
Background Features ≡ Constraints Linguistic Evaluation

A Computational Guide to
the Dichotomy of Features and Constraints

Thomas Graf

Stony Brook University
Department of Linguistics
mail@thomasgraf.net

http://thomasgraf.net

DGFS 2015, AG 3
March 5 2015



Background Features ≡ Constraints Linguistic Evaluation

From the call for papers:

Can syntactic theory avoid recourse to FFs entirely [...]?

Can a model that eschews featural triggers be appropriately
restrictive?

Is a FF-free syntax a suitable instrument to capture
optionality and obligatoriness of operations?

Answer: Yes3! But that’s not really the issue. . .

Take-Home Message

Features and constraints are two sides of the same coin.

We can shift the workload between them as we see fit.

The problem is that both are too powerful.

The goal is to restrict this power; pick whichever perspective
is more insightful for a given problem (“anything goes”).



Background Features ≡ Constraints Linguistic Evaluation

From the call for papers:

Can syntactic theory avoid recourse to FFs entirely [...]?

Can a model that eschews featural triggers be appropriately
restrictive?

Is a FF-free syntax a suitable instrument to capture
optionality and obligatoriness of operations?

Answer: Yes3! But that’s not really the issue. . .

Take-Home Message

Features and constraints are two sides of the same coin.

We can shift the workload between them as we see fit.

The problem is that both are too powerful.

The goal is to restrict this power; pick whichever perspective
is more insightful for a given problem (“anything goes”).



Background Features ≡ Constraints Linguistic Evaluation

Outline

1 Computational Background
Minimalist Grammars
Formalizing Constraints

2 Features ≡ Constraints
From Features to Constraints
From Constraints to Features

3 Linguistic Evaluation
Applicability to Minimalist Syntax
C-Selection: The Secret Loophole



Background Features ≡ Constraints Linguistic Evaluation

Minimalist Grammars

This talk is about theorems and
mathematically provable results.
For this we need a fully explicit
model of syntax.

Minimalist grammars are a
formalization of pre-Agree
Minimalism, developed by
Ed Stabler. (Stabler 1997, 2011)

They are completely
feature-driven.

1



Background Features ≡ Constraints Linguistic Evaluation

The MG Feature Calculus

Every lexical item comes with a finite, non-empty list of features.
Feature checking must obey several non-standard properties:

Order Features must be checked in the order that they
appear in the list.

Typing Every feature is a Merge feature or a Move feature.

Polarity Every feature has either positive or negative polarity.

Opposition Only identical features of opposite polarity may enter
a checking relation.

2



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 1

Assembling [DP the men]

the
N+ D−

men
N−

the
N+ D−

men
N−

Merge[N]

Features of opposite polarities checked

Checking triggers Merge, which builds structure on top

3



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 1

Assembling [DP the men]

the
N+ D−

men
N−

the
N+ D−

men
N−

Merge[N]

Features of opposite polarities checked

Checking triggers Merge, which builds structure on top

3



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 1

Assembling [DP the men]

the
N+ D−

men
N−

the
N+ D−

men
N−

Merge[N]

Features of opposite polarities checked

Checking triggers Merge, which builds structure on top

3



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 1

Assembling [DP the men]

the
N+ D−

men
N−

D

the
N+ D−

men
N−

Merge[N]

Features of opposite polarities checked

Checking triggers Merge, which builds structure on top

3



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 1

Assembling [DP the men]

the
N+ D−

men
N−

D

the
N+ D−

men
N−

Merge[N]

Features of opposite polarities checked

Checking triggers Merge, which builds structure on top

3



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

4



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

4



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

4



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

4



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D D

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

4



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D D

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

4



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D D

V

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

4



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D D

V

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

4



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 2

Assembling [VP the men like which men]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D D

V

V

the and men merged as before

same steps for which men

like merged with which men

like merged with the men

4



Background Features ≡ Constraints Linguistic Evaluation

Merge: Example 2 [cont.]

