Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion

Formal Processing Theory

or Parsing Without Parsers

Thomas Graf

Stony Brook University Department of Linguistics mail@thomasgraf.net http://thomasgraf.net

First MIT Workshop on Minimalist Parsing Oct 10 2015

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion O
The Take	Home Messa	ages		

- Formal parsing models of processing are worth pursuing.
- But: problem of too many solutions
- Our approach is too fine-grained.
- We need a more general perspective.
- We need
 - abstraction
 - theorems
 - proofs

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion O
Outline				

- 1 Why Care About Syntactic Processing?
- 2 Top-Down Parsing of Minimalist Grammars
- 3 Memory-Based Processing Predictions
- 4 Towards a Proof-Based Approached to Processing
 - Embedding Invariance
 - Isolated Embeddings
 - Informal Observations on Other Rankings
 - Movement, oh Movement!

Why Bother ●○○	MG Parsing	Processing	Towards Proofs	Conclusion O
$Parsing \neq F$	Processing			

- A grammar without an efficient parser is useless
 ⇒ parsing is an important research area
- But syntactic processing is only about **the human parser**, with all its warts and quirks:
 - small working memory,
 - no full parallelism or memoization,
 - garden paths,
 - grammaticality illusions,
 - merely local syntactic coherence effects,
- From an engineering perspective, the human parser is terribly flawed (neither sound nor complete).
- So why should we care about modelling the human parser when CYK, Earley & Co are much more sophisticated?

Why Syntactic Processing Matters

Applications

• Performance

Despite memory limitations, the human parser outperforms our fastest parsers (better than linear time).

• Future applications

Once you have a very expressive text generation system, you must ensure that its output is processable.

O Theory

• Inherent interest

Every aspect of language is ripe for mathematical inquiry.

- Building bridges to other fields
 We've got a great toolkit, let's show the world what it can do!
- *Clues about strong generative capacity* Processing effects provide **clues about syntactic structure**.

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion
000				
		111 B 1		

A Recent Attempt to Link Processing and Syntax

• Stabler (2011, 2013)

- top-down parser for full class of Minimalist grammars
- can handle virtually all analysis in the generative literature

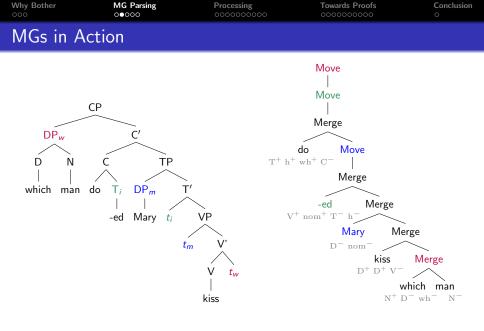
• Kobele et al. (2012)

- memory-usage metric relates parser behavior to processing
- processing predictions are highly dependent on syntactic analysis (e.g. head VS phrasal movement)

Why Bother	MG Parsing ●0000	Processing	Towards Proofs	Conclusion \circ
The Meet	Informal Int	ro to MCc Ev	or	

Minimalist grammars treat syntax like chemistry.

Chemistry	Syntax
atoms	words
electrons	features
molecules	sentences


- Every word is a collection of features.
- Every feature has either positive or negative polarity.
- Features of opposite polarity annihilate each other.
- Feature annihilation drives the structure-building operations **Merge** and **Move**.

Why Bother	MG Parsing ●0000	Processing	Towards Proofs	Conclusion \circ
The Meet	Informal Int	ro to MCc Ev	or	

Minimalist grammars treat syntax like chemistry.

Chemistry	Syntax
atoms	words
electrons	features
molecules	sentences

- Every word is a collection of features.
- Every feature has either positive or negative polarity.
- Features of opposite polarity annihilate each other.
- Feature annihilation drives the structure-building operations **Merge** and **Move**.

Phrase Structure Tree

Derivation Tree

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion O
Some Imp	ortant Prope	erties		

- MGs are weakly equivalent to MCFGs and thus mildly context-sensitive. (Harkema 2001; Michaelis 2001)
- But we can decompose them into two finite-state components: (Michaelis et al. 2001; Kobele et al. 2007; Mönnich 2006)
 - a regular language of well-formed derivation trees
 - an MSO-definable mapping from derivations to phrase structure trees
- **Remember:** Every regular tree language can be reencoded as a CFG (with more fine-grained non-terminal labels). (Thatcher 1967)

The Context-Free Backbone of MGs

MGs can be viewed as CFGs with a more complicated mapping from trees to strings.

