Received View	Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion

Dependencies in Syntax and Phonology: A Computational Comparison

Thomas Graf (and Jeff Heinz, sorta) mail@thomasgraf.net http://thomasgraf.net

> Department of Linguistics Stony Brook University

NECPHON November 15 2014

Received View	Tier-Local Phonology	MGs 000000000	Tier-Local Syntax	Conclusion O
Today's T	opic			

The Received View on Syntax and Phonology

- Little cross-talk between syntax and phonology
- Properties of one supposedly have no bearing on the other
- Huge difference with respect to weak generative capacity

Counter Position

- Computationally, phonology and syntax are very similar.
- Over linguistically plausible models, both rely on dependencies of the same computational complexity.
- Main difference is data structures: strings versus trees

Received View	Tier-Local Phonology	MGs 0000000000	Tier-Local Syntax	Conclusion O
Today's To	pic			

The Received View on Syntax and Phonology

- Little cross-talk between syntax and phonology
- Properties of one supposedly have no bearing on the other
- Huge difference with respect to weak generative capacity

Counter Position

- Computationally, phonology and syntax are very similar.
- Over linguistically plausible models, both rely on dependencies of the same computational complexity.
- Main difference is data structures: strings versus trees

Received View	Tier-Local Phonology	MGs 000000000	Tier-Local Syntax	Conclusion O
Outline				

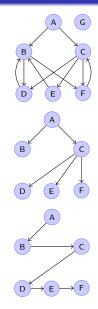
- 1 The Received View
 - Linguistics
 - Measuring Generative Capacity
- 2 Phonology is Tier-Based Strictly Local
 - *n*-gram Grammars
 - Tiers for Non-Local Dependencies
- 3 A Closer Look at Syntax
 - Minimalist Grammars
 - A Quick Example
 - The Shortest Move Constraint
- Underlyingly, Syntax is Tier-Based Strictly Local
 - MGs as Regular Derivation Tree Languages
 - Merge is Strictly Local
 - Move is Tier-Based Strictly Local

Received View ●○○	Tier-Local Phonology	MGs 000000000	Tier-Local Syntax	Conclusion O
Linguistics:	Syntax and Ph	nonology are	Unrelated	

• Different Frameworks

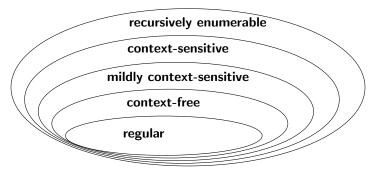
 $\begin{array}{rcl} \mathsf{Aspects} & \Leftrightarrow & \mathsf{SPE} \\ & \mathsf{GB} & \Leftrightarrow & \mathsf{Autosegmental/GP} \end{array}$

Minimalism ⇔ OT

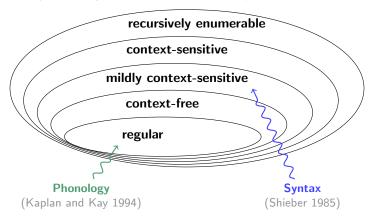

Empirical Separation

- What is the syntactic analog of umlaut or final devoicing?
- What is the phonological analog of passive or the Person Case Constraint?
- Cognitive impairments often impact only one of the two.

Received View ○●○	Tier-Local Phonology	MGs 000000000	Tier-Local Syntax	Conclusion ○
Language a	as Sets			


Formally, a language is simply a set of objects of a specific type:

- graph: structure of connected nodes flow chart, street network, Wikipedia, internet, video game AI
- **tree**: connected graph where every node is reachable from at most one node *family tree, hard drive layout, XML file*
- string: sequence of nodes telephone number, Python program, human genome, Shakespeare's oeuvre



- The perceivable output of language is strings (sequences of sound waves, words, sentences).
- The complexity of string languages is measured by the (extended) Chomsky hierarchy. (Chomsky 1956, 1959)

