| Strong Islands | Optionality | Deriving Islands | Exceptions | Linked Algebras | Conclusion |
|----------------|-------------|------------------|------------|-----------------|------------|
|                |             |                  |            |                 |            |

# Adjuncts, Conjuncts, Ojuncts: Deriving Strong Island Constraints

Thomas Graf mail@thomasgraf.net http://thomasgraf.net

Stony Brook University

RGGU December 14, 2015

| Strong Islands | Optionality | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|-------------|-------------------------|------------|-----------------|-----------------|
| Take-Hon       | ne Messa    | ge                      |            |                 |                 |

#### The Strong Island Puzzle

Adjuncts and conjuncts are hard to extract from — why?

- (1) a. Which book did John complain that he lost?
  - b. \* Which book did John complain because he lost?
  - c. \* Which book did John complain after losing?
- (2) \* Which book does John like Ke\$ha and the author of?

#### Mathematical Solution

- Island effects are an inevitable consequence of optionality.
- Non-islands lack optionality wrt syntax or semantics.

| Strong Islands | Optionality | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|-------------|-------------------------|------------|-----------------|-----------------|
| Take-Hon       | ne Messa    | ge                      |            |                 |                 |

#### The Strong Island Puzzle

Adjuncts and conjuncts are hard to extract from — why?

- (1) a. Which book did John complain that he lost?
  - b. \* Which book did John complain because he lost?
  - c. \* Which book did John complain after losing?
- (2) \* Which book does John like Ke\$ha and the author of?

#### Mathematical Solution

- Island effects are an inevitable consequence of optionality.
- Non-islands lack optionality wrt syntax or semantics.

| Strong Islands | Optionality<br>00000 | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>○ |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
| Outline        |                      |                         |            |                 |                 |

- 1 Two Strong Islands
  - Adjuncts
  - Coordination
- 2 The Math: Optionality and Grammaticality Inferences
  - Ojuncts: Formalizing Optionality
  - Optionality Closure
- 3 Deriving Island Effects
- 4 How to Deal With Optional Non-Islands
- 5 Linking the Syntactic and Semantic Ojunct-Algebras
  - Semantic Lattices
  - Syntactic Lattice
- 6 Conclusion & Outlook

| Strong Islands<br>●○○ | <b>Optionality</b> | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|-----------------------|--------------------|-------------------------|------------|-----------------|-----------------|
| Adjuncts              |                    |                         |            |                 |                 |

- extraction usually blocked
  - (3) a. Which book did John complain that he lost t?
    - b. \* Which book did John complain **because he lost** *t*?
    - c. \* Which book did John complain after losing *t*?
- gaps licensed
  - (4) Which book did John burn *t* after reading *e*?
- usually optional
  - (5) (Obviously) I will (easily) ace this ((very) challenging) exam (because I (really) am that smart).

| Strong Islands<br>○●○ | <b>Optionality</b> | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|-----------------------|--------------------|-------------------------|------------|-----------------|-----------------|
| Coordinat             | ion                |                         |            |                 |                 |

- extraction usually blocked
  - (6) a. Ed brewed beer and Greg drank it.
    - b. \* Which beer did Ed brew t and Greg drink it?
    - c. \* Which wine did Ed brew beer and Greg drink *t*?
- across-the-board extraction possible
  - (7) a. Which wine did **Ed brew** *t* and **Greg** drink *t*?
- mostly optional (modulo morphological/semantic agreement)
  - (8) a. Ed brewed beer and Greg drank it.
    - b. Ed brewed beer.
  - (9) a. Ed and Greg are brewing beer.
    - b. \* Ed are brewing beer.
  - (10) a. Ed and Greg met.
    - b. \* Ed met.

| Strong Islands<br>○○● | <b>Optionality</b><br>00000 | Deriving Islands | Exceptions | Linked Algebras | Conclusion<br>O |
|-----------------------|-----------------------------|------------------|------------|-----------------|-----------------|
| The Big F             | Picture                     |                  |            |                 |                 |

As a rule of thumb, adjuncts and coordinations

- block extraction,
- allow for gaps,
- 3 are optional.