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

D D

V

V

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

Merge[N] Merge[N]

Merge[D]

Merge[D]

5



Background Features ≡ Constraints Linguistic Evaluation

Move

Assembling “which men do the men like?”

the
N+ D−

men
N−

like
D+ D+ V−

which
N+ D−wh−

men
N−

do
V+ wh+ C−

D D

V

V

Merge do

Move triggered by features of opposite polarity

6



Background Features ≡ Constraints Linguistic Evaluation

Move

Assembling “which men do the men like?”

the
N+ D−

men
N−

like
D+ D+ V−

which
N+ D−wh−

men
N−

do
V+ wh+ C−

D D

V

V

Merge do

Move triggered by features of opposite polarity

6



Background Features ≡ Constraints Linguistic Evaluation

Move

Assembling “which men do the men like?”

the
N+ D−

men
N−

like
D+ D+ V−

which
N+ D−wh−

men
N−

do
V+ wh+ C−

D D

V

V

C

Merge do

Move triggered by features of opposite polarity

6



Background Features ≡ Constraints Linguistic Evaluation

Move

Assembling “which men do the men like?”

the
N+ D−

men
N−

like
D+ D+ V−

which
N+ D−wh−

men
N−

do
V+ wh+ C−

D D

V

V

C

Merge do

Move triggered by features of opposite polarity

6



Background Features ≡ Constraints Linguistic Evaluation

Move

Assembling “which men do the men like?”

the
N+ D−

men
N−

like
D+ D+ V−

which
N+ D−wh−

men
N−

do
V+ wh+ C−

D t

D

V

V

C

C

Merge do

Move triggered by features of opposite polarity

6



Background Features ≡ Constraints Linguistic Evaluation

Derivation Trees with Move

the

N+ D−
men

N−
like

D+ D+ V−

which

N+ D− wh−
men

N−

do

V+ wh+ C−

D t

D

V

V

C

C

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D− wh−
men

N−

do

V+ wh+ C−

Merge[N]

Merge[D]

Merge[N]

Merge[D]

Merge[V]

Move[wh]

7



Background Features ≡ Constraints Linguistic Evaluation

Formalizing Constraints

Every (non-violable) constraint can be identified with
the set of structures that satisfy the constraint.

Every set of structures can be identified with
a logical formula that holds of these and only these structures.

Hence constraints are logical formulas.
(Kracht 1995; Rogers 1998; Potts 2001; Pullum 2007; Graf
2011, 2013)

Constraint

Structures

Formula

8



Background Features ≡ Constraints Linguistic Evaluation

Formalizing Constraints

Every (non-violable) constraint can be identified with
the set of structures that satisfy the constraint.

Every set of structures can be identified with
a logical formula that holds of these and only these structures.

Hence constraints are logical formulas.
(Kracht 1995; Rogers 1998; Potts 2001; Pullum 2007; Graf
2011, 2013)

Constraint

Structures

Formula

8



Background Features ≡ Constraints Linguistic Evaluation

Formalizing Constraints

Every (non-violable) constraint can be identified with
the set of structures that satisfy the constraint.

Every set of structures can be identified with
a logical formula that holds of these and only these structures.

Hence constraints are logical formulas.
(Kracht 1995; Rogers 1998; Potts 2001; Pullum 2007; Graf
2011, 2013)

Constraint

Structures

Formula

8



Background Features ≡ Constraints Linguistic Evaluation

Formalizing Constraints

Every (non-violable) constraint can be identified with
the set of structures that satisfy the constraint.

Every set of structures can be identified with
a logical formula that holds of these and only these structures.

