
MGs Late Merge Late Merge as Lowering Conclusion

Late Merge as Lowering Movement
in Minimalist Grammars

Thomas Graf
tgraf@ucla.edu

tgraf.bol.ucla.edu

Stony Brook University

LACL 2014
July 18, 2012



MGs Late Merge Late Merge as Lowering Conclusion

Topic of This Talk

Concrete Issue: What does Late Merge do?

Late Merge is too powerful an operation.

But as used by linguists, it can be emulated by
a simpler mechanism: Lowering.

Bigger Picture: What does Lowering do?

Lowering by itself is very weak/redundant.

But: many operations that increase the power of MGs
can be captured once Lowering is added.

How come Lowering it both weak and powerful?



MGs Late Merge Late Merge as Lowering Conclusion

Outline

1 Introducing Minimalist Grammars
Standard Minimalist Grammars
Movement-Generalized Minimalist Grammars

2 Late Merge
Linguistic Motivation
Evaluation

3 Late Merge as Lowering
Basic Idea
Linguistic Examples
Formal Evaluation

4 Conclusion



MGs Late Merge Late Merge as Lowering Conclusion

Minimalist Grammars (MGs)

mildly context-sensitive formalization of Minimalist syntax
(Chomsky 1995; Stabler 1997)

grammar is fully specified by lexicon

lexicon = finite set of feature-annotated words

features trigger structure-building operations Merge and Move

Merge: combine two trees into a new tree

Move: move a subtree of tree t to the left of the root of t

1



MGs Late Merge Late Merge as Lowering Conclusion

Sketch of a Simple Merge Derivation

VP

V′

DP

girlthe

likes

John

Merge

Merge

Merge

girlthe

likes

John

2



MGs Late Merge Late Merge as Lowering Conclusion

Sketch of a Derivation with Move

CP

C′

VP

V′

likes

John

ε

DP

girlthe

Move

Merge

Merge

Merge

Merge

girlthe

likes

John

ε

3



MGs Late Merge Late Merge as Lowering Conclusion

An Important Restriction on Move

Shortest Move Constraint (SMC)

There is some k ≥ 0 such that at every point of the derivation
at most k subtrees have an unchecked movement feature.

The SMC puts a finite upper bound on how many subtrees
can be moved out of a given tree.

This limit is essential for a variety of formal properties.

4



MGs Late Merge Late Merge as Lowering Conclusion

Formal Properties of MGs

Automata-Theoretic Results

MGs ≡ MCFGs (Harkema 2001; Michaelis 2001)

Every MG’s set of well-formed derivation trees is regular.
(Michaelis 2001; Kobele et al. 2007)

The mapping from derivation trees to output trees can be
computed by a linear multi bottom-up tree transducer.
(Kobele et al. 2007)

Logic Perspective of MGs
MGs are specified via two model-theoretic components

a sentence of monadic second-order logic (MSO) that defines
the well-formed derivation trees over a given lexicon,

an MSO-definable transduction from derivation trees to
output trees.

(Morawietz 2003; Mönnich 2006, 2007; Graf 2012a, 2013)

5



MGs Late Merge Late Merge as Lowering Conclusion

Formal Properties of MGs

Automata-Theoretic Results

MGs ≡ MCFGs (Harkema 2001; Michaelis 2001)

Every MG’s set of well-formed derivation trees is regular.
(Michaelis 2001; Kobele et al. 2007)

The mapping from derivation trees to output trees can be
computed by a linear multi bottom-up tree transducer.
(Kobele et al. 2007)

Logic Perspective of MGs
MGs are specified via two model-theoretic components

a sentence of monadic second-order logic (MSO) that defines
the well-formed derivation trees over a given lexicon,

an MSO-definable transduction from derivation trees to
output trees.

(Morawietz 2003; Mönnich 2006, 2007; Graf 2012a, 2013)

5



MGs Late Merge Late Merge as Lowering Conclusion

Movement-Generalized Minimalist Grammars (MGMGs)

MGMGs make it possible to add new movement types to MGs
while preserving their core properties. (Graf 2012b)

Basic Idea

MGs do not use all the power of MSO. New movement types may
be added as long as MSO-definability is maintained for

the class of well-formed derivation trees, and

the mapping from derivation trees to output trees.

Two Useful New Movement Types

Rightward movement

Lowering (movement to a c-commanded position)

6



MGs Late Merge Late Merge as Lowering Conclusion

Movement-Generalized Minimalist Grammars (MGMGs)

MGMGs make it possible to add new movement types to MGs
while preserving their core properties. (Graf 2012b)

Basic Idea

MGs do not use all the power of MSO. New movement types may
be added as long as MSO-definability is maintained for

the class of well-formed derivation trees, and

the mapping from derivation trees to output trees.

