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It is important to learn to be
surprised by simple things [. . . ]
The beginning of science is the
recognition that the simplest
phenomena of life raise quite
serious problems: Why are they
as they are, instead of some
different way?

Chomsky 1988:43
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The Syntax-Phonology Puzzle

The grammar of sentences (syntax) and the grammar of
sounds (phonology) are different lines of linguistic inquiry.

Empirical evidence and mathematical theorems both show
that syntax is much more complex than phonology.

Question: Why should that be the case?

Answer: A Surprising Common Ground

Phonology and syntax are not that different after all.

They involve computations of comparable complexity.

The main difference lies in their data structures.

Phonology: strings
Syntax: trees
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Phonological Patterns

Only certain sound sequences are licit.

Vowel systems show regularities.
a-i-u, a-e-i-o-u, ∗e-o-i

Sounds can be affected by their contexts,
but only in specific ways.

intervocalic voicing nef+ið → nevið Icelandic
word-final devoicing rad → rat German

∗intervocalic devoicing aba → apa unattested

dissimilation lun+alis → lunaris Latin
umlaut mamm+u → mömmu Icelandic

∗anti-umlaut mömm+u → mammu unattested
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Syntactic Patterns

Island effects

(1) a. Which man did John say that Mary kissed?

b. * Which man did John cry because Mary kissed?

Center-embedding/Nested dependencies

(2) a. The mouse that the cat that the dog chased
ate is dead.

b. * The mouse that the cat that the dog chased
ate is dead.

Crossing dependencies

(3) a. The mouse, the cat, and the dog survived,
slept, and chewed on a toy, respectively.

b. * The mouse, the cat, and the dog survived,
slept, and chewed on a toy, respectively.
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Empirical Lay of the Land

There are no nested/crossing dependencies in phonology.
They are a peculiarity of syntax.

No syntactic analogues for phonological processes
like devoicing or umlaut have been clearly identified.

This is just the tip of the iceberg:

island effects
?≡ blocking

negative concord
?≡ vowel harmony

gapping:ellipsis ≡ deletion:?

Principle C ≡ ?

? ≡ hiatus

PCC ≡ ?

...
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The Theoretical Divide

Even when syntactic and phonological theories are meant to mirror
each other closely, they end up looking very different.

Example: Government and Binding VS Government Phonology
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The General Upshot

Languages impose rules on sounds and sentences.

But the rules/patterns are not the same
across these two domains.

This is reflected by linguistic theories, but also by
the sociology of the field (“are you S-side or P-side?”).

Next: There are even mathematical proofs that separate
syntax and phonology.
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Language as Sets

Computationally, a language is simply
a set of objects of a specific type:

graph: structure of connected nodes
flow chart, street network, Wikipedia,
internet, video game AI

tree: connected graph where every node
is reachable from at most one node
family tree, hard drive layout, XML file

string: sequence of nodes
telephone number, Python source code,
Shakespeare’s oeuvre
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D E F

G

A

B C

D E F

A

B C

D E F
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The Chomsky Hierarchy of String Languages

The perceivable output of language is strings
(sequences of sound waves, words, sentences).
The complexity of string languages is measured by
the (extended) Chomsky hierarchy. (Chomsky 1956, 1959)

recursively enumerable

context-sensitive

mildly context-sensitive

context-free

regular

Phonology
(Kaplan and Kay 1994)

Syntax
(Shieber 1985)

Phonology
(Kaplan and Kay 1994)

Syntax
(Shieber 1985)
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Languages and Automata

For every language class there is a computational model
that can generate all languages in the class, and only those.

Such a model is called an automaton.

Automata models tell us what kind of memory structures
are needed in order to compute specific patterns.
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Finite-State Automata

A finite-state automaton (FSA) assigns every node in a string
one of finitely many states, depending on

the label of the node, and

the state of the preceding node (if it exists).

The FSA accepts the string if the last state is a final state.

Cognitive Intuition

States are a metaphor for memory configurations.

Every symbol in the input induces a change from one memory
configuration into another.

Only finitely many memory configurations are needed.
Thus the amount of working memory used by the automaton
is finitely bounded.
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Example 1: Sibilant Harmony

Condition: S cannot be followed by s
Memory: 3 distinct states X, S, and *

X XX SS
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Example 2: Penultimate Stress

Condition: Put stress on the penultimate (= last but one) vowel
Memory: 2 distinct states 2 and 1
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Syntax is not Finite-State

Nesting and crossing dependencies require unbounded memory.
(Chomsky 1956, 1959; Huybregts 1984; Shieber 1985; Radzinski
1991; Michaelis and Kracht 1997; Kobele 2006)

that J surprised me is annoying
that that J surprised me surprised me is annoying

that that that J surprised me surprised me surprised me is annoying
...

thatn J (surprised me)n is annoying
...

