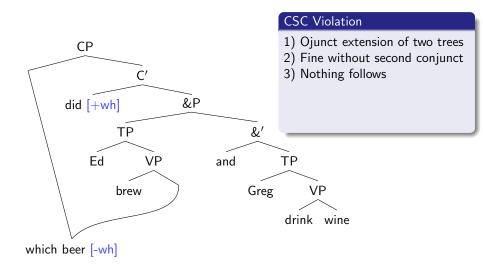

PGs piggyback on a mandatory feature checker.

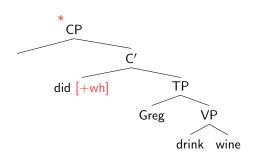



AIC Exemption

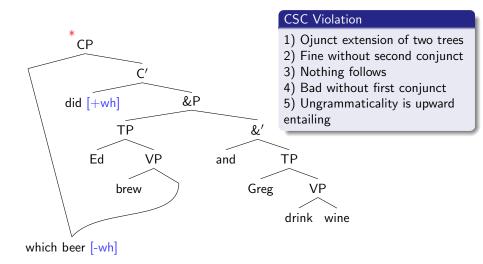
- 1) Tree is an ojunct extension
- 2) Tree without ojunct satisfies feature calculus

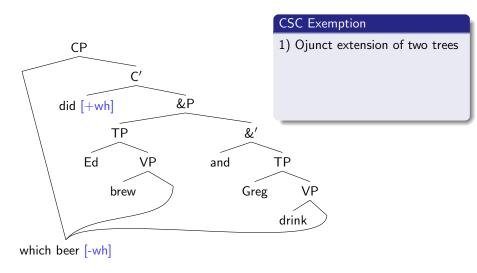
PGs piggyback on a mandatory feature checker.

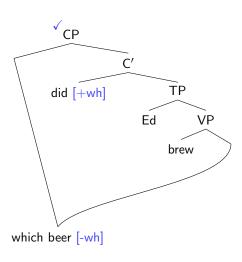




CSC Violation

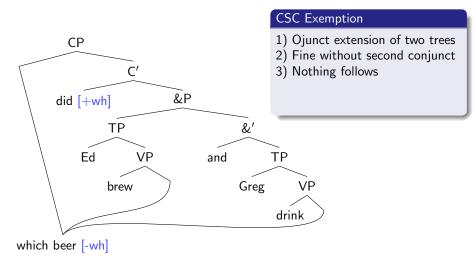

- 1) Ojunct extension of two trees
- 2) Fine without second conjunct

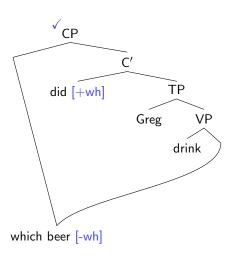




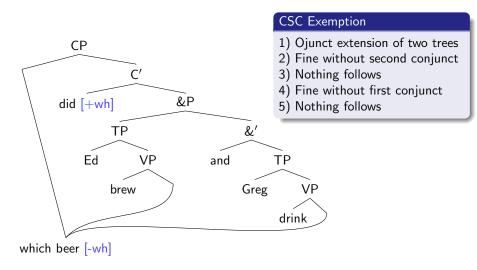
CSC Violation

- 1) Ojunct extension of two trees
- 2) Fine without second conjunct
- 3) Nothing follows
- 4) Bad without first conjunct





CSC Exemption


- 1) Ojunct extension of two trees
- 2) Fine without second conjunct

CSC Exemption

- 1) Ojunct extension of two trees
- 2) Fine without second conjunct
- 3) Nothing follows
- 4) Fine without first conjunct

Interim Summary

- Ojuncts are incompatible with instances of extraction that depend on the presence of the ojunct.
 - AIC violations
 - CSC violations
- All other kinds of extraction should be subject to cross-linguistic variation.
 - ATB (mover originates outside ojunct)
 - parasitic gaps (ojunct imposes constraints on tree, but not the other way round)

Conclusion

Outline

- Two Strong Islands
 - Adjuncts
 - Coordination
- 2 The Math: Optionality and Grammaticality Inferences
 - Ojuncts: Formalizing Optionality
 - Optionality Closure
- 3 Deriving Island Effects
- 4 How to Deal With Optional Non-Islands
- 5 Linking the Syntactic and Semantic Ojunct-Algebras
 - Semantic Algebra
- 6 Conclusion & Outlook

The Account So Far

Mathematical Fact With feature-driven Move all ojuncts are isla

With feature-driven Move, all ojuncts are islands while still allowing for parasitic gaps and ATB extraction.