The Big Question

Could (1) and (2) be related to optionality?

| Strong Islands | <b>Optionality</b> | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|--------------------|-------------------------|------------|-----------------|-----------------|
| Outline        |                    |                         |            |                 |                 |

- 1 Two Strong Islands
  - Adjuncts
  - Coordination
- 2 The Math: Optionality and Grammaticality Inferences
  - Ojuncts: Formalizing Optionality
  - Optionality Closure
- 3 Deriving Island Effects
- 4 How to Deal With Optional Non-Islands
- 5 Linking the Syntactic and Semantic Ojunct-Algebras
  - Semantic Lattices
  - Syntactic Lattice
- 6 Conclusion & Outlook

| Strong Islands | Optionality<br>●○○○○ | Deriving Islands | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|------------------|------------|-----------------|-----------------|
| Adjuncts       | in the Lit           | erature          |            |                 |                 |

Adjuncts ...

- have no special operational status (CG; Cinque 1999),
- are pair-merged (Chomsky 1995),
- are late-merged (Stepanov 2001),
- are inserted but not merged immediately (Hunter 2012),
- involve asymmetric feature checking (Frey and Gärtner 2002),

#### Problem

Can we abstract away from these details? Properties that hold of every conceivable implementation?

| Strong Islands | Optionality<br>○●○○○ | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
| Ojuncts        |                      |                         |            |                 |                 |

The notion of an **ojunct** provides an abstract characterization of optional phrase markers.

### Ojunct (Intuitive Definition)

A phrase marker is an **ojunct** iff it is implemented by some operation that captures optionality.

Under pretty much any account of displacement, ojuncts are necessarily islands:

#### Theorem (Islandhood)

No ojunct can be extracted from if the extraction step is necessary in order to satisfy a dependency at the target site.

| Strong Islands | Optionality<br>○●○○○ | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
| Ojuncts        |                      |                         |            |                 |                 |

The notion of an **ojunct** provides an abstract characterization of optional phrase markers.

### Ojunct (Intuitive Definition)

A phrase marker is an **ojunct** iff it is implemented by some operation that captures optionality.

Under pretty much any account of displacement, ojuncts are necessarily islands:

#### Theorem (Islandhood)

No ojunct can be extracted from if the extraction step is necessary in order to satisfy a dependency at the target site.

| Strong Islands | Optionality<br>○○●○○ | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>$\circ$ |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------------|
| Oiunct F       | xtension             |                         |            |                 |                       |

#### Definition (Ojunct Extensions)

Let **s** and **t** be trees. Then **t** is an **ojunct extension** of **s** for grammar G (**s** <<sub>G</sub> **t**) iff **t** is the result of inserting one or more ojuncts of G in **s**.

#### Example

• Obviously I will ace this exam <<sub>G</sub>

- I will ace this exam  $<_{G}$  Obviously I will easily ace this exam
- **Obviously** I will ace this exam  $\measuredangle_G$  I will **easily** ace this exam
- I will ace this exam  $\measuredangle_G$  I will easily ace this test
- exam will this I ace <<sub>G</sub> easily exam will this I ace

| Strong Islands | Optionality<br>○○●○○ | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
| Oiunct F       | xtension             |                         |            |                 |                 |

Definition (Ojunct Extensions)

Let s and t be trees.

Then t is an **ojunct extension** of s for grammar G (s <<sub>G</sub> t) iff t is the result of inserting one or more ojuncts of G in s.

#### Example

• Obviously I will ace this exam <<sub>G</sub>

- I will ace this exam  $<_G$  Obviously I will easily ace this exam
- **Obviously** I will ace this exam  $\not\leq_G$  I will **easily** ace this exam
- I will ace this exam  $\not<_G$  I will easily ace this test
- exam will this I ace <<sub>G</sub> easily exam will this I ace

| Strong Islands | Optionality<br>○○●○○ | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
| Oiunct F       | xtension             |                         |            |                 |                 |

#### Definition (Ojunct Extensions)

Let s and t be trees.

Then t is an ojunct extension of s for grammar G (s  $<_G t$ ) iff

 $\mathbf{t}$  is the result of inserting one or more ojuncts of G in  $\mathbf{s}$ .