The Limits of Finite-State Memory

For each level of embedding, we need at least 1 more state.
⇒ Finitely bounded memory cannot handle unbounded embedding.

12



Subsystems Computation Syntax Questions Conclusion

Syntax is not Finite-State

Nesting and crossing dependencies require unbounded memory.
(Chomsky 1956, 1959; Huybregts 1984; Shieber 1985; Radzinski
1991; Michaelis and Kracht 1997; Kobele 2006)

that J surprised me is annoying
that that J surprised me surprised me is annoying

that that that J surprised me surprised me surprised me is annoying
...

thatn J (surprised me)n is annoying
...

The Limits of Finite-State Memory

For each level of embedding, we need at least 1 more state.
⇒ Finitely bounded memory cannot handle unbounded embedding.

12



Subsystems Computation Syntax Questions Conclusion

Syntax is not Finite-State

Nesting and crossing dependencies require unbounded memory.
(Chomsky 1956, 1959; Huybregts 1984; Shieber 1985; Radzinski
1991; Michaelis and Kracht 1997; Kobele 2006)

that J surprised me is annoying
that that J surprised me surprised me is annoying

that that that J surprised me surprised me surprised me is annoying
...

thatn J (surprised me)n is annoying
...

The Limits of Finite-State Memory

For each level of embedding, we need at least 1 more state.
⇒ Finitely bounded memory cannot handle unbounded embedding.

12



Subsystems Computation Syntax Questions Conclusion

Interim Summary

String languages can be classified according to their
complexity and matched up with specific automata models.

These automata give us some basic cognitive facts about
memory usage and architecture.

The string patterns we find in phonology and syntax
differ significantly with respect to these parameters.

Phonology Syntax
Lang. Class regular mildly context-sensitive
Memory finitely bounded unbounded

The Big Question

Why doesn’t phonology have access to unbounded memory?

13



Subsystems Computation Syntax Questions Conclusion

Interim Summary

String languages can be classified according to their
complexity and matched up with specific automata models.

These automata give us some basic cognitive facts about
memory usage and architecture.

The string patterns we find in phonology and syntax
differ significantly with respect to these parameters.

Phonology Syntax
Lang. Class regular mildly context-sensitive
Memory finitely bounded unbounded

The Big Question

Why doesn’t phonology have access to unbounded memory?

13



Subsystems Computation Syntax Questions Conclusion

Outline

1 Linguistic Subsystems: Syntax and Phonology

2 Memory Usage of Dependencies in Syntax and Phonology
Formal Language Theory
Phonology Uses Bounded Working Memory
Syntax Uses Unbounded Working Memory

3 A Linguistically Informed Look at Syntax
Minimalist Syntax
Syntactic Derivations and Working Memory

4 Deeper Down the Rabbit Hole
Why Trees in Syntax?
Where to go From Here



Subsystems Computation Syntax Questions Conclusion

A Closer Look at Syntax

So far we have looked at syntactic patterns as string dependencies.
But syntacticians work with trees, not strings.
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Minimalist Grammars

Minimalism is the dominant
syntactic theory. (Chomsky 1995)

Can Minimalism change the
computational picture of syntax?
Maybe, but first we need
a precise specification.

Minimalist grammars are such a
formalization, developed by
Ed Stabler. (Stabler 1997)
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Syntax as Chemistry of Language

Minimalist grammars treat syntax like chemistry.

Chemistry Syntax
atoms words

electrons features
molecules sentences

stable grammatical
unstable ungrammatical

Every word is a collection of features.

Every feature has either positive or negative polarity.

Features of opposite polarity annihilate each other.

Feature annihilation drives the structure-building operations
Merge and Move.
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MG Syntax in Action
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What’s the Point?

Sentences aren’t just strings, they contain hidden structure.

Syntacticians usually look at the tree structure
that is built by the operations Merge and Move.

But: the history of how such a structure is built is also a tree
⇒ phrase structure trees and derivation trees as
two possible views of tree-based syntax

18
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Finite-State Tree Automata

A finite-state tree automaton (FSTA) assigns every node
in a tree one of finitely many states, depending on

the label of the node, and

the states of the nodes immediately below it (if they exist).

The FSTA accepts the tree if the highest state is a final state.