- The perceivable output of language is strings (sequences of sound waves, words, sentences).
- The complexity of string languages is measured by the (extended) Chomsky hierarchy. (Chomsky 1956, 1959)

- Regular languages are too powerful for phonology.
- Jeff Heinz has argued that phonology can be described by a natural generalization of *n*-gram grammars. (Heinz et al. 2011)
- Idea: non-local dependencies are local on phonological tiers

Received View	Tier-Local Phonology ○●○○○○	MGs 0000000000	Tier-Local Syntax	Conclusion O
(Negative)	Bigram Gramn	nars		

- Suppose we have a fixed alphabet Σ (e.g. sounds of English).
- A bigram is a sequence **ab** s.t. **a**, **b** $\in \Sigma$.
- A **bigram grammar** *G* is a finite set of bigrams.
- *G* generates the largest language of strings such that no string contains any bigrams of *G* as a substring
- Intuition: bigrams are hard, local constraints

Example		
Rewrite rule	Constraint	Bigrams
$n ightarrow m \mid_{-} b$	* nb	nb
$z o s \mid_{ ext{-}} s$	* z\$	z\$
$[-voice] o \emptyset \mid_{\scriptscriptstyle{-}} $	*[-voice]\$	s\$, θ\$, f\$,

Received View	Tier-Local Phonology ○●○○○○	MGs 0000000000	Tier-Local Syntax	Conclusion \circ
(Negative)	Bigram Gramr	nars		

- Suppose we have a fixed alphabet Σ (e.g. sounds of English).
- A bigram is a sequence **ab** s.t. **a**, **b** $\in \Sigma$.
- A **bigram grammar** *G* is a finite set of bigrams.
- *G* generates the largest language of strings such that no string contains any bigrams of *G* as a substring
- Intuition: bigrams are hard, local constraints

Example		
Rewrite rule	Constraint	Bigrams
$\mathbf{n} ightarrow \mathbf{m} \mid_{\scriptscriptstyle -} \mathbf{b}$	* <mark>nb</mark>	nb
$z o s \mid_{\scriptscriptstyle{-}} s$	* z\$	z\$
$[-voice] \to \emptyset \mid_{\scriptscriptstyle{-}} \$$	*[-voice]\$	s\$, θ\$, f\$,

Received View	Tier-Local Phonology ००●०००	MGs 0000000000	Tier-Local Syntax	Conclusion O
Tiers for L	ong-Distance D	ependencies	5	

- We can move to 3-grams, 4-grams, ... *n*-grams in order to regulate less local processes (e.g. umlaut).
- Problem: Still limited to locality domain of size n
 ⇒ unbounded processes cannot be captured
- Solution: segments can be on multiple tiers

Tier-Based Bigram Grammar

- Let $T \subseteq \Sigma$ be a tier alphabet.
- A **tier-based bigram grammar** *G* is a pair of finite sets of bigrams over Σ and *T*, respectively.
- G generates s iff
 - s has no Σ -bigram as a substring,
 - the restriction of *s* to elements of *T* has no *T*-bigram as a substring.

Received View	Tier-Local Phonology ○○●○○○	MGs 0000000000	Tier-Local Syntax	Conclusion O
Tiers for L	ong-Distance D)ependencies	5	

- We can move to 3-grams, 4-grams, ... *n*-grams in order to regulate less local processes (e.g. umlaut).
- Problem: Still limited to locality domain of size n
 ⇒ unbounded processes cannot be captured
- Solution: segments can be on multiple tiers

Tier-Based Bigram Grammar

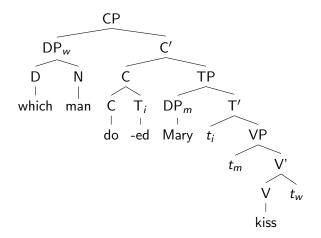
- Let $T \subseteq \Sigma$ be a tier alphabet.
- A tier-based bigram grammar G is a pair of finite sets of bigrams over Σ and T, respectively.
- G generates s iff
 - s has no Σ -bigram as a substring,
 - the restriction of *s* to elements of *T* has no *T*-bigram as a substring.