Hence constraints are logical formulas.
(Kracht 1995; Rogers 1998; Potts 2001; Pullum 2007; Graf
2011, 2013)

Constraint

Structures

Formula

8



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor it holds that
there is a y that c-commands x and is labeled DP, and

there is a set Z of nodes such that
Z is the binding domain of x and Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor it holds that
there is a y that c-commands x and is labeled DP, and

there is a set Z of nodes such that
Z is the binding domain of x and Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x

that is an anaphor it holds that
there is a y that c-commands x and is labeled DP, and

there is a set Z of nodes such that
Z is the binding domain of x and Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor

it holds that
there is a y that c-commands x and is labeled DP, and

there is a set Z of nodes such that
Z is the binding domain of x and Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor it holds that

there is a y that c-commands x and is labeled DP, and
there is a set Z of nodes such that
Z is the binding domain of x and Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor it holds that
there is a y

that c-commands x and is labeled DP, and
there is a set Z of nodes such that
Z is the binding domain of x and Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor it holds that
there is a y that c-commands x

and is labeled DP, and
there is a set Z of nodes such that
Z is the binding domain of x and Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor it holds that
there is a y that c-commands x and

is labeled DP, and
there is a set Z of nodes such that
Z is the binding domain of x and Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor it holds that
there is a y that c-commands x and is labeled DP,

and
there is a set Z of nodes such that
Z is the binding domain of x and Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor it holds that
there is a y that c-commands x and is labeled DP, and

there is a set Z of nodes such that
Z is the binding domain of x and Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor it holds that
there is a y that c-commands x and is labeled DP, and

there is a set Z of nodes such that

Z is the binding domain of x and Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor it holds that
there is a y that c-commands x and is labeled DP, and

there is a set Z of nodes such that
Z is the binding domain of x

and Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor it holds that
there is a y that c-commands x and is labeled DP, and

there is a set Z of nodes such that
Z is the binding domain of x and

Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Example: A First-Order Formula for Principle A

Principle A (slightly simplified)

Every anaphor must be c-commanded by some DP
within its binding domain.

∀x
[
anaphor(x)→ ∃y

[
c-com(y , x) ∧ DP(y) ∧

∃Z [bind-dom(Z , x) ∧ y ∈ Z ]
]]

“For every x that is an anaphor it holds that
there is a y that c-commands x and is labeled DP, and

there is a set Z of nodes such that
Z is the binding domain of x and Z contains y .”

9



Background Features ≡ Constraints Linguistic Evaluation

Logics for Constraints

The logic in the previous example is first-order logic with set
quantification, aka monadic second-order logic (MSO).

MSO allows us to talk about

node labels (including feature structures),
local and non-local dependencies between nodes,
domains within which dependencies must hold.

This makes MSO sufficiently powerful for all syntactic
constraints, including even transderivational ones.
(Graf 2012, 2013)

In the literature but beyond MSO: identity of meaning

Henceforth “constraint” = MSO-definable constraint

10



Background Features ≡ Constraints Linguistic Evaluation

Interim Summary

MGs
MGs are a purely feature-driven formalism.
Every MG can be identified with its set of well-formed
derivations.

Constraints
Every constraint can be identified with its set of
licensed structures.
Consequently, constraints can be equated with logical formulas.
MSO formulas are powerful enough for syntax.

A First Connection

Every MG can be identified with an MSO constraint picking out
its set of well-formed derivations.
⇒ representational view of MGs, but not feature-free

11



Background Features ≡ Constraints Linguistic Evaluation

Outline

1 Computational Background
Minimalist Grammars
Formalizing Constraints

2 Features ≡ Constraints
From Features to Constraints
From Constraints to Features

3 Linguistic Evaluation
Applicability to Minimalist Syntax
C-Selection: The Secret Loophole



Background Features ≡ Constraints Linguistic Evaluation

Features are Inessential

Feature Removal Preserves Output Language

Every MG can be made feature-free without altering
the set of generated phrase structure trees.

Let D be the set of derivation trees for some MG G .

Let remove features be the mapping that removes
all feature annotations from every derivation.

Applying remove features to D yields a set D ′ of trees that
is definable in MSO ⇒ D ′ defines an MSO constraint

Move

Merge

Merge

Marylikes

John

D+D+top+V−

D−

D−top−

Move

Merge

Merge

Marylikes

John

remove features

12



Background Features ≡ Constraints Linguistic Evaluation

Spell-Out Without Features

But how do we get the intended mapping from derivations to
phrase structure trees if there are no features?