- Obviously I will ace this exam <<sub>G</sub>
   Obviously I will easily ace this exam
- I will ace this exam  $<_G$  Obviously I will easily ace this exam
- **Obviously** I will ace this exam  $\leq_G$  I will **easily** ace this exam
- I will ace this exam  $\not<_G$  I will easily ace this test
- exam will this I ace <<sub>G</sub> easily exam will this I ace

| Strong Islands | Optionality<br>○○●○○ | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
| Oiunct F       | xtension             |                         |            |                 |                 |

#### Definition (Ojunct Extensions)

Let s and t be trees.

Then t is an ojunct extension of s for grammar G (s <<sub>G</sub> t) iff

t is the result of inserting one or more ojuncts of G in s.

#### Example

• Obviously I will ace this exam <<sub>G</sub>

- I will ace this exam  $<_{G}$  Obviously I will easily ace this exam
- **Obviously** I will ace this exam  $\measuredangle_G$  I will **easily** ace this exam
- I will ace this exam  $\not<_G$  I will easily ace this test
- exam will this I ace <<sub>G</sub> easily exam will this I ace

| Strong Islands | Optionality<br>○○●○○ | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
| Oiunct F       | xtension             |                         |            |                 |                 |

#### Definition (Ojunct Extensions)

Let s and t be trees.

Then t is an ojunct extension of s for grammar G (s <<sub>G</sub> t) iff

t is the result of inserting one or more ojuncts of G in s.

#### Example

• Obviously I will ace this exam <<sub>G</sub>

- I will ace this exam  $<_{G}$  Obviously I will easily ace this exam
- Obviously I will ace this exam  $\measuredangle_G$  I will easily ace this exam
- I will ace this exam  $\not<_G$  I will easily ace this test
- exam will this I ace <<sub>G</sub> easily exam will this I ace

| Strong Islands | Optionality<br>○○●○○ | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
| Oiunct F       | xtension             |                         |            |                 |                 |

#### Definition (Ojunct Extensions)

Let s and t be trees.

Then t is an ojunct extension of s for grammar G (s <<sub>G</sub> t) iff

t is the result of inserting one or more ojuncts of G in s.

#### Example

• Obviously I will ace this exam <<sub>G</sub>

- I will ace this exam  $<_{G}$  Obviously I will easily ace this exam
- Obviously I will ace this exam  $\measuredangle_G$  I will easily ace this exam
- I will ace this exam  $\not<_G$  I will easily ace this test
- exam will this I ace <<sub>G</sub> easily exam will this I ace

| Strong Islands | Optionality<br>○○●○○ | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
| Oiunct F       | xtension             |                         |            |                 |                 |

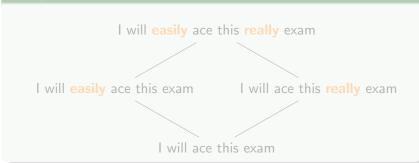
#### Definition (Ojunct Extensions)

Let s and t be trees.

Then **t** is an **ojunct extension** of **s** for grammar G (**s** <<sub>G</sub> **t**) iff

t is the result of inserting one or more ojuncts of G in s.

#### Example


• Obviously I will ace this exam <<sub>G</sub>

- I will ace this exam  $<_{G}$  Obviously I will easily ace this exam
- Obviously I will ace this exam  $\measuredangle_G$  I will easily ace this exam
- I will ace this exam  $\not<_G$  I will easily ace this test
- exam will this I ace  $<_G$  easily exam will this I ace

| Strong Islands | Optionality | Deriving Islands | Exceptions | Linked Algebras | Conclusion |
|----------------|-------------|------------------|------------|-----------------|------------|
|                | 00000       |                  |            |                 |            |
| <u></u>        | · ·         |                  |            |                 |            |

#### Theorem (Optionality Closure)

If  $\mathbf{t}$  is an ojunct extension of  $\mathbf{s}$  for G and G generates  $\mathbf{t}$ , then G generates  $\mathbf{s}$ .



| Strong Islands | Optionality | Deriving Islands | Exceptions | Linked Algebras | Conclusion |
|----------------|-------------|------------------|------------|-----------------|------------|
|                | 00000       |                  |            |                 |            |
| <u></u>        | · ·         |                  |            |                 |            |