Received View	Tier-Local Phonology ○○○●○○	MGs 0000000000	Tier-Local Syntax	Conclusion ○
Example:	Sibilant Harmon	у		

T-Tier:	\$	ſ		s		\$
Σ -Tier:	\$ е	ſ	i	S	i	\$

Received View	Tier-Local Phonology ○○○○●○	MGs 000000000	Tier-Local Syntax	Conclusion O
Example:	Primary Stress	Assignment		

- Every word must have exactly one primary stress.
- Let T be the set of symbols with primary stress.
- Then we need the following *T*-bigrams:
 - \$\$ "at least one primary stress"
 - *ab* "not more than one primary stress" (for all $a, b \in T$)


Stress Missing	То	οN	/lar	ıy S	Str	es	ses	s Just Right						
\$\$	\$	'e		'i			\$	\$	'e					\$
\$e∫isi\$	\$	'e	ſ	'i	s	i	\$	\$	'e	ſ	i	S	i	\$

Received View	Tier-Local Phonology ○○○○○●	MGs 0000000000	Tier-Local Syntax	Conclusion O
Phonolog	y is Subregular			

- Tier-based *n*-gram grammars generate only a subclass of the regular languages.
- Only a few known phenomena might not to be tier-local, but the data is unclear (e.g. primary stress assignment in Cairene Arabic; Graf 2010)
- Hence phonology is subregular.
- Core insights
 - Most phonological dependencies are local.
 - Non-local dependencies are local between the elements of the relevant type (\approx tier).

Received View	Tier-Local Phonology	MGs ●000000000	Tier-Local Syntax	Conclusion O
A Closer Lo	ook at Syntax			

The MCS-result treats syntactic patterns as string dependencies. But **syntacticians work with trees**, not strings.

Received View	Tier-Local Phonology	MGs ⊙●⊙○○○○○○	Tier-Local Syntax	Conclusion O
Minimalis	t Grammars			

- Minimalism is the dominant syntactic theory. (Chomsky 1995)
- Can Minimalism change the computational picture of syntax? Maybe, but first we need a precise specification.
- Minimalist grammars are such a formalization, developed by Ed Stabler. (Stabler 1997)
- They are expressive enough for syntax.

Received View	Tier-Local Phonology	MGs ००●००००००	Tier-Local Syntax	Conclusion O
Syntax as (Chemistry of La	inguage		

Minimalist grammars treat syntax like chemistry.

Chemistry	Syntax
atoms	words
electrons	features
molecules	sentences
stable	grammatical
unstable	ungrammatical

- Every word is a collection of features.
- Every feature has either positive or negative polarity.
- Features of opposite polarity annihilate each other.
- Feature annihilation drives the structure-building operations **Merge** and **Move**.

Received View	Tier-Local Phonology	MGs ००●००००००	Tier-Local Syntax	Conclusion O
Syntax as (Chemistry of La	inguage		

Minimalist grammars treat syntax like chemistry.

Chemistry	Syntax
atoms	words
electrons	features
molecules	sentences
stable	grammatical
unstable	ungrammatical

- Every word is a collection of features.
- Every feature has either positive or negative polarity.
- Features of opposite polarity annihilate each other.
- Feature annihilation drives the structure-building operations **Merge** and **Move**.

Received View	Tier-Local Phonology	MGs ○○○●○○○○○	Tier-Local Syntax	Conclusion O
Merge: Ex	ample 1			

Assembling [DP the men]

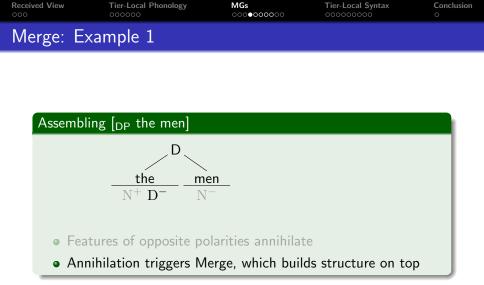
the	men	
$N^+ D^-$	N ⁻	

- Features of opposite polarities annihilate
- Annihilation triggers Merge, which builds structure on top