Empirical Assumptions

- Movement is always feature-driven.
- Adjuncts and coordinations are ojuncts.

Is this true?

The Issue

- Some phrases look like ojuncts yet are not islands.
- Two possible solutions
 - no movement/mandatory feature checking (stipulative)
 - optionality does not hold

The Account So Far

Mathematical Fact

With feature-driven Move, all ojuncts are islands while still allowing for parasitic gaps and ATB extraction.

Empirical Assumptions

- Movement is always feature-driven.
- Adjuncts and coordinations are ojuncts.

Is this true?

The Issue

- Some phrases look like ojuncts yet are not islands.
- Two possible solutions
 - no movement/mandatory feature checking (stipulative)
 - optionality does not hold

Subject by-Phrases and Instrumentals

In passives, *by*-phrases are optional but do not block extraction. The same holds for instrumentals.

- (11) a. Mary was assaulted (by John) (with a hammer).
 - b. Which man was Mary assaulted by t?
 - c. What kind of weapon was Mary assaulted with t?

However, these phrases are semantic arguments of the verb.

Truswell Sentences

Truswell adjuncts also allow for extraction. (Truswell 2007)

(12) Which car did John drive Mary crazy trying to fix t?

Truswell's Generalization

Adjunct denotes an event e' that is related via R to the event e of the matrix clause

- ⇒ does not have standard (Neo-Davidsonian) denotation
- ⇒ adjunct behaves more like a semantic argument

Coordination without Parallelism

Extraction from a conjunct is fine if the coordination has serial or subordinate semantics.

(Culicover and Jackendoff 1997; Kehler 2002)

- (13) a. How many beers can you drink t and still stay sober?
 - b. This is the guy **that you sleep with** *t* and end up with an STD.

Once again one cannot use the standard semantics for adjuncts/conjuncts.

The Big Picture

 more fine-grained classification than just argument vs adjunct (cf. Dowty 2003; Needham and Toivonen 2011)

	sem-argument	sem-adjunct
syn-adjunct	Truswell adjuncts	ojuncts
syn-argument	arguments	case-marked adjuncts (?)

- whatever mechanism gives rise to the optionality of ojuncts also limits their semantic denotation
- non-adjunct semantics implies usage of a different mechanism that does not give rise to optionality

The Big Picture

 more fine-grained classification than just argument vs adjunct (cf. Dowty 2003; Needham and Toivonen 2011)

	sem-argument	sem-adjunct
syn-adjunct	Truswell adjuncts	ojuncts
syn-argument	arguments	case-marked adjuncts (?)

- whatever mechanism gives rise to the optionality of ojuncts also limits their semantic denotation
- non-adjunct semantics implies usage of a different mechanism that does not give rise to optionality

Neo-Davidsonian Adjunct Semantics

In **Neo-Davidsonian semantics**, adjunction to **XP** yields the conjunction of **[XP]** with a monadic predicate over an event.

- (14) a. John runs. $AG(\mathsf{John},e) \wedge \mathsf{run}(e)$
 - b. John runs quickly. $AG(John, e) \wedge run(e) \wedge quickly(e)$

Algebraic Observation

- If phrases denote sets of events, adjuncts are intersective:
 ||run quickly|| = ||run|| ∩ ||quickly||
- Arguments are not:

```
\llbracket \mathsf{John} \; \mathsf{runs} \rrbracket = \llbracket \mathsf{AG}(\mathsf{John}) \rrbracket \cap \llbracket \mathsf{runs} \rrbracket \neq \llbracket \mathsf{John} \rrbracket \cap \llbracket \mathsf{runs} \rrbracket
```

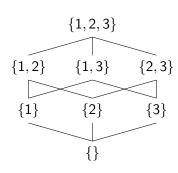
Neo-Davidsonian Adjunct Semantics

In **Neo-Davidsonian semantics**, adjunction to **XP** yields the conjunction of **[XP]** with a monadic predicate over an event.