Why Bother	MG Parsing 000●0	Processing	Towards Proofs	Conclusion O
The Top-I	Down MG Pa	arser		

• Core Idea

recursive descent parser over context-free derivation trees

- top-down
- depth-first
- left-to-right

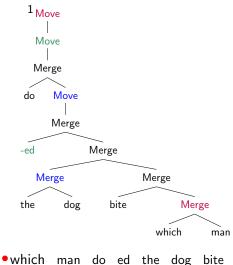
Essential Modification

linear order in the derivation tree does not correspond to linear order in the string

 \Rightarrow "left-to-right" refers to string order, not tree order

Bells and Whistles

- parser hooks directly into lexicon and feature calculus
- beam search weeds out unlikely parses
- constraints on movement reduce parsing complexity

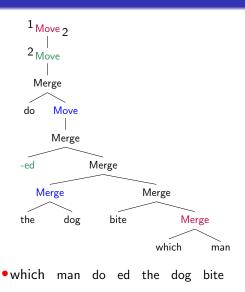


If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

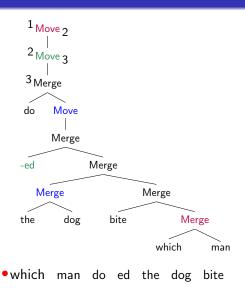

Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

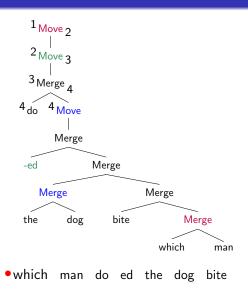

Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

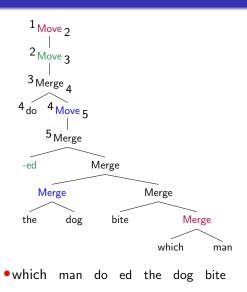

Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

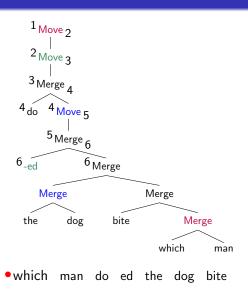

Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex


Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

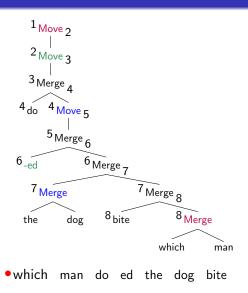
Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

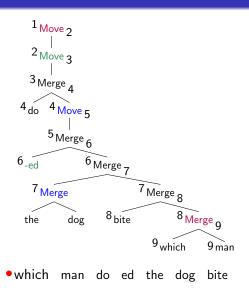

Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

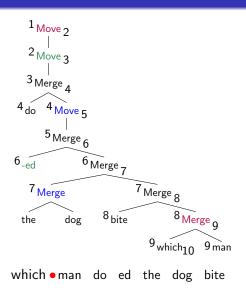

Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

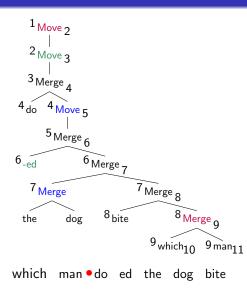

Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

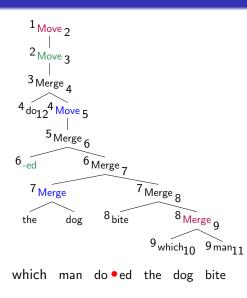

Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

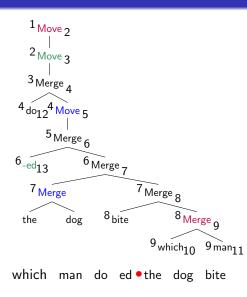

Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

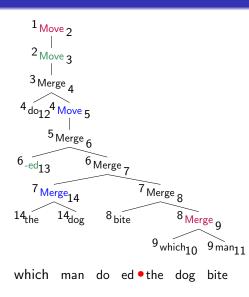

Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

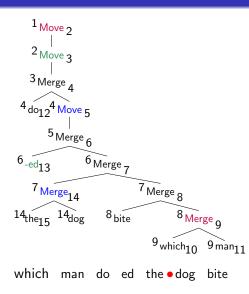

Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

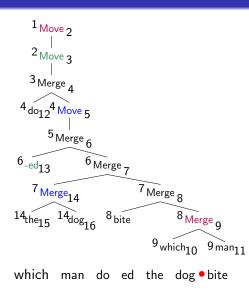

Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

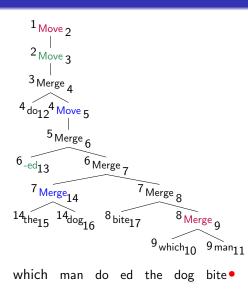

Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex


Parsing as Node Indexation

If one focuses just on how a specific parse tree is assembled, parsing can be represented via **node indexation**:

Index

at which step the node is conjectured

Outdex

Why Bother	MG Parsing	Processing ●○○○○○○○○	Towards Proofs	Conclusion O
Relating Par	rsing and F	Processing		

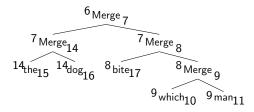
- General Approach (Kobele et al. 2012; Graf and Marcinek 2014; Graf et al. 2015)
 - pick competing syntactic analyses
 - pick metric to relate parsing behavior to processing difficulty
 - see which analysis gets it right

• Simplifying Assumption

- consider only parser's behavior for correct parse
- factors out problem of finding correct parse

• Appeal

- maximally simple
- MGs allow for explicit, linguistically sophisticated analyses
- fully specified parsing model with precise predictions

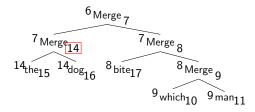


All metrics studied so far build on memory usage. (cf. Gibson 1998)

> Tenure how long a parse item (\approx node) p is stored outdex(p) - index(p)

Payload how many parse items were stored during the parse $|\{p \mid outdex(p) - index(p) > 2\}|$

Gap size of parse items \approx distance of movement

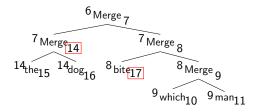


All metrics studied so far build on memory usage. (cf. Gibson 1998)

> Tenure how long a parse item (\approx node) p is stored outdex(p) - index(p)

Payload how many parse items were stored during the parse $|\{p \mid outdex(p) - index(p) > 2\}|$

Gap size of parse items \approx distance of movement

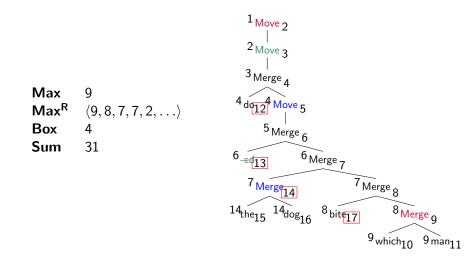


All metrics studied so far build on memory usage. (cf. Gibson 1998)

> Tenure how long a parse item (\approx node) p is stored outdex(p) - index(p)

Payload how many parse items were stored during the parse $|\{p \mid outdex(p) - index(p) > 2\}|$

Gap size of parse items \approx distance of movement



Memory-Based Metrics of Processing Difficulty

Max highest tenure in parse $max(\{t \mid t \text{ is the tenure of some node } n\})$ Max^R vector of tenure for all nodes, in decreasing order Box payload of parse $|\{n \mid n \text{ is a node with tenure } > 2\}|$ Sum summed tenure of payload $\sum_{n \text{ has tenure } > 2} \text{ tenure-of}(n)$

Why Bother	MG Parsing	Processing ○○○○●○○○○○	Towards Proofs	Conclusion O
Processing	Phenomena:	Embedding		

- Left embedding is easy
 - (1) John's father's cousin's house's roof collapsed.
- Center embedding is hard, right embedding is easy
 - (2) a. The cheese that the mouse that the cat chased ate was rotten.
 - b. The cheese was rotten that the mouse ate that the cat chased.
- Crossing dependencies are easier than nested dependencies.
 - (3) a. that John Mary Peter swim teach let. (German)b. that John Mary Peter let teach swim. (Dutch)

Why Bother	MG Parsing	Processing ○○○○○●○○○○	Towards Proofs	Conclusion O			
Sentential Clauses and Relative Clauses							

- A relative clause inside a sentential clause is easy.
 - (4) The fact that the employee who the manager hired stole office supplies worried the executive.
- A sentential clause inside a relative clause is hard.
 - (5) The executive who the fact that the employee stole office supplies worried hired the manager.

Subject relative clauses (SRCs) are easier than object relative clauses (ORCs).

- (6) a. The reporter who __ attacked the senator admitted the error.
 - b. The reporter who the senator attacked __ admitted the error.