Two Useful New Movement Types

Rightward movement

Lowering (movement to a c-commanded position)

6



MGs Late Merge Late Merge as Lowering Conclusion

Example: Derivation with New Movement Types

Merge

Move

Move

Move

Merge

Johnlikes

Merge

girlthe

VP

VP

VP

DP

girlthe

VP

V′

likes

John

7



MGs Late Merge Late Merge as Lowering Conclusion

Formal Properties of MGMGs

Theorem (Weak Equivalence)

MGs and MGMGs are weakly equivalent.

Proof.

1) MG ≤ MGMG ≤ str(MSOTT(MSO))
2) MG ≡ MCFG ≡ str(MSOTT(MSO))
⇒ MG ≡ MGMG

Theorem

MGMGs have greater strong generative capacity than MGs.

Proof.

Every TAG tree language can be generated by some MGMG (Graf
2012c). But the classes of tree languages generated by TAGs and
MGs, respectively, are incomparable (Kobele et al. 2007).

8



MGs Late Merge Late Merge as Lowering Conclusion

Formal Properties of MGMGs

Theorem (Weak Equivalence)

MGs and MGMGs are weakly equivalent.

Proof.

1) MG ≤ MGMG ≤ str(MSOTT(MSO))
2) MG ≡ MCFG ≡ str(MSOTT(MSO))
⇒ MG ≡ MGMG

Theorem

MGMGs have greater strong generative capacity than MGs.

Proof.

Every TAG tree language can be generated by some MGMG (Graf
2012c). But the classes of tree languages generated by TAGs and
MGs, respectively, are incomparable (Kobele et al. 2007).

8



MGs Late Merge Late Merge as Lowering Conclusion

Interim Summary

MGs use Merge and Move for building structures.

Merge combines two trees, Move displaces a subtree.

SMC: finite bound on number of parallel movers

Derivation trees are a record of the structure building process.

Derivation trees are easily mapped to derived trees via MSO.

MGMGs generalize the mapping = add new movement types

9



MGs Late Merge Late Merge as Lowering Conclusion

What is Late Merge (Good for)?

Late Merge

Merge is delayed to avoid some constraint violation ⇒
material appears in same surface position as with standard Merge,
but enters the derivation later

Late Merger of subtree s is used to

save s from incurring a violation of some constraint

prevent s from blocking some other operation

10



MGs Late Merge Late Merge as Lowering Conclusion

Principle C Exceptions

Principle C

An R-expression must not be c-commanded by a coreferent DP.

Adjuncts within a moved phrase can be exempt from Principle C.

(1) a. * He believed the argument that John made.

b. * Which argument that John is a jerk did he believe?

c. Which argument that John made did he believe?

Explanation

(1a) violates Principle C in the output structure.

(1b) violates Principle C before movement:

did he believe which argument that John is a jerk

But why is (1c) exempt?

11



MGs Late Merge Late Merge as Lowering Conclusion

Principle C Exceptions

Principle C

An R-expression must not be c-commanded by a coreferent DP.

Adjuncts within a moved phrase can be exempt from Principle C.

(1) a. * He believed the argument that John made.

b. * Which argument that John is a jerk did he believe?

c. Which argument that John made did he believe?

Explanation

(1a) violates Principle C in the output structure.

(1b) violates Principle C before movement:

did he believe which argument that John is a jerk

But why is (1c) exempt?

11



MGs Late Merge Late Merge as Lowering Conclusion

Principle C Exceptions

Principle C

An R-expression must not be c-commanded by a coreferent DP.

Adjuncts within a moved phrase can be exempt from Principle C.

(1) a. * He believed the argument that John made.

b. * Which argument that John is a jerk did he believe?

c. Which argument that John made did he believe?

Explanation

(1a) violates Principle C in the output structure.

(1b) violates Principle C before movement:

did he believe which argument that John is a jerk

But why is (1c) exempt?

11



MGs Late Merge Late Merge as Lowering Conclusion

Principle C Exceptions [cont.]

(1b) involves an argument, but (1c) an adjunct.

Adjunct is late-merged after the movement step
⇒ no c-command ⇒ no Principle C violation
(Lebeaux 1988)

Example Derivation

1 did he believe [DP which argument]

2 [DP which argument] did he believe

3 [DP which argument [CP that John made]] did he believe

12



MGs Late Merge Late Merge as Lowering Conclusion

More Binding: Late Merger of Arguments

Arguments within quantified phrases can also escape Principle C.