Received View	Tier-Local Phonology	MGs ○○○●○○○○○	Tier-Local Syntax	Conclusion O
Merge: Ex	ample 1			

Assembling [DP the men]

<u>the</u> men N⁺ D⁻ N⁻

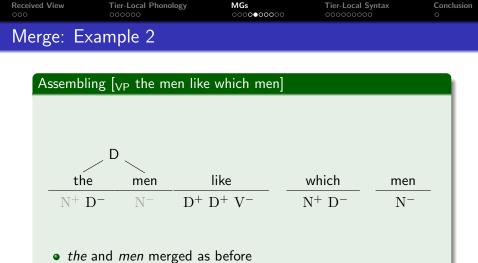

- Features of opposite polarities annihilate
- Annihilation triggers Merge, which builds structure on top

Received View	Tier-Local Phonology	MGs ○○○●○○○○○	Tier-Local Syntax	Conclusion O
Merge: E	xample 1			

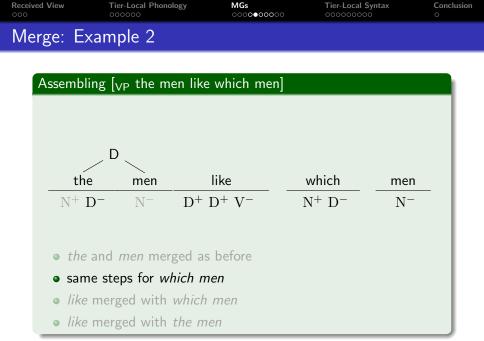
Assembling [DP the men]

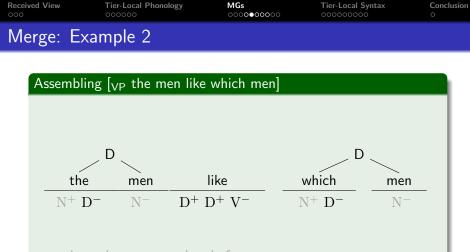
the	men
N+ D-	N^{-}

- Features of opposite polarities annihilate
- Annihilation triggers Merge, which builds structure on top

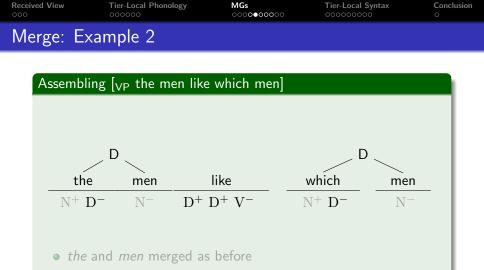


Received View	Tier-Local Phonology	MGs ○○○●○○○○○	Tier-Local Syntax	Conclusion O
Merge: E>	kample 1			
Assembl	ing [_{DP} the men]			
	D	N	Merge <mark>[N]</mark>	
	theme	en the	<u></u>	
	$N^+ D^- N^-$	- N ⁺ D ⁻	- N-	
_				
Fear	tures of opposite pol	larities annihilate	9	

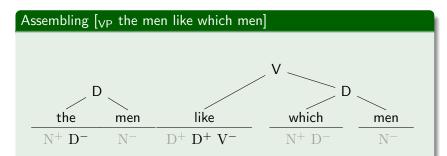

• Annihilation triggers Merge, which builds structure on top


Received		er-Local Phono	logy MGs		cal Syntax	Conclusion
Mer	ge: Exam	ple 2				
	coombling [th a ma	en like which m	on]		
F	ssembling [\	/p the mo	en like which m	enj		
	the	men	like	which	men	
	$N^+ D^-$	N^{-}	$D^+ D^+ V^-$	$N^+ D^-$	N^{-}	
	• the and men merged as before					
	• same steps for <i>which men</i>					
	• <i>like</i> merged with <i>which men</i>					
	• <i>like</i> merg	ged with	the men			