- (14) a. John runs. $AG(\mathsf{John},e) \wedge \mathsf{run}(e)$
 - b. John runs quickly. $AG(John, e) \wedge run(e) \wedge quickly(e)$

Algebraic Observation

- If phrases denote sets of events, adjuncts are intersective:
 - $\llbracket \operatorname{run} \operatorname{quickly} \rrbracket = \llbracket \operatorname{run} \rrbracket \cap \llbracket \operatorname{quickly} \rrbracket$
- Arguments are not:
 - $[\![John \ runs]\!] = [\![AG(John)]\!] \cap [\![runs]\!] \neq [\![John]\!] \cap [\![runs]\!]$


Strong Islands

The Semantic Adjunct Algebra

- Let $\mathbb E$ be the set of all events, and $2^{\mathbb E}$ its powerset.
- We can order the elements of $2^{\mathbb{E}}$ by the subset relation \subseteq .
- ullet This yields a Boolean lattice $\mathcal{E} \coloneqq \left\langle 2^{\mathbb{E}}, \subseteq \right\rangle$, where
 - \bullet the meet operation \wedge is intersection, and
 - the join operation ∨ is union.
- Let f be a semantic interpretation function that maps every phrase/word to an element of \mathcal{E} .
- Semantically, adjunction of A to XP amounts to taking the meet $f(A) \wedge f(XP)$.

Strong Islands

Example Lattice for Adjunct Semantics

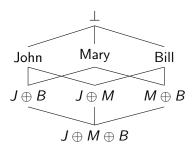
Example

Suppose:

- $f(\text{run}) = \{1, 2, 3\}$
- $f(quickly) = \{2, 3\}$
- $f(John) = \{1, 2\}$
- $f(AG(John)) = \{1\}$

Then:

- $f(\text{run quickly}) = f(\text{run}) \land f(\text{quickly}) = \{2,3\} = [\text{run quickly}]$
- f(John runs) = $f(John) \land f(runs) =$ $\{1,2\} \neq \{1\} = \llbracket John runs \rrbracket$


Extension to Coordination

• Coordination is analyzed via mereological sums:

$$\llbracket \mathsf{John} \ \mathsf{and} \ \mathsf{Mary} \rrbracket = \llbracket \mathsf{John} \rrbracket \oplus \llbracket \mathsf{Mary} \rrbracket = \mathsf{John} \oplus \mathsf{Mary}$$

- If we take the set of individuals and all possible mereological sums thereof, we once again get a Boolean lattice.
- Semantically, coordination corresponds to meet in this lattice.

Example Lattice for Coordination Semantics

Example $f(John and Mary) = f(John) \land f(Mary) = J \oplus M = [John and Mary]$

An Explanation via Algebra Linking

- Adjunction and coordination have similar semantics: meet over a specific lattice.
- Key idea for syntax
 - Merger of an adjunct equals meet over a syntactic lattice.
 - Merger of an argument does not.
- Ojuncts are introduced by an operation that corresponds to meet in the syntactic and semantic lattices.
- If the syntax or semantics is more complicated than meet, then we are not dealing with an ojunct.

Good Continuations

Definition (Good Continuation)

Tree s is a good continuation of tree t iff adding s above t yields a well-formed tree.

Good Continuations

Definition (Good Continuation)

Tree **s** is a good continuation of tree **t** iff adding **s** above **t** yields a well-formed tree.

Strong Islands

Arguments, Adjuncts, and Continuations

- Observation 1: Identifying trees with their continuations
 Every tree can be associated with its set of good continuations. We also call this its continuation set.
- Observation 2: Argument Merge is non-intersective
 If tree t is merged with argument r, they have
 disjoint continuation sets.
 - The good continuations of t must include an argument like r.
 - ullet The good continuations of ${\bf r}$ cannot include an argument like ${\bf r}$.
- Observation 3: Adjunction is intersective
 If tree t can have an adjunct a, they have overlapping continuation sets.
 - The set of good continuations for a includes trees without a.
 - By optionality, the set of good continuations for t does, too.

In fact, the continuation set of the tree t' that results from adjunction of ${\bf a}$ to ${\bf t}$ is exactly the intersection of their continuation sets.