(2) a. * Which argument that John is a jerk seems to him
to be false?

b. Every argument that John is a jerk seems to him to
be false

Explanation: Restrictors of quantifiers can also be late-merged.
(Takahashi and Hulsey 2009)

Example Derivation

1 seems to him [DP every] to be false

2 [DP every] seems to him to be false

3 [DP every [NP argument that John is a jerk]] seems to him to
be false

13



MGs Late Merge Late Merge as Lowering Conclusion

More Binding: Late Merger of Arguments

Arguments within quantified phrases can also escape Principle C.

(2) a. * Which argument that John is a jerk seems to him
to be false?

b. Every argument that John is a jerk seems to him to
be false

Explanation: Restrictors of quantifiers can also be late-merged.
(Takahashi and Hulsey 2009)

Example Derivation

1 seems to him [DP every] to be false

2 [DP every] seems to him to be false

3 [DP every [NP argument that John is a jerk]] seems to him to
be false

13



MGs Late Merge Late Merge as Lowering Conclusion

English do-Support

In English, do-support is triggered if the tense marker and the verb
are not string-adjacent at some point. (Ochi 1999)

(3) a. John -ed leave ⇒ John left

b. John -ed not leave ⇒ John did not leave

It follows that VP-adjuncts must be late-merged,
otherwise they would intervene and trigger do-support.

Example Derivation

1 John -ed leave

2 John left

3 John quickly left

14



MGs Late Merge Late Merge as Lowering Conclusion

Subjacency Violations

Subjacency

If position p must be targeted by movement, then
the closest licit mover c-commanded by p must move to p.

Subjacency incorrectly predicts that experiencers of psych verbs
should be realized as subjects.

(4) a. It seems to Mary that John is smart.

b. John seems to Mary to be smart.

c. * To Mary seems John to be smart.

Once again this can be fixed by Late Merge. (Stepanov 2001)

Example Derivation

1 seems John to be smart

2 John seems to be smart

3 John seems to Mary to be smart
15



MGs Late Merge Late Merge as Lowering Conclusion

Subjacency Violations

Subjacency

If position p must be targeted by movement, then
the closest licit mover c-commanded by p must move to p.

Subjacency incorrectly predicts that experiencers of psych verbs
should be realized as subjects.

(4) a. It seems to Mary that John is smart.

b. John seems to Mary to be smart.

c. * To Mary seems John to be smart.

Once again this can be fixed by Late Merge. (Stepanov 2001)

Example Derivation

1 seems John to be smart

2 John seems to be smart

3 John seems to Mary to be smart
15



MGs Late Merge Late Merge as Lowering Conclusion

Subjacency Violations

Subjacency

If position p must be targeted by movement, then
the closest licit mover c-commanded by p must move to p.

Subjacency incorrectly predicts that experiencers of psych verbs
should be realized as subjects.

(4) a. It seems to Mary that John is smart.

b. John seems to Mary to be smart.

c. * To Mary seems John to be smart.

Once again this can be fixed by Late Merge. (Stepanov 2001)

Example Derivation

1 seems John to be smart

2 John seems to be smart

3 John seems to Mary to be smart
15



MGs Late Merge Late Merge as Lowering Conclusion

Formal Properties of MGs with Late Merge

Adding Late Merge to MGs increases

weak generative capacity (Kobele and Michaelis 2011)

strong generative capacity (corollary)

complexity of mapping from derivations to derived trees
(Gärtner and Michaelis 2008; Kobele 2010)

Intuition

Just like Late Merge can escape Principle C violations, it also
creates loop holes for the constraints imposed by the MG
feature calculus that control the derivation.

One can now add features to subtrees whose features have
already been discharged and thus reactivate them, and there is
no bound on how often this can be done for any given subtree.

16



MGs Late Merge Late Merge as Lowering Conclusion

Example of Feature “Smuggling” via Late Merge

Derivation below has more than k parallel movers

u

v

subtree

mover1 mover2 moverk moverk+1· · ·

17



MGs Late Merge Late Merge as Lowering Conclusion

Example of Feature “Smuggling” via Late Merge [cont.]

Strongly equivalent derivation with no more than k parallel movers

u

Late Merge

moverk+1v

subtree

mover1 mover2 moverk· · ·

18



MGs Late Merge Late Merge as Lowering Conclusion

Is Late Merge Necessary?

Playing Devil’s Advocate

The arguments for Late Merge are very theory specific.

The exceptions can be coded directly into the constraints and
operations.

Extra power of Late Merge goes unused.