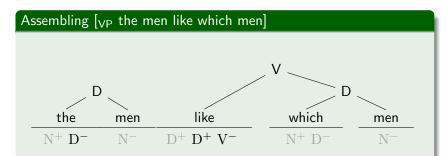
Received		ier-Local Phono	logy MGs	Tier-Local		
Merg	ge: Exam	ple 2				
A	ssembling [$_{\sf VP}$ the m	en like which me	en]		
	the	men	like	which	men	
	$N^+ D^-$	N^{-}	$D^+ D^+ V^-$	$N^+ D^-$	N-	
	• the and men merged as before					
	• same steps for <i>which men</i>					
	• <i>like</i> merged with <i>which men</i>					
	• <i>like</i> mer	ged with	the men			

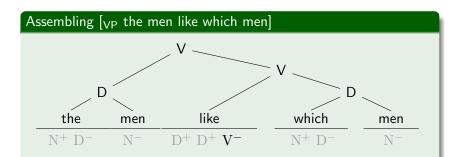


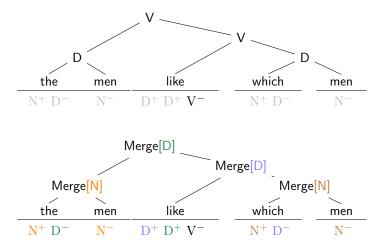
- same steps for *which men*
- *like* merged with *which men*
- like merged with the men



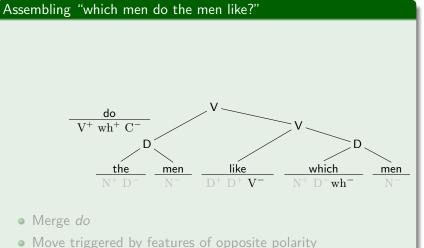
- the and men merged as before
- same steps for which men
- like merged with which men
- like merged with the men


- same steps for which men
- like merged with which men
- *like* merged with *the men*

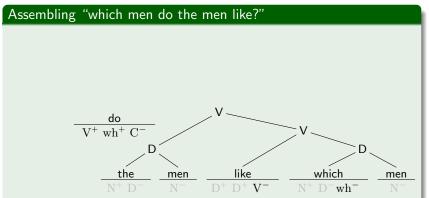

- the and men merged as before
- same steps for which men
- like merged with which men
- *like* merged with *the men*

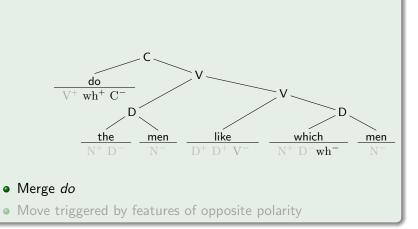

- the and men merged as before
- same steps for which men
- like merged with which men
- like merged with the men

Received View	Tier-Local Phonology	MGs ○○○○●○○○○○	Tier-Local Syntax	Conclusion O
Merge: Ex	kample 2			



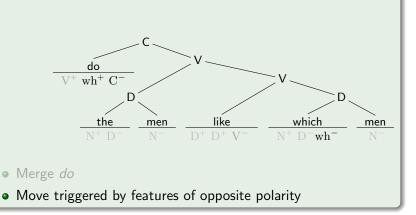
- the and men merged as before
- same steps for which men
- like merged with which men
- like merged with the men



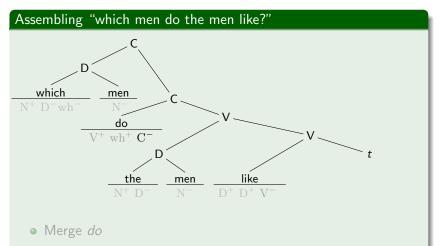


• Merge do

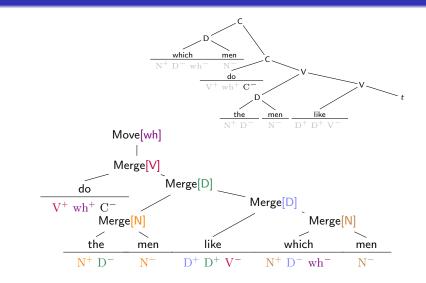
• Move triggered by features of opposite polarity


Received View	Tier-Local Phonology	MGs ○○○○○●○○○	Tier-Local Syntax	Conclusion O
Move				

Assembling "which men do the men like?"