Answer: construct feature-free spell-out from feature-based one

Move

Merge

Merge

Marylikes

John

D+D+top+V−

D−

D−top−

Move

Merge

Merge

Marylikes

John

VP

VP

V′

tlikes

John

Mary

?

remove features−1 ◦
spell-out

13



Background Features ≡ Constraints Linguistic Evaluation

Spell-Out Without Features

But how do we get the intended mapping from derivations to
phrase structure trees if there are no features?
Answer: construct feature-free spell-out from feature-based one

Move

Merge

Merge

Marylikes

John

D+D+top+V−

D−

D−top−

Move

Merge

Merge

Marylikes

John

VP

VP

V′

tlikes

John

Mary

?

remove features−1 ◦
spell-out

13



Background Features ≡ Constraints Linguistic Evaluation

Spell-Out Without Features

But how do we get the intended mapping from derivations to
phrase structure trees if there are no features?
Answer: construct feature-free spell-out from feature-based one

Move

Merge

Merge

Marylikes

John

D+D+top+V−

D−

D−top−

Move

Merge

Merge

Marylikes

John

VP

VP

V′

tlikes

John

Mary

remove features

?

remove features−1 ◦
spell-out

13



Background Features ≡ Constraints Linguistic Evaluation

Spell-Out Without Features

But how do we get the intended mapping from derivations to
phrase structure trees if there are no features?
Answer: construct feature-free spell-out from feature-based one

Move

Merge

Merge

Marylikes

John

D+D+top+V−

D−

D−top−

Move

Merge

Merge

Marylikes

John

VP

VP

V′

tlikes

John

Mary

remove features

spell-out

?

remove features−1 ◦
spell-out

13



Background Features ≡ Constraints Linguistic Evaluation

Spell-Out Without Features

But how do we get the intended mapping from derivations to
phrase structure trees if there are no features?
Answer: construct feature-free spell-out from feature-based one

Move

Merge

Merge

Marylikes

John

D+D+top+V−

D−

D−top−

Move

Merge

Merge

Marylikes

John

VP

VP

V′

tlikes

John

Mary

remove features−1

spell-out

?

remove features−1 ◦
spell-out

13



Background Features ≡ Constraints Linguistic Evaluation

Spell-Out Without Features

But how do we get the intended mapping from derivations to
phrase structure trees if there are no features?
Answer: construct feature-free spell-out from feature-based one

Move

Merge

Merge

Marylikes

John

D+D+top+V−

D−

D−top−

Move

Merge

Merge

Marylikes

John

VP

VP

V′

tlikes

John

Mary

remove features−1

spell-out

?

remove features−1 ◦
spell-out

13



Background Features ≡ Constraints Linguistic Evaluation

Feature-free Spell-Out is Feature-Free

Feature-free spell-out does not construct any intermediate,
feature-annotated derivations. It is a direct mapping from
feature-free derivations to phrase structure trees.

A Non-Linguistic Analogy

Let add(x) = x + 1 and sub(x) = x − 1. Then we have

x add(x) sub(add(x))

1 2 1
2 3 2
3 4 3
...

Note that sub(add(x)) = x for every x . So the composite function
sub ◦ add is just the identity function, it never computes the
intermediate value add(x).

14



Background Features ≡ Constraints Linguistic Evaluation

Summary: Why Features do not Matter

The MG feature calculus does two things:
1 define a set of well-formed derivation trees,
2 control the translation from derivation trees to

phrase structure trees.

MSO constraints can determine well-formedness without the
explicit information provided by features.

Similarly, spell-out can be replaced by a suitably constrained
translation that does not need features.

Generalization
Features are a way of lexicalizing information, but we can also
delexicalize this information back into constraints.

15



Background Features ≡ Constraints Linguistic Evaluation

Constraints can be Lexicalized

Grammar Precompilation Preserves Output Language

Every MSO constraint can be precompiled into the grammar
without altering the set of generated phrase structure trees.

Intuition

Decompose the constraint into a sequence of local constraints.