Late Merge makes the formalism needlessly more complicated.

The Crucial Point

While Late Merge is not needed to generate the right
structures, it generalizes across a variety of domains.

Grammar formalisms need not only generate the right output,
they also need to be able to express generalizations.

So let’s see if Late Merge can be implemented in a more
restrictive manner.

19



MGs Late Merge Late Merge as Lowering Conclusion

Is Late Merge Necessary?

Playing Devil’s Advocate

The arguments for Late Merge are very theory specific.

The exceptions can be coded directly into the constraints and
operations.

Extra power of Late Merge goes unused.

Late Merge makes the formalism needlessly more complicated.

The Crucial Point

While Late Merge is not needed to generate the right
structures, it generalizes across a variety of domains.

Grammar formalisms need not only generate the right output,
they also need to be able to express generalizations.

So let’s see if Late Merge can be implemented in a more
restrictive manner.

19



MGs Late Merge Late Merge as Lowering Conclusion

Late Merge as Lowering

The Late Merge derivation can be viewed as
standard Merge followed by Lowering.

u

Late Merge

moverk+1v

subtree

mover1 mover2 moverk· · ·
20



MGs Late Merge Late Merge as Lowering Conclusion

Late Merge as Lowering

The Late Merge derivation can be viewed as
standard Merge followed by Lowering.

u

Merge

moverk+1v

subtree

mover1 mover2 moverk· · ·
20



MGs Late Merge Late Merge as Lowering Conclusion

Late Merger of Argument in Minimalist Literature

-ed sneeze [DP every]

[DP every] -ed sneeze

[DP every spy] -ed sneeze

Late Merge

Move

Merge

Merge

everysneeze

-ed

spy

TP

T′

VP

sneeze

-ed

DP

spyevery

21



MGs Late Merge Late Merge as Lowering Conclusion

Late Merger of Argument via Lowering

Lowering produces the same output structure (modulo empty head)

Merge

Merge

Move

Merge

Merge

Move

every

sneeze

-ed

ε

spy

TP

T′

TP

T′

VP

sneeze

-ed

DP

spyevery

ε

22



MGs Late Merge Late Merge as Lowering Conclusion

A Minor Problem with Adjuncts

No upper bound on the number of adjuncts per phrase
Only k-many phrases may be lowered at the same time
Solution: Piggy-backing!

Merge

Merge

Merge

Move

Merge

Move

Move

Merge

dissapearJohn

-ed

ε

Adjoin

Adjoin

εyesterday

in a hurry

Adjoin

εquickly

23



MGs Late Merge Late Merge as Lowering Conclusion

A Minor Problem with Adjuncts

No upper bound on the number of adjuncts per phrase
Only k-many phrases may be lowered at the same time
Solution: Piggy-backing!

Merge

Merge

Merge

Move

Merge

Move

Move

Merge

dissapearJohn

-ed

ε

Adjoin

Adjoin

εyesterday

in a hurry

Adjoin

εquickly

23



MGs Late Merge Late Merge as Lowering Conclusion

Output Structure via Piggy-Backing

TP

TP

T′

TP

T′

VP

VP

VP

VP

εyesterday

in a hurry

V’

disappear

VP

εquickly

-ed

John

ε

24



MGs Late Merge Late Merge as Lowering Conclusion

Some Linguistic Comments on Piggy-Backing

Syntactic Validity

Piggy-backed VP-adjuncts no longer c-command the VP,
but this is never needed anyways.

A third empty head may be added in order to get
the right constituency for partial VP-ellipsis.

Semantic Validity

Adjuncts can keep standard meaning

Empty heads undergoing lowering denote some higher-order
function that combines the meaning of the adjuncts with the
meaning of the VP.

25



MGs Late Merge Late Merge as Lowering Conclusion

The Limits of Lowering: Feature Smuggling is Impossible

If MG G has at most k parallel movers, the derivation below is
blocked because Lowering behaves like derivational time travel.

u

Merge

moverk+1v

subtree

mover1 mover2 moverk· · ·
26



MGs Late Merge Late Merge as Lowering Conclusion

Formal Evaluation of Lowering Implementation

Linguistically adequate
Late Merge of arguments straight-forward
Late Merge of adjuncts doable with piggy-backing

Weaker than Late Merge
MGMGs evaluate the upper limit on movers in a global fashion.
Hence lowering cannot smuggle in new movers.
Weak generative capacity of MGMGs is preserved.

Preserves strong generative capacity of MGs
Lowering increases power of MGs only if it can follow raising.
Lowering as Late Merge is always the first movement step.