#### Theorem (Optionality Closure)

If  $\mathbf{t}$  is an ojunct extension of  $\mathbf{s}$  for G and G generates  $\mathbf{t}$ , then G generates  $\mathbf{s}$ .



| Strong Islands | Optionality | Deriving Islands | Exceptions | Linked Algebras | Conclusion |
|----------------|-------------|------------------|------------|-----------------|------------|
|                | 00000       |                  |            |                 |            |
| <u></u>        | · ·         |                  |            |                 |            |

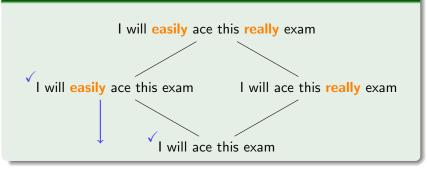
#### Theorem (Optionality Closure)


If  $\mathbf{t}$  is an ojunct extension of  $\mathbf{s}$  for G and G generates  $\mathbf{t}$ , then G generates  $\mathbf{s}$ .



| Strong Islands | Optionality | Deriving Islands | Exceptions | Linked Algebras | Conclusion |
|----------------|-------------|------------------|------------|-----------------|------------|
|                | 00000       |                  |            |                 |            |
| <u></u>        | · ·         |                  |            |                 |            |

#### Theorem (Optionality Closure)


If  $\mathbf{t}$  is an ojunct extension of  $\mathbf{s}$  for G and G generates  $\mathbf{t}$ , then G generates  $\mathbf{s}$ .



| Strong Islands | Optionality | Deriving Islands | Exceptions | Linked Algebras | Conclusion |
|----------------|-------------|------------------|------------|-----------------|------------|
|                | 00000       |                  |            |                 |            |
| <u></u>        | · ·         |                  |            |                 |            |

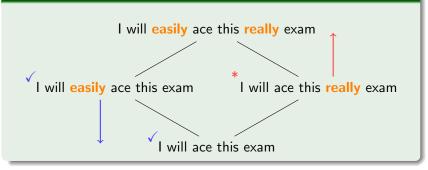
#### Theorem (Optionality Closure)


If  $\mathbf{t}$  is an ojunct extension of  $\mathbf{s}$  for G and G generates  $\mathbf{t}$ , then G generates  $\mathbf{s}$ .



| Strong Islands | Optionality | Deriving Islands | Exceptions | Linked Algebras | Conclusion |
|----------------|-------------|------------------|------------|-----------------|------------|
|                | 00000       |                  |            |                 |            |
| <u></u>        | · ·         |                  |            |                 |            |

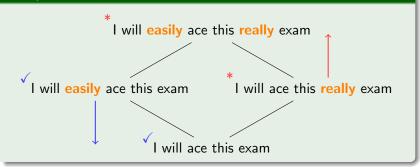
#### Theorem (Optionality Closure)


If  $\mathbf{t}$  is an ojunct extension of  $\mathbf{s}$  for G and G generates  $\mathbf{t}$ , then G generates  $\mathbf{s}$ .



| Strong Islands | Optionality<br>○○○●○ | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
|                |                      |                         |            |                 |                 |

#### Theorem (Optionality Closure)


If  $\mathbf{t}$  is an ojunct extension of  $\mathbf{s}$  for G and G generates  $\mathbf{t}$ , then G generates  $\mathbf{s}$ .



| Strong Islands | Optionality<br>○○○●○ | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
|                |                      |                         |            |                 |                 |

#### Theorem (Optionality Closure)

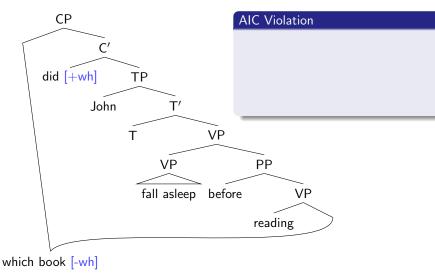
If  $\mathbf{t}$  is an ojunct extension of  $\mathbf{s}$  for G and G generates  $\mathbf{t}$ , then G generates  $\mathbf{s}$ .