Represent the information flow between the local constraints
as special node labels in the derivation tree.

Lexicalize the information flow by pushing the new labels into
the category features.

C-selection via Merge now enforces all local constraints,
and by extension also the original constraint.

16



Background Features ≡ Constraints Linguistic Evaluation

An Example Sketch

Decomposition: translate MSO constraint into equivalent
finite-state tree automaton

Representation: induce state assignment of automaton

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

Merge[N

5

] Merge[N

5

]

Merge[D

8

]

Merge[D

4

]

1 5

4

9 6 5

8

7

1

17



Background Features ≡ Constraints Linguistic Evaluation

An Example Sketch

Decomposition: translate MSO constraint into equivalent
finite-state tree automaton

Representation: induce state assignment of automaton

the

N+ D−
men

N−
like

D+ D+ V−
which

N+ D−
men

N−

Merge[N

5

] Merge[N

5

]

Merge[D

8

]

Merge[D

4

]

1 5

4

9 6 5

8

7

1

17



Background Features ≡ Constraints Linguistic Evaluation

An Example Sketch

Decomposition: translate MSO constraint into equivalent
finite-state tree automaton

Representation: induce state assignment of automaton

the

N+
5 D−4

men

N−5

like

D+
8 D+

4 V−1

which

N+
5 D−8

men

N−5

Merge[N5] Merge[N5]

Merge[D8]

Merge[D4]

17



Background Features ≡ Constraints Linguistic Evaluation

Summary: Why Features Can Replace Constraints

MSO constraints are the most powerful class of constraints
whose behavior can still be understood as the interaction of
simple local dependencies.

These local dependencies fall within the locality domain of
c-selection/subcategorization.

Hence they can be lexicalized via Merge features.

Equivalence of Features and Constraints

Let C be a dependency over Minimalist derivations. Then C is an
MSO constraint iff it can be enforced via the MG feature calculus.

18



Background Features ≡ Constraints Linguistic Evaluation

Summary: Why Features Can Replace Constraints

MSO constraints are the most powerful class of constraints
whose behavior can still be understood as the interaction of
simple local dependencies.

These local dependencies fall within the locality domain of
c-selection/subcategorization.

Hence they can be lexicalized via Merge features.

Equivalence of Features and Constraints

Let C be a dependency over Minimalist derivations. Then C is an
MSO constraint iff it can be enforced via the MG feature calculus.

18



Background Features ≡ Constraints Linguistic Evaluation

Outline

1 Computational Background
Minimalist Grammars
Formalizing Constraints

2 Features ≡ Constraints
From Features to Constraints
From Constraints to Features

3 Linguistic Evaluation
Applicability to Minimalist Syntax
C-Selection: The Secret Loophole



Background Features ≡ Constraints Linguistic Evaluation

Do These Findings Also Hold for Minimalism?

Complaint 1: MG Deviations from Minimalist Syntax

Operations: no Agree, only phrasal movement

Feature calculus: order, typing, polarity, opposition

All these differences are irrelevant. The equivalence between
features and MSO constraints holds for every formalism that
satisfies the following properties:

There is some lexicalized mechanism for subcategorization.

The mechanism distinguishes complements from specifiers.

Both properties are indispensable for even the most basic facts:

(1) a. [[vP [DP John] [v ′ v [VP slept]]]

b. * [[vP [VP slept] [v ′ v [DP John]]]

19



Background Features ≡ Constraints Linguistic Evaluation

Interface Constraints

Complaint 2: Locus of Constraints

Constraints in Minimalism apply at the interfaces,
not during the derivation.

This actually increases the power of features.

Every MSO interface constraint can be translated into an
MSO constraint over derivations, but not the other way round.
Hence the feature calculus can encode interface constraints
that are not even MSO-definable.

Syntax Interface

MSO MSO

20



Background Features ≡ Constraints Linguistic Evaluation

Restrictions on the Feature System

Complaint 3: Category Refinement

The equivalence fails if the set of category features is fixed.