Why Bother	MG Parsing	Processing ○○○○○○●○○	Towards Proofs	Conclusion O
RCs in East	Asian			

RCs **precede the modified noun** in Chinese, Japanese, Korean. SRC is still preferred over ORC.

- (7) Chinese
 - a. __ attacked the senator who reporter admitted the error.
 - b. the senator attacked __ who reporter admitted the error.

In addition, Korean and Japanese also have SOV order.

- (8) Korean
 - a. __ the senator attacked who reporter admitted the error.
 - b. the senator __ attacked who reporter admitted the error.

Why Bother	MG Parsing	Processing ○○○○○○○●○	Towards Proofs	Conclusion ○
Overview of	Findings			

Methodology

- take derivations for sentences with processing contrast
- 2 compute indices and outdices
- O compute value according to chosen metric
- easier sentence should have lower value

	Max	Max ^R	Sum	Box
Center/Right	\checkmark	\checkmark	\checkmark	\checkmark
Center/Crossing	\checkmark	\checkmark		
Left embedding	×	×	×	
SC/RC vs RC/SC		\checkmark	\checkmark	\checkmark
SRC vs ORC (Eng)		\checkmark	\checkmark	\checkmark
SRC vs ORC (Asian)		×	×	×

Why Bother	MG Parsing	Processing ○○○○○○○●○	Towards Proofs	Conclusion ○
Overview of	f Findings			

Methodology

- take derivations for sentences with processing contrast
- 2 compute indices and outdices
- O compute value according to chosen metric
- easier sentence should have lower value

	Max	Max ^R	Sum	Box
Center/Right	\checkmark	\checkmark	\checkmark	\checkmark
Center/Crossing	\checkmark	\checkmark	\approx	\approx
Left embedding	×	×	×	\approx
SC/RC vs RC/SC	\approx	\checkmark	\checkmark	\checkmark
SRC vs ORC (Eng)	\approx	\checkmark	\checkmark	\checkmark
SRC vs ORC (Asian)	\approx	×	×	×

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion O
B U U				

Predictions for East Asian RC-Processing

-		Promotion		Wh-Movement		nent	
		all	lex.	pron.	all	lex.	pron.
Korean	Max	tie	tie	tie	tie	tie	tie
	Max ^R	ORC	ORC	ORC	ORC	ORC	ORC
	Sum	ORC	ORC	ORC	ORC	ORC	ORC
	Box	tie	ORC	ORC	ORC	ORC	ORC
-							
		F	Promot	ion	Wh	-Mover	nent
		all	lex.	pron.	all	lex.	pron.
Chinese	Max	tie	tie	tie	tie	tie	tie
	Max ^R	ORC	ORC	ORC	ORC	ORC	ORC
	Sum	SRC	ORC	ORC	tie	ORC	ORC
	Box	SRC	SRC	tie	SRC	tie	ORC

Why Bother	MG Parsing	Processing	Towards Proofs ●000000000	Conclusion O
Why Model	ling is not	Enough		

Parameters of the modelling approach...

- Syntactic analysis
- Parser/Node Indexation algorithm
- O Processing difficulty metric
- ... and a swath of problems
 - infinitely many choices for each parameter
 - complex and unpredictable interaction
 - solution underspecified by evidence

Solution

What we need are the standard tools of mathematical linguistics:

- precisely defined yet general properties,
- proofs instead of simulations,
- theorems about infinite classes of parsers/metrics

Why Bother	MG Parsing	Processing	Towards Proofs ●000000000	Conclusion O
M/by Moo	lolling in not	Enourh		

why wodelling is not Enough

Parameters of the modelling approach...

- Syntactic analysis
- Parser/Node Indexation algorithm
- O Processing difficulty metric
- ... and a swath of problems
 - infinitely many choices for each parameter
 - complex and unpredictable interaction
 - solution underspecified by evidence

Solution

What we need are the standard tools of mathematical linguistics:

- precisely defined yet general properties,
- proofs instead of simulations,
- theorems about infinite classes of parsers/metrics

A metric M is **embedding invariant** iff

Psycholinguistic Motivation

Many contrasts are independent of the containing clause:

- SC/RC vs RC/SC
- SRC vs ORC
- Center embedding vs right embedding
- Nested vs crossing dependencies

A metric M is **embedding invariant** iff

Psycholinguistic Motivation

Many contrasts are independent of the containing clause:

- SC/RC vs RC/SC
- SRC vs ORC
- Center embedding vs right embedding
- Nested vs crossing dependencies

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion O
Shane-Bline	4			

Definition

Two subtrees are

- **feature-equivalent** iff their list of unchecked features is identical.
- *M*-equivalent with respect to metric *M* iff *M* assigns them the same value.