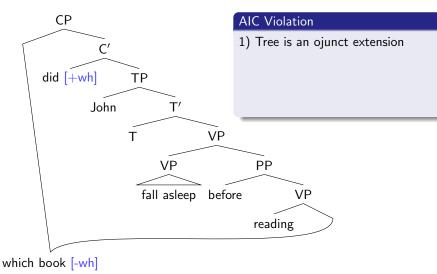
| Strong Islands | Optionality<br>○○○○● | Deriving Islands | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|------------------|------------|-----------------|-----------------|
| Interim S      | ummary               |                  |            |                 |                 |

• We abstract away from technical details of the grammar.

### Major Requirement

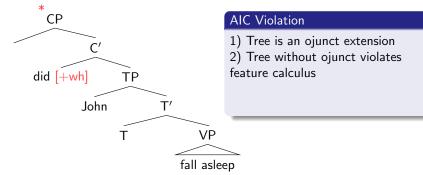

implementation of adjuncts and conjuncts must capture their optionality  $\Rightarrow$  abstract notion of ojuncts

- Grammars with ojuncts show special inference patterns:
  - $\Downarrow$  grammaticality is downward entailing with respect to  $<_G$ ,
  - $\uparrow$  ungrammaticality is upward entailing with respect to  $<_G$ .


| Strong Islands | Optionality | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|-------------|-------------------------|------------|-----------------|-----------------|
| Outline        |             |                         |            |                 |                 |

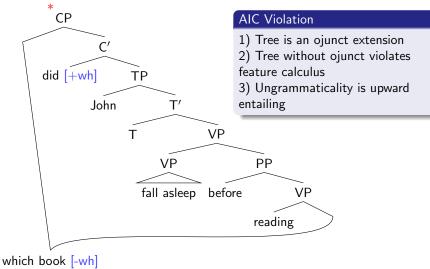
- 1 Two Strong Islands
  - Adjuncts
  - Coordination
- 2 The Math: Optionality and Grammaticality Inferences
  - Ojuncts: Formalizing Optionality
  - Optionality Closure
- 3 Deriving Island Effects
- 4 How to Deal With Optional Non-Islands
- 5 Linking the Syntactic and Semantic Ojunct-Algebras
  - Semantic Lattices
  - Syntactic Lattice
- 6 Conclusion & Outlook





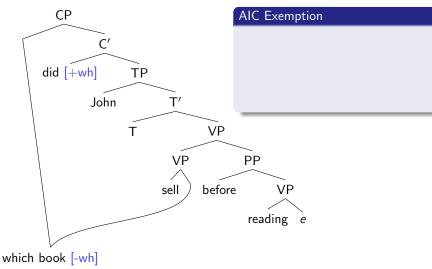




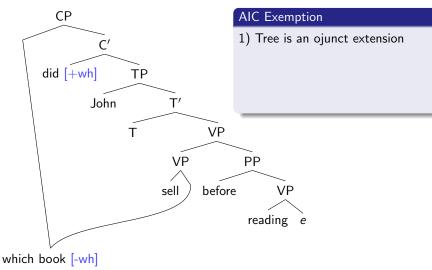

## Deriving the Adjunct Island Constraint





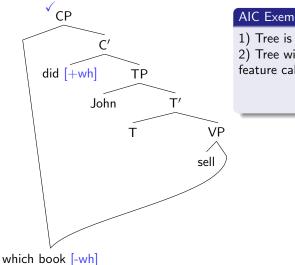

# Deriving the Adjunct Island Constraint






## PGs piggyback on a mandatory feature checker.



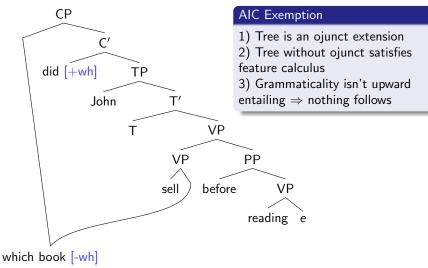



## PGs piggyback on a mandatory feature checker.

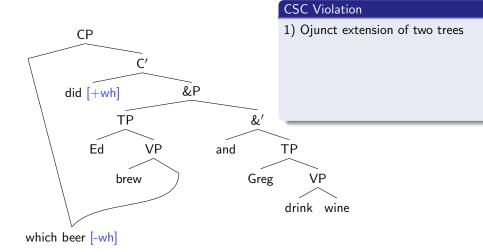




PGs piggyback on a mandatory feature checker.