Continuation Lattice

Strong Islands

- Let $\mathbb C$ be the set of all continuations, and $2^{\mathbb E}$ its powerset.
- We can order the elements of $2^{\mathbb{E}}$ by the subset relation \subseteq .
- This yields the Boolean lattice $\mathcal{C}:=\langle 2^{\mathbb{E}},\subseteq \rangle$, which has exactly the same properties as the event lattice and the mereology lattice.
- Let f be a function that maps every phrase/word to an element of C.
- Adjunction of **A** to **XP**, yielding t, must obey the property that $f(t) = f(\mathbf{A}) \wedge f(\mathbf{XP})$.

Conclusion

- Why do we see (strong) island effects?
 Because islandhood is a necessary consequence of optionality given standard feature checking requirements.
- Why are there exceptions?
 Because some adjuncts/conjuncts have complex semantics that requires a more powerful operation
 ⇒ does not capture optimality

Remaining Problems

- adjunct/conjunct semantics can be more complicated (causation, tense, distributivity)
- cross-linguistic variation
 (e.g. extraction from relative clauses in Scandinavian)
- Why do resumptive pronouns repair island violations?

Conclusion

- Why do we see (strong) island effects?
 Because islandhood is a necessary consequence of optionality given standard feature checking requirements.
- Why are there exceptions?
 Because some adjuncts/conjuncts have complex semantics that requires a more powerful operation
 ⇒ does not capture optimality

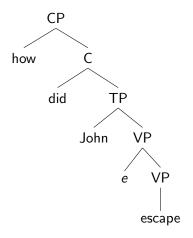
Remaining Problems

- adjunct/conjunct semantics can be more complicated (causation, tense, distributivity)
- cross-linguistic variation
 (e.g. extraction from relative clauses in Scandinavian)
- Why do resumptive pronouns repair island violations?

Problems

References I

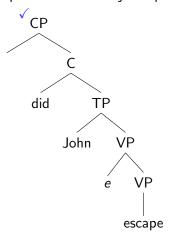
- Aoun, Joseph, Lina Choueiri, and Norbert Hornstein. 2001. Resumption, movement and derivational economy. *Linguistic Inquiry* 32:371–403.
- Chomsky, Noam. 1995. The minimalist program. Cambridge, Mass.: MIT Press.
- Cinque, Guglielmo. 1999. Adverbs and functional heads: A cross-linguistic perspective. Oxford: Oxford University Press.
- Culicover, Peter W., and Ray Jackendoff. 1997. Semantic subordination despite syntactic coordination. *Linguistic Inquiry* 28:195–217.
- Dowty, David. 2003. The dual analysis of adjuncts/complements in categorial grammar. Berlin: Mouton de Gruyter.
- Erteschik-Shir, Nomi. 1973. On the nature of island constraints. Doctoral Dissertation, MIT.
- Frey, Werner, and Hans-Martin Gärtner. 2002. On the treatment of scrambling and adjunction in minimalist grammars. In *Proceedings of the Conference on Formal Grammar (FGTrento)*, 41–52. Trento.
- Hunter, Tim. 2012. Deconstructing merge and move to make room for adjunction. To appear in *Syntax*.
- Kehler, Andrew. 2002. *Coherence, reference, and the theory of grammar*. Stanford: CSLI.


References II

- Needham, Stephanie, and Ida Toivonen. 2011. Derived arguments. In Proceedings of the LFG11 Conference, ed. Miriam Butt and Tracy Holloway King, 401-421.
- Stepanov, Arthur. 2001. Late adjunction and minimalist phrase structure. Syntax 4:94-125.
- Truswell, Robert. 2007. Tense, events, and extraction from adjuncts. In Proceedings of the 43rd Annual Meeting of the Chicago Linguistic Society.

Why Islands May Move

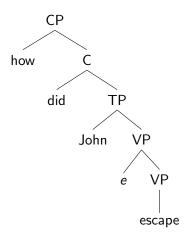
References


Displacement of an ojunct possible via base merger

Base Merge Exemption

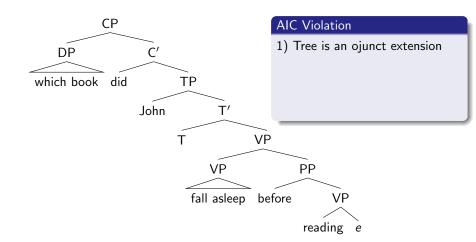
1) Tree is an ojunct extension

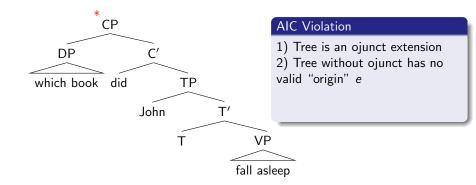
Displacement of an ojunct possible via base merger