Definition (Shape-Blind)

A metric ${\bf M}$ is **shape-blind** iff it holds that

if a and c are feature-equivalent and M-equivalent.

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion	
			000000000		

Embedding Invariance Implies Shape-Blindness

Theorem

A metric M is embedding invariant only if it is shape-blind.

_emma

Max and Gap are not shape-blind.

Proof.

• Max: size of left subtree determines tenure of its right sibling

• Gap: movement paths can differ in length

Corollary

Max and Gap are not embedding invariant.

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion	
			000000000		

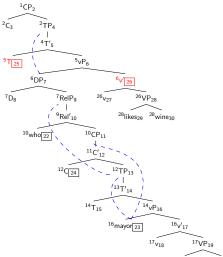
Embedding Invariance Implies Shape-Blindness

Theorem

A metric M is embedding invariant only if it is shape-blind.

Lemma

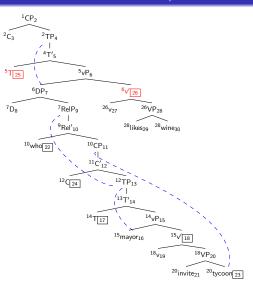
Max and Gap are not shape-blind.


Proof.

- Max: size of left subtree determines tenure of its right sibling
- Gap: movement paths can differ in length

Corollary

Max and Gap are not embedding invariant.


Why Bother MG Parsing Processing Towards Proofs Conclusion Explaining the Failure of Max for Chinese SRC/ORC Max for Chinese SRC/ORC Max Max

Intuition

Embedding the DPs in their clauses causes high tenure. This outweighs all SRC/ORC differences.

Why Bother MG Parsing Processing Towards Proofs Conclusion Explaining the Failure of Max for Chinese SRC/ORC Max for Chinese SRC/ORC Max Max

Intuition

Embedding the DPs in their clauses causes high tenure. This outweighs all SRC/ORC differences.

Why Bother	MG Parsing	Processing	Towards Proofs ○○○○●○○○○	Conclusion O
Isolated Er	nbeddings			

Definition (Isolation)

A subtree is isolated iff the only unchecked feature is the category feature of its root.

Theorem

Every "reasonable" shape-blind metric is embedding invariant for isolated subtrees.

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion
			0000000000	

Other Rankings are Embedding Invariant

Theorem

Box, Gap, and Sum are invariant under isolated embeddings.

Proof.

- An isolated embedding of a into b only adds a constant number n of tenure nodes, where n depends only on b.
- This guarantees that the value of a derivation under the respective metric is only increased by a constant amount that is a function of *n* and the choice of metric.
- The East Asian RC cases can be analyzed as isolated embeddings of distinct DPs into the same matrix clause.
- So why do most of these metrics fail nonetheless?

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion
			0000000000	

Other Rankings are Embedding Invariant

Theorem

Box, Gap, and Sum are invariant under isolated embeddings.

Proof.

- An isolated embedding of a into b only adds a constant number n of tenure nodes, where n depends only on b.
- This guarantees that the value of a derivation under the respective metric is only increased by a constant amount that is a function of *n* and the choice of metric.
- The East Asian RC cases can be analyzed as isolated embeddings of distinct DPs into the same matrix clause.
- So why do most of these metrics fail nonetheless?

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion
			0000000000	

Other Rankings are Embedding Invariant

Theorem

Box, Gap, and Sum are invariant under isolated embeddings.

Proof.

- An isolated embedding of a into b only adds a constant number n of tenure nodes, where n depends only on b.
- This guarantees that the value of a derivation under the respective metric is only increased by a constant amount that is a function of *n* and the choice of metric.
- The East Asian RC cases can be analyzed as isolated embeddings of distinct DPs into the same matrix clause.
- So why do most of these metrics fail nonetheless?

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion
			0000000000	
The Role	of Movemen	+		

Definition (Move Power)

The **Move power** of a derivation is the number of precedence relations that are altered by Move.

Definition (Surface orientation)

A metric M is **surface-oriented** iff it holds for all trees **a** and **c** that

- if a and c are identical modulo Move, and
- the Move power of a is less than the Move power of c, then
- $M(a) \leq M(c)$.