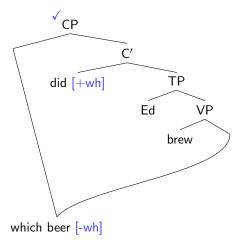



#### AIC Exemption


1) Tree is an ojunct extension 2) Tree without ojunct satisfies feature calculus



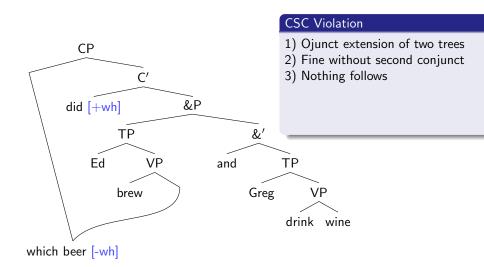
PGs piggyback on a mandatory feature checker.





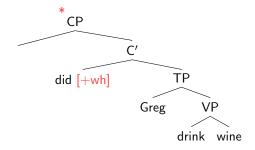






# Deriving the Coordinate Structure Constraint



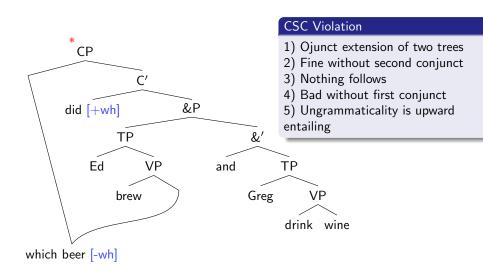
### **CSC** Violation

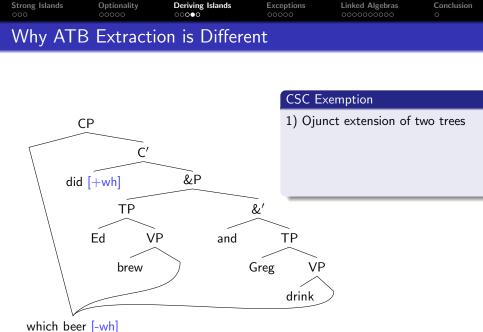

- 1) Ojunct extension of two trees
- 2) Fine without second conjunct





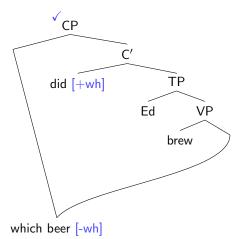





### **CSC** Violation

- 1) Ojunct extension of two trees
- 2) Fine without second conjunct
- 3) Nothing follows
- 4) Bad without first conjunct

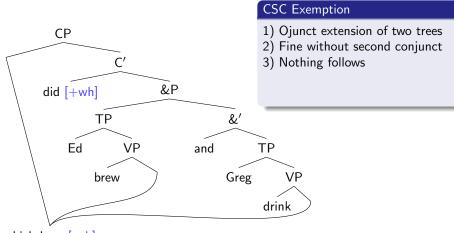








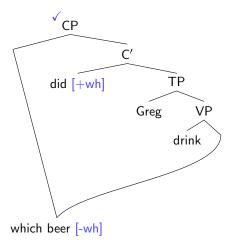

# Why ATB Extraction is Different




### **CSC** Exemption

- 1) Ojunct extension of two trees
- 2) Fine without second conjunct

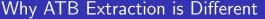


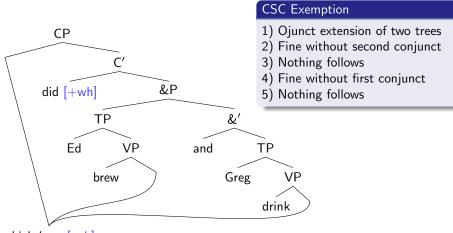





which beer [-wh]




# Why ATB Extraction is Different




### CSC Exemption

- 1) Ojunct extension of two trees
- 2) Fine without second conjunct
- 3) Nothing follows
- 4) Fine without first conjunct







which beer [-wh]

| Strong Islands | Optionality | Deriving Islands<br>○○○○● | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|-------------|---------------------------|------------|-----------------|-----------------|
| Interim S      | ummary      |                           |            |                 |                 |