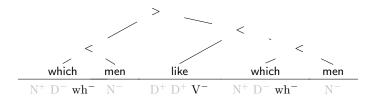
Assembling "which men do the men like?"



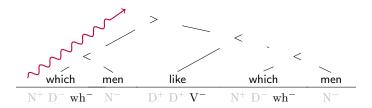
Received View	Tier-Local Phonology	MGs ○○○○○○●○○○	Tier-Local Syntax	Conclusion O
Move				

• Move triggered by features of opposite polarity

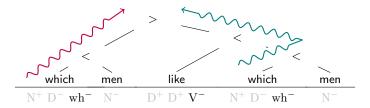
Received View	Tier-Local Phonology	MGs ○○○○○○●○○	Tier-Local Syntax	Conclusion
	Trees with Mo			<u> </u>


Received View	Tier-Local Phonology	MGs ○○○○○○○●○	Tier-Local Syntax	Conclusion O
An Import	tant Restriction	on MGs		

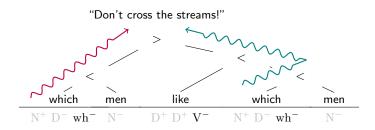
Shortest Move Constraint (SMC)


Received View	Tier-Local Phonology	MGs ○○○○○○○●○	Tier-Local Syntax	Conclusion \circ
An Import	tant Restriction	on MGs		

Shortest Move Constraint (SMC)


Received View	Tier-Local Phonology	MGs ○○○○○○○●○	Tier-Local Syntax	Conclusion \circ
An Import	tant Restriction	on MGs		

Shortest Move Constraint (SMC)


Received View	Tier-Local Phonology	MGs ○○○○○○○●○	Tier-Local Syntax	Conclusion \circ
An Import	tant Restriction	on MGs		

Shortest Move Constraint (SMC)

Received View	Tier-Local Phonology	MGs ○○○○○○○●○	Tier-Local Syntax	Conclusion O
An Import	ant Restriction	on MGs		

Shortest Move Constraint (SMC)

Received View	Tier-Local Phonology	MGs ○○○○○○○○	Tier-Local Syntax	Conclusion O
What's the	Point?			

- Sentences aren't just strings, they contain hidden structure.
- Syntacticians usually look at the tree structure that is built by the operations Merge and Move.
- But: the history of how such a structure is built is also a tree
 ⇒ phrase structure trees and derivation trees as
 two possible views of tree-based syntax

Received View	Tier-Local Phonology	MGs 0000000000	Tier-Local Syntax ●○○○○○○○	Conclusion O
The Comp	lexity of MGs			

- Since syntax is described by trees, we should look at tree languages instead of string languages.
- Every MG can be identified with
 - its set of phrase structure trees, or
 - its set of derivation trees
- The set of phrase structure trees is not regular. (Doner 1970; Thatcher 1967)
- But the set of derivation trees is regular. (Michaelis 2001; Kobele et al. 2007; Graf 2012)

The Big Question

Are MG derivation tree languages tier-based strictly local?

Received View	Tier-Local Phonology	MGs 0000000000	Tier-Local Syntax ●○○○○○○○	Conclusion O
The Comp	lexity of MGs			

- Since syntax is described by trees, we should look at tree languages instead of string languages.
- Every MG can be identified with
 - its set of phrase structure trees, or
 - its set of derivation trees
- The set of phrase structure trees is not regular. (Doner 1970; Thatcher 1967)
- But the set of derivation trees is regular. (Michaelis 2001; Kobele et al. 2007; Graf 2012)

The Big Question

Are MG derivation tree languages tier-based strictly local?