Reminder: FSA Definition

A finite-state automaton (FSA) assigns every node in a string
one of finitely many states, depending on

the label of the node, and

the state of the preceding node (if it exists).

The FSA accepts the string if the last state is a final state.
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Example: State-Assignment of Minimalist Derivation

Condition: All features must be checked except C−

Memory: one state for every possible list of unchecked features

Move

Move

Merge

Move

Merge

Merge

Merge

Merge

manwhich

kiss

Mary

-ed

do

C−

wh+ C−, wh−

c+ wh+ C−, wh−, c−

T−, wh−, c−

nom+ T−, wh−, nom−, c−

V−, wh−, nom−

D+ V−, wh−

D−, wh−

N−N+ D− wh−

D+ D+ V−

D− nom−

V+ nom+ T− c−

T+ c+ wh+ C−
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Minimalism and FSTAs

Phrase structure trees cannot be handled by FSTAs.
(Harkema 2001; Michaelis 2001)

But FSTAs are powerful enough for derivations trees.
(Michaelis 2001; Kobele et al. 2007; Graf 2012)

Since derivation trees are just a more abstract data structure
for encoding syntactic dependencies, this means that
all syntactic dependencies can be computed
with a finite amount of working memory.

A New Perspective on Syntax and Phonology

Phonology finite working memory computations over strings

Syntax finite working memory computations over trees
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Why Trees?

The New Big Question

Why does phonology operate over strings and syntax over trees?

Axiom 1: Inferring tree structure from strings is hard,
so it should be avoided if possible.

Axiom 2: If possible, stick with finitely bounded memory.

Conjecture: Syntax must use trees because of semantics!

Lexicon

Phon Sem

Syntax

LFPF
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Representing Semantic Scope

Semantic scope can be represented in two ways:

linearly via bracketing or Polish notation

bracketing John and (Mary or Bill) (John and Mary) or Bill
Polish and John or Mary Bill or and John Mary Bill

graphically via trees

or

Billand

MaryJohn

and

or

BillMary

John

Memory Usage of Semantic Scope

Bracketing and Polish notation are context-free
⇒ unbounded memory

Tree representation is finite-state ⇒ finitely bounded memory

23



Subsystems Computation Syntax Questions Conclusion

Representing Semantic Scope

Semantic scope can be represented in two ways:

linearly via bracketing or Polish notation

bracketing John and (Mary or Bill) (John and Mary) or Bill
Polish and John or Mary Bill or and John Mary Bill

graphically via trees

or

Billand

MaryJohn

and

or

BillMary

John

Memory Usage of Semantic Scope

Bracketing and Polish notation are context-free
⇒ unbounded memory

Tree representation is finite-state ⇒ finitely bounded memory

23



Subsystems Computation Syntax Questions Conclusion

A Tighter Bound

Playing Devil’s Advocate

Finitely bounded memory usage is not a strong restriction, syntax
and phonology could occupy very different places within that class.

Reply: No, there’s more to this!

Jeff Heinz has argued that phonology
can be described by a small subclass
of this space. (Heinz et al. 2011)

MG derivations belong to the
tree-analogue of his class! (Graf 2014)
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How Deep does the Rabbit Hole Go?

Beyond Syntax
Some preliminary research of mine on generalized quantifiers
suggests that large part of semantics also obey the restriction
to finite working memory.

Beyond Language
Do we find similar restrictions in non-linguistic cognitive
domains, e.g. music?

Beyond Humans
Birdsong has crossing dependencies like syntax, but seems to
lack compositional semantics. What should we make of this?

Beyond Cognition
Protein folding also involves crossing dependencies. Is there
some more abstract “folding structure” that is finite-state?
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Conclusion

Phonology and syntax look very different.

But they are remarkably similar on a computational level.

Phonology finite working memory computations over strings

Syntax finite-working memory computations over trees

The need for trees in syntax is due to semantic expressivity.

Finite-working memory computations may lie at the center of
many other cognitive and biological domains.
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Final Words

Our imagination is stretched to
the utmost, not, as in fiction,
to imagine things which are
not really there, but just
to comprehend those things
which are there.

(Feynman 1964:127f)
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Tiers in Phonology: Sibilant Harmony

Rewrite rule Constraint Tier1-Bigram
s → S | S · · · ∗S · · · s Ss

Tier1 contains all sibilants
Tier0 contains all segments

$ e S i s i $

$ S s $

Tier0:

Tier1:

$ e S i S i $

$ S S $

Tier0:

Tier1:
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Example of Ill-Formed Derivation
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Example of Well-Formed Derivation
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