- Ojuncts are incompatible with instances of extraction that depend on the presence of the ojunct.
  - AIC violations
  - CSC violations
- All other kinds of extraction should be subject to cross-linguistic variation.
  - ATB (mover originates outside ojunct)
  - parasitic gaps (ojunct imposes constraints on tree, but not the other way round)

| Strong Islands | Optionality | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|-------------|-------------------------|------------|-----------------|-----------------|
| Outline        |             |                         |            |                 |                 |

- 1 Two Strong Islands
  - Adjuncts
  - Coordination
- 2 The Math: Optionality and Grammaticality Inferences
  - Ojuncts: Formalizing Optionality
  - Optionality Closure
- 3 Deriving Island Effects
- 4 How to Deal With Optional Non-Islands
- 5 Linking the Syntactic and Semantic Ojunct-Algebras
  - Semantic Lattices
  - Syntactic Lattice
- 6 Conclusion & Outlook

| Strong Islands | Optionality<br>00000 | <b>Deriving Islands</b> | Exceptions<br>•0000 | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|---------------------|-----------------|-----------------|
| The Acco       | unt So F             | ar                      |                     |                 |                 |

# Mathematical Fact

With dependencies at target site, all ojuncts are islands while still allowing for parasitic gaps and ATB extraction.

# • Empirical Assumptions

- Displacement always involves such target site requirements.
- Adjuncts and coordinations are ojuncts.

Is this true?

### The Issue

- Some phrases look like ojuncts yet are not islands.
- Two possible solutions
  - no movement/mandatory feature checking (stipulative)
  - optionality does not hold

| Strong Islands | Optionality<br>00000 | <b>Deriving Islands</b> | Exceptions<br>•0000 | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|---------------------|-----------------|-----------------|
| The Acco       | unt So F             | ar                      |                     |                 |                 |

# Mathematical Fact

With dependencies at target site, all ojuncts are islands while still allowing for parasitic gaps and ATB extraction.

# • Empirical Assumptions

- Displacement always involves such target site requirements.
- Adjuncts and coordinations are ojuncts.

Is this true?

### The Issue

- Some phrases look like ojuncts yet are not islands.
- Two possible solutions
  - no movement/mandatory feature checking (stipulative)
  - optionality does not hold

| Strong Islands | Optionality<br>00000 | <b>Deriving Islands</b> | Exceptions<br>0000 | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|--------------------|-----------------|-----------------|
| Subject /      | hv-Phrase            | s and Instru            | mentals            |                 |                 |

In passives, *by*-phrases are optional but do not block extraction. The same holds for instrumentals.

- (11) a. Mary was assaulted (by John) (with a hammer).
  - b. Which man was Mary assaulted by t?
  - c. What kind of weapon was Mary assaulted with t?

However, these phrases are semantic arguments of the verb.

| Strong Islands | Optionality<br>00000 | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
| Truswell S     | entences             |                         |            |                 |                 |

Truswell adjuncts also allow for extraction. (Truswell 2007)

(12) Which car did John drive Mary crazy trying to fix t?

### Truswell's Generalization

Adjunct denotes an event e' that is related via R to the event e of the matrix clause

- $\Rightarrow$  does not have standard (Neo-Davidsonian) denotation
- $\Rightarrow$  adjunct behaves more like a **semantic argument**



Extraction from a conjunct is fine if the coordination has serial or subordinate semantics.

(Culicover and Jackendoff 1997; Kehler 2002)

- (13) a. How many beers can you drink t and still stay sober?
  - b. This is the guy **that you sleep with** *t* and end up with an STD.