Theorem

Max, Box, and Sum are surface oriented. Gap is not.

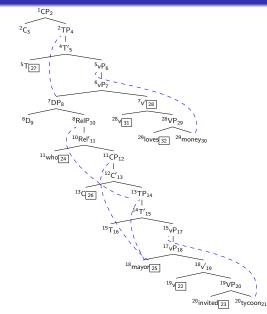
Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion
			0000000000	
The Role	of Movemen	+		

Definition (Move Power)

The **Move power** of a derivation is the number of precedence relations that are altered by Move.

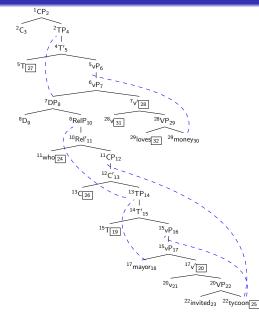
Definition (Surface orientation)

A metric M is **surface-oriented** iff it holds for all trees **a** and **c** that


- if a and c are identical modulo Move, and
- the Move power of a is less than the Move power of c, then
- $M(a) \leq M(c)$.

Theorem

Max, Box, and Sum are surface oriented. Gap is not.


Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion
000	00000	000000000	0000000000	

ORC Preference in Korean

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion
			0000000000	

ORC Preference in Korean

 Why Bother
 MG Parsing
 Processing
 Towards Proofs
 Conclusion

 000
 00000
 000000000
 000000000
 0

Which Properties do we Want?

• Embedding Invariance

mostly yes, but some apparent exceptions

• Isolated Embedding Invariance

yes

Surface-Oriented

mostly no?

Why Bother	MG Parsing	Processing	Towards Proofs	Conclusion •
The Bigge	er Picture			

- Modeling provides important clues, but it is not enough.
- Modeling cannot provide a formal theory of what properties an adequate processing metric need to satisfy.
- We need to think in terms of more abstract and general properties like embedding invariance.
- We may never find a unique solution to the processing problem due to insufficient evidence, but we can try to characterize the (infinite?) class of viable solutions.

References I

- Gibson, Edward. 1998. Linguistic complexity: Locality of syntactic dependencies. *Cognition* 68:1–76.
- Graf, Thomas, Brigitta Fodor, James Monette, Gianpaul Rachiele, Aunika Warren, and Chong Zhang. 2015. A refined notion of memory usage for minimalist parsing. In Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015), 1-14. Chicago, USA: Association for Computational Linguistics. URL http://www.aclweb.org/anthology/W15-2301.
- Graf, Thomas, and Bradley Marcinek. 2014. Evaluating evaluation metrics for minimalist parsing. In Proceedings of the 2014 ACL Workshop on Cognitive Modeling and Computational Linguistics, 28–36.
- Harkema, Henk. 2001. A characterization of minimalist languages. In Logical aspects of computational linguistics (LACL'01), ed. Philippe de Groote, Glyn Morrill, and Christian Retoré, volume 2099 of Lecture Notes in Artificial Intelligence, 193–211. Berlin: Springer.
- Kobele, Gregory M., Sabrina Gerth, and John T. Hale. 2012. Memory resource allocation in top-down minimalist parsing. In *Proceedings of Formal Grammar* 2012.
- Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An automata-theoretic approach to minimalism. In *Model Theoretic Syntax at 10*, ed. James Rogers and Stephan Kepser, 71–80.

References II

- Michaelis, Jens. 2001. Transforming linear context-free rewriting systems into minimalist grammars. Lecture Notes in Artificial Intelligence 2099:228–244.
- Michaelis, Jens, Uwe Mönnich, and Frank Morawietz. 2001. On minimalist attribute grammars and macro tree transducers. In *Linguistic form and its computation*, ed. Christian Rohrer, Antje Roßdeutscher, and Hans Kamp, 287–326. Stanford: CSLI.

Mönnich, Uwe. 2006. Grammar morphisms. Ms. University of Tübingen.

- Stabler, Edward P. 2011. Top-down recognizers for MCFGs and MGs. In *Proceedings* of the 2011 Workshop on Cognitive Modeling and Computational Linguistics. To appear.
- Stabler, Edward P. 2013. Bayesian, minimalist, incremental syntactic analysis. *Topics in Cognitive Science* 5:611–633.
- Thatcher, James W. 1967. Characterizing derivation trees for context-free grammars through a generalization of finite automata theory. *Journal of Computer and System Sciences* 1:317–322.