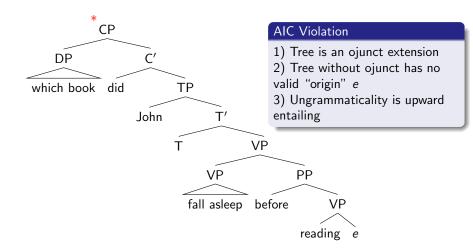

Base Merge Exemption

- 1) Tree is an ojunct extension
- 2) Tree without ojunct satisfies feature calculus

Why Islands May Move


References


Displacement of an ojunct possible via base merger



Base Merge Exemption

- 1) Tree is an ojunct extension
- 2) Tree without ojunct satisfies feature calculus
- 3) Grammaticality isn't upward entailing ⇒ nothing follows

Conjuncts and Agreement

At a surface-level, conjuncts matter for $\phi\text{-agreement}$ and semantic number requirements.

- (15) Ed *(and Greg) are brewing beer.
- (16) Ed *(and Greg) met.

Possible Answer

- Optionality must hold with respect to morphological dependencies, not specific feature values.
- Semantic requirements are ignored.

Binding and NPIs in Coordinations

- (17) a. ? Every woman and no man has ever had a period.
 - b. * Every woman has ever had a period.
- (18) * (Jón og) afar sínir voru Jón and grandpas POSS-REFL.NOM.PL were glaðir. happy.NOM.PL

'(Jón and) his grandpas were happy.'

Worrying, but all cases of extraction are deviant for independent reasons. Optionality is not the issue:

- (19) a. *Which actress has (every TMZ reporter and) no fanboy of t ever talked to?
 - b. *Which field did the dean introduce every professor (of t) and no student of t to any senators?

Consequences

References

Optionality must be computed over abstract structures that allow us to ignore

- concrete ϕ -feature instantiations.
- some semantic requirements
 - size of set denoted by DP,
 - NPI-licensing,
 - binding requirements.

If one relegates these conditions to PF and LF, then optionality — over syntactic trees with Agree dependencies — should apply to these cases.

Remaining Challenge 1: Cross-linguistic variation

- The class of ojuncts should be relatively stable across languages.
- But there is cross-linguistic variation, e.g. extractability from relative clauses in Scandinavian (Erteschik-Shir 1973).

A (Stipulative) Solution

Extraction from ojuncts is possible if the feature at the target site need not be checked. Languages could differ as to which features must always be checked.

Remaining Challenge 1: Cross-linguistic variation

- The class of ojuncts should be relatively stable across languages.
- But there is cross-linguistic variation, e.g. extractability from relative clauses in Scandinavian (Erteschik-Shir 1973).

A (Stipulative) Solution

Extraction from ojuncts is possible if the feature at the target site need not be checked. Languages could differ as to which features must always be checked.

Remaining Challenge 2: Resumptive Pronouns

No island violations with resumptive pronoun instead of trace (e.g. Lebanese Arabic)

this-the-suspect.SGFEM surprised.2 when/because Strafto Panno hiyye nhabasit. know.2 that she imprisoned.3SGFEM 'This suspect, you were surprised when/because you knew that she was imprisoned.' Aoun et al. (2001:575)

ha-l-muttahame tfeeʒa?to lamma/la?anno

follows if binding rather than movement is involved

(20)

- Antecedent and adjunct must both be dropped ⇒ discontinuous ojuncts?
- Why only licit with overt pronouns?

Remaining Challenge 2: Resumptive Pronouns

No island violations with resumptive pronoun instead of trace (e.g. Lebanese Arabic)

this-the-suspect.SGFEM surprised.2 when/because
Srəfto ?ənno hiyye nhabasit.
know.2 that she imprisoned.3SGFEM
'This suspect, you were surprised when/because you knew
that she was imprisoned.'
Aoun et al. (2001:575)

ha-l-muttahame tfeeʒa?to lamma/la?anno

follows if binding rather than movement is involved

Problems

(20)

- Antecedent and adjunct must both be dropped
 - ⇒ discontinuous ojuncts?
- Why only licit with overt pronouns?