Received View	Tier-Local Phonology	MGs 0000000000	Tier-Local Syntax ○●○○○○○○○	Conclusion O
Tree <i>n</i> -grai	m Grammars			

- We need to lift *n*-grams from strings to trees.
- Instead of strings of length *n*, use subtrees of depth *n*.
- Each subtree encodes a constraint on the derivation.

Received View	Tier-Local Phonology	MGs 0000000000	Tier-Local Syntax ○○●○○○○○○	Conclusion O
Merge is S	Strictly Local			

- An LI's Merge features are checked by its arguments.
- The distance between a head and the head of its argument is bounded by some factor k (which depends on how many arguments a head may take).
- Hence Merge dependencies are *n*-local for some fixed *n*.
- It follows that Merge is tier-based strictly local.

Received View	Tier-Local Phonology	MGs 0000000000	Tier-Local Syntax	Conclusion O
Constraint	ts on Move			

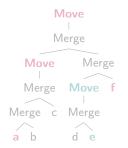
Suppose our MG is in single movement normal form.

Occurrence

Given lexical item I with negative Move feature f^- , a node m is an **occurrence** of I iff m is the lowest node dominating I that can check f^- .

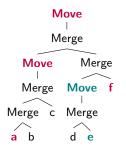
Movement Dependencies

Move

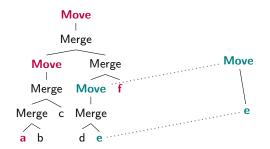

Every lexical item with a negative Move feature has exactly one occurrence.

SMC

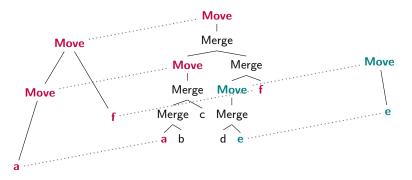
Every Move node is an occurrence of exactly one lexical item.


Received View	Tier-Local Phonology	MGs 0000000000	Tier-Local Syntax ○○○○●○○○○	Conclusion O
Tiers for N	Novement			

- There is no upper bound on the distance between a lexical item and its occurrence.
- Consequently, Move dependencies are not strictly local.
- What if every movement type (wh, topic, ...) induces its own tier? Would that make Move dependencies local?


Received View	Tier-Local Phonology	MGs 0000000000	Tier-Local Syntax ○○○○●○○○○	Conclusion O
Tiers for N	Novement			

- There is no upper bound on the distance between a lexical item and its occurrence.
- Consequently, Move dependencies are not strictly local.
- What if every movement type (wh, topic, ...) induces its own tier? Would that make Move dependencies local?


Received View	Tier-Local Phonology	MGs 0000000000	Tier-Local Syntax ○○○○●○○○○	Conclusion O
Tiers for N	Novement			

- There is no upper bound on the distance between a lexical item and its occurrence.
- Consequently, Move dependencies are not strictly local.
- What if every movement type (wh, topic, ...) induces its own tier? Would that make Move dependencies local?

Received View	Tier-Local Phonology	MGs 000000000	Tier-Local Syntax ○○○○●○○○○	Conclusion O
Tiers for M	ovement			

- There is no upper bound on the distance between a lexical item and its occurrence.
- Consequently, Move dependencies are not strictly local.
- What if every movement type (wh, topic, ...) induces its own tier? Would that make Move dependencies local?

Received View	Tier-Local Phonology	MGs 0000000000	Tier-Local Syntax ○○○○○●○○○	Conclusion O
Tree Bigra	ms for Move			

Move amounts to the following constraints over each tier:

Move

Every lexical item has a mother labeled Move.

• SMC

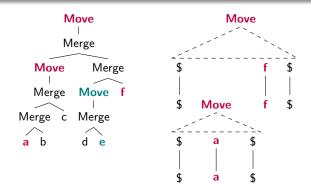
Among the daughters of a Move node there exists exactly one that is a lexical item.