Actually the set can be fixed as long as it is big enough for
the constraints of interest. Every wide-coverage grammar
nowadays has hundreds of parts of speech.

More generally, this simply begs the question. Syntacticians
presuppose a fixed set of categories and let the constraints
vary across languages, but the equivalence result shows that
this is neither an empirical nor a conceptual necessity.

21



Background Features ≡ Constraints Linguistic Evaluation

C-Selection: The Secret Loophole

Simple Corollary of Feature-Constraint Equivalence

A formalism with c-selection can express every MSO constraint.

Problem 1: MSO is too powerful!
Here’s a list of unnatural MSO constraints:

An anaphor must c-command its antecedent.

The number of nodes must be a multiple of 17.

A derivation must obey Principle A or B, but not both.

Problem 2: MSO constraints can bleed other constraints!

22



Background Features ≡ Constraints Linguistic Evaluation

Move as MSO-Controlled Merge

Island constraints can be circumvented via Merge.
(cf. resumptive pronoun analyses)

Move

Merge

Merge

Merge

Merge

Merge

wholeft

Bill

because

Merge

cryJohn

did

Merge

Merge

Merge

Merge

Merge

Merge

tleft

Bill

because

Merge

cryJohn

did

who

23



Background Features ≡ Constraints Linguistic Evaluation

What the Feature-Constraint Equivalence is Really About

Dependencies can be encoded locally via features or
non-locally via constraints.

We can switch between these perspectives as we see fit.

There may ultimately be reasons to prefer one over the other
in all cases, but this is a premature question.
(Personally, I don’t think there is a best encoding.)

Right now, the most pressing issue is limiting the class of
definable dependencies, no matter how.

Examples:

constraints Contiguity theory (Richards 2014)

features Syntactic buffers (Müller 2014)

hybrid Feature algebras for morpho-syntax (Graf 2014)

24



References

References I

Graf, Thomas. 2011. Closure properties of minimalist derivation tree languages. In
LACL 2011 , ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of
Lecture Notes in Artificial Intelligence, 96–111. Heidelberg: Springer.

Graf, Thomas. 2012. Reference-set constraints as linear tree transductions via
controlled optimality systems. In Formal Grammar 2010/2011 , ed. Philippe
de Groote and Mark-Jan Nederhof, volume 7395 of Lecture Notes in Computer
Science, 97–113. Heidelberg: Springer.

Graf, Thomas. 2013. Local and transderivational constraints in syntax and semantics.
Doctoral Dissertation, UCLA.

Graf, Thomas. 2014. Feature geometry and the person case constraint: An algebraic
link. In Proceedings of CLS 50 . To appear.

Kracht, Marcus. 1995. Is there a genuine modal perspective on feature structures?
Linguistics and Philosophy 18:401–458.

Müller, Gereon. 2014. Syntactic buffers. Linguistische Arbeitsberichte.

Potts, Christopher. 2001. Three kinds of transderivational constraints. In Syntax at
Santa Cruz, ed. Séamas Mac Bhloscaidh, volume 3, 21–40. Santa Cruz: Linguistics
Department, UC Santa Cruz.

Pullum, Geoffrey K. 2007. The evolution of model-theoretic frameworks in linguistics.
In Model-Theoretic Syntax @ 10 , ed. James Rogers and Stephan Kepser, 1–10.

25



References

References II

Richards, Norvin. 2014. Contiguity theory. Unpublished Ms., MIT.

Rogers, James. 1998. A descriptive approach to language-theoretic complexity .
Stanford: CSLI.

Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of
computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in
Computer Science, 68–95. Berlin: Springer.

Stabler, Edward P. 2011. Computational perspectives on minimalism. In Oxford
handbook of linguistic minimalism, ed. Cedric Boeckx, 617–643. Oxford: Oxford
University Press.

26


	Computational Background
	Minimalist Grammars
	Formalizing Constraints

	Features = Constraints
	From Features to Constraints
	From Constraints to Features

	Linguistic Evaluation
	Applicability to Minimalist Syntax
	C-Selection: The Secret Loophole

	Appendix