27



MGs Late Merge Late Merge as Lowering Conclusion

What Have We Learned?

Late Merge is invoked by Minimalists for several phenomena.

As specified in the literature, it is a very powerful operation
that pushes MGs beyond MCFLs.

As used by linguists, it is easily emulated by lowering.

Neither weak nor strong generative capacity of MGs are
increased (but complexity of mapping to derived trees is).

28



MGs Late Merge Late Merge as Lowering Conclusion

The Big Picture

Late Merge is just one of many operations that is not part of
the MG-toolbox.

Sidewards movement
Affix hopping
TAG-style adjunction

All of them can be captured by adding lowering.

Every MGMG movement-type can be decomposed into
at most one raising step followed by at most one lowering step.
Late Merge is actually one of the simplest operations.

Raising and lowering are subtypes of MSO transductions.

Conjecture: composition of these two types yields whole class of
MSO transductions.

29



References

References I

Chomsky, Noam. 1995. The minimalist program. Cambridge, Mass.: MIT Press.

Gärtner, Hans-Martin, and Jens Michaelis. 2008. A note on countercyclicity and
minimalist grammars. In Proceedings of Formal Grammar 2003 , ed. Gerald Penn,
95–109. Stanford: CSLI-Online.

Graf, Thomas. 2012a. Locality and the complexity of minimalist derivation tree
languages. In Formal Grammar 2010/2011 , ed. Philippe de Groot and Mark-Jan
Nederhof, volume 7395 of Lecture Notes in Computer Science, 208–227.
Heidelberg: Springer.

Graf, Thomas. 2012b. Movement-generalized minimalist grammars. In LACL 2012 ,
ed. Denis Béchet and Alexander J. Dikovsky, volume 7351 of Lecture Notes in
Computer Science, 58–73.

Graf, Thomas. 2012c. Tree adjunction as minimalist lowering. In Proceedings of the
11th International Workshop on Tree Adjoining Grammars and Related Formalisms
(TAG+11), 19–27.

Graf, Thomas. 2013. Local and transderivational constraints in syntax and semantics.
Doctoral Dissertation, UCLA.

30



References

References II

Harkema, Henk. 2001. A characterization of minimalist languages. In Logical aspects
of computational linguistics (LACL’01), ed. Philippe de Groote, Glyn Morrill, and
Christian Retoré, volume 2099 of Lecture Notes in Artificial Intelligence, 193–211.
Berlin: Springer.

Kobele, Gregory M. 2010. On late adjunction in minimalist grammars. Slides for a
talk given at MCFG+ 2010.

Kobele, Gregory M., and Jens Michaelis. 2011. Disentangling notions of specifier
impenetrability. In The Mathematics of Language, ed. Makoto Kanazawa, András
Kornia, Marcus Kracht, and Hiroyuki Seki, volume 6878 of Lecture Notes in
Artificial Intelligence, 126–142.

Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An
automata-theoretic approach to minimalism. In Model Theoretic Syntax at 10 , ed.
James Rogers and Stephan Kepser, 71–80.

Lebeaux, David. 1988. Language acquisition and the form of the grammar . Doctoral
Dissertation, University of Massachusetts, Amherst.

Michaelis, Jens. 2001. Transforming linear context-free rewriting systems into
minimalist grammars. Lecture Notes in Artificial Intelligence 2099:228–244.

Mönnich, Uwe. 2006. Grammar morphisms. Ms. University of Tübingen.

31



References

References III

Mönnich, Uwe. 2007. Minimalist syntax, multiple regular tree grammars and direction
preserving tree transductions. In Model Theoretic Syntax at 10 , ed. James Rogers
and Stephan Kepser, 83–87.

Morawietz, Frank. 2003. Two-step approaches to natural language formalisms. Berlin:
Walter de Gruyter.

Ochi, Masao. 1999. Multiple spell-out and PF adjacency. In Proceedings of the North
Eastern Linguistic Society , volume 29.

Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of
computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in
Computer Science, 68–95. Berlin: Springer.

Stepanov, Arthur. 2001. Late adjunction and minimalist phrase structure. Syntax
4:94–125.

Takahashi, Shoichi, and Sarah Hulsey. 2009. Wholesale Late Merger: Beyond the A/A
distinction. Linguistc Inquiry 40:387–426.

32


	Introducing Minimalist Grammars
	Standard Minimalist Grammars
	Movement-Generalized Minimalist Grammars

	Late Merge
	Linguistic Motivation
	Evaluation

	Late Merge as Lowering
	Basic Idea
	Linguistic Examples
	Formal Evaluation

	Conclusion
	Appendix