Tree Bigram	Templates	
Move1	Move2	SMC
\$	LI	Move
LI	÷ ··· LI ··· ÷	: ··· LI ··· LI ··· :

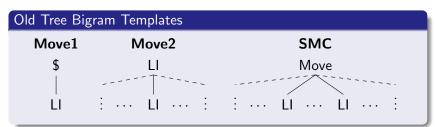
Received View	Tier-Local Phonology	MGs 0000000000	Tier-Local Syntax ○○○○○○●○○	Conclusion O
The Probler	n With Our Big	grams		

- No limit on number of daughters per Move node in tier
 ⇒ Move2 and SMC correspond to infinitely many bigrams
- But a bigram grammar must be finite!

A Hint from Multidimensional Trees


- We think of trees as nodes ordered by dominance and precedence.
- Jim Rogers (2003) formalizes trees as strings (sequences of siblings) related by dominance.
- Analogously, a tree-tier may consist of string-tiers related by dominance!

Received View	Tier-Local Phonology	MGs 0000000000	Tier-Local Syntax ○○○○○○●○	Conclusion O
Checking	the Example De	erivation		


General Verification Procedure

- Take derivation and project Move tiers.
- In every Move tier, project LI-tiers.
- For every node, build a bigram consisting of the node and the LI-tier of its daughter string.

- Each string of siblings is given an LI-tier.
- The tree bigrams only reference the LI-tier.

New Tree Bigrams with String Tiers					
	Move1	Move2	SMC1	SMC2	
	\$	LI	Move	Move	
	LI	LI	\$—\$	LI — LI	

Received View	Tier-Local Phonology	MGs 0000000000	Tier-Local Syntax	Conclusion ●
Conclusion				

- Syntax and phonology look very different, but computationally they are very similar.
- Phonology is tier-based strictly local over strings.
- Syntax is tier-based strictly local over derivation trees.
- Intuition
 - Non-local dependencies are not particularly complex.
 - They are local over some relativization domain.

References I

- Chomsky, Noam. 1956. Three models for the description of language. *IRE Transactions on Information Theory* 2:113–124.
- Chomsky, Noam. 1959. On certain formal properties of grammars. *Information and Control* 2:137–167.
- Chomsky, Noam. 1995. The minimalist program. Cambridge, Mass.: MIT Press.
- Doner, John. 1970. Tree acceptors and some of their applications. *Journal of Computer and System Sciences* 4:406–451.
- Graf, Thomas. 2010. Logics of phonological reasoning. Master's thesis, University of California, Los Angeles.
- Graf, Thomas. 2012. Locality and the complexity of minimalist derivation tree languages. In *Formal Grammar 2010/2011*, ed. Philippe de Groot and Mark-Jan Nederhof, volume 7395 of *Lecture Notes in Computer Science*, 208–227. Heidelberg: Springer.
- Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local constraints in phonology. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, 58–64.
- Kaplan, Ronald M., and Martin Kay. 1994. Regular models of phonological rule systems. *Computational Linguistics* 20:331–378.

References II

- Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An automata-theoretic approach to minimalism. In *Model Theoretic Syntax at 10*, ed. James Rogers and Stephan Kepser, 71–80.
- Michaelis, Jens. 2001. Transforming linear context-free rewriting systems into minimalist grammars. Lecture Notes in Artificial Intelligence 2099:228–244.
- Rogers, James. 2003. Syntactic structures as multi-dimensional trees. *Research on Language and Computation* 1:265–305.
- Shieber, Stuart M. 1985. Evidence against the context-freeness of natural language. Linguistics and Philosophy 8:333–345.
- Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in Computer Science, 68–95. Berlin: Springer.
- Thatcher, James W. 1967. Characterizing derivation trees for context-free grammars through a generalization of finite automata theory. *Journal of Computer and System Sciences* 1:317–322.