Once again one cannot use the standard semantics for adjuncts/conjuncts.

| Strong Islands | Optionality<br>00000 | <b>Deriving Islands</b> | Exceptions<br>0000● | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|---------------------|-----------------|-----------------|
| The Big F      | Picture              |                         |                     |                 |                 |

# more fine-grained classification than just argument vs adjunct (cf. Dowty 2003; Needham and Toivonen 2011)

|              | sem-argument      | sem-adjunct              |
|--------------|-------------------|--------------------------|
| syn-adjunct  | Truswell adjuncts | ojuncts                  |
| syn-argument | arguments         | case-marked adjuncts (?) |

- whatever mechanism gives rise to the optionality of ojuncts also limits their semantic denotation
- non-adjunct semantics implies usage of a different mechanism that does not give rise to optionality

| Strong Islands | Optionality<br>00000 | <b>Deriving Islands</b> | Exceptions<br>0000● | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|---------------------|-----------------|-----------------|
| The Big I      | Picture              |                         |                     |                 |                 |

 more fine-grained classification than just argument vs adjunct (cf. Dowty 2003; Needham and Toivonen 2011)

|              | sem-argument      | sem-adjunct              |
|--------------|-------------------|--------------------------|
| syn-adjunct  | Truswell adjuncts | ojuncts                  |
| syn-argument | arguments         | case-marked adjuncts (?) |

- whatever mechanism gives rise to the optionality of ojuncts also limits their semantic denotation
- non-adjunct semantics implies usage of a different mechanism that does not give rise to optionality



In **Neo-Davidsonian semantics**, adjunction to XP yields the conjunction of [XP] with a monadic predicate over an event.

- (14) a. John runs.  $AG(John, e) \wedge run(e)$ 
  - b. John runs quickly. AG(John, e)  $\land$  run(e) $\land$ quickly(e)

### Algebraic Observation

- If phrases denote sets of events, adjuncts are intersective: [run quickly]] = [[run]] ∩ [[quickly]]
- Arguments are not: [John runs] = [AG(John)] ∩ [runs] ≠ [John] ∩ [runs]



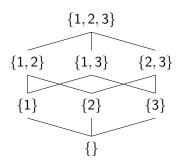
In **Neo-Davidsonian semantics**, adjunction to XP yields the conjunction of [XP] with a monadic predicate over an event.

(14) a. John runs.  $AG(John, e) \wedge run(e)$ 

> b. John runs quickly. AG(John, e)  $\land$  run(e) $\land$ quickly(e)

### Algebraic Observation

- If phrases denote sets of events, adjuncts are intersective: [run quickly]] = [[run]] ∩ [[quickly]]
- Arguments are not:
   [John runs] = [AG(John)] ∩ [runs] ≠ [John] ∩ [runs]


#### Linked Algebras Strong Islands Optionality Deriving Islands Exceptions Conclusion 0000000000

The Semantic Adjunct Algebra

- Let  $\mathbb{E}$  be the set of all events, and  $2^{\mathbb{E}}$  its powerset.
- We can order the elements of  $2^{\mathbb{E}}$  by the subset relation  $\subseteq$ .
- This yields a Boolean lattice  $\mathcal{E} := \langle 2^{\mathbb{E}}, \subseteq \rangle$ , where
  - the meet operation  $\wedge$  is intersection, and
  - the join operation  $\vee$  is union.
- Let f be a semantic interpretation function that maps every phrase/word to an element of  $\mathcal{E}$ .
- Semantically, adjunction of A to XP amounts to taking the meet  $f(A) \wedge f(XP)$ .



# Example Lattice for Adjunct Semantics



### Example

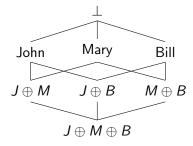
### Suppose:

- $f(run) = \{1, 2, 3\}$
- *f*(quickly) = {2,3}
- $f(John) = \{1, 2\}$
- $f(AG(John)) = \{1\}$

### Then:

- $f(\operatorname{run} \operatorname{quickly}) =$  $f(\operatorname{run}) \land f(\operatorname{quickly}) =$  $\{1, 2, 3\} \land \{2, 3\} =$  $\{2, 3\} = \llbracket \operatorname{run} \operatorname{quickly} \rrbracket$
- f(John runs) = $f(\text{John}) \land f(\text{runs}) =$  $\{1,2\} \neq \{1\} = \llbracket \text{John runs} \rrbracket$

| Strong Islands | Optionality<br>00000 | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
| Extension      | n to Coord           | dination                |            |                 |                 |


• Coordination is analyzed via mereological sums:

 $[\![\mathsf{John} \text{ and } \mathsf{Mary}]\!] = [\![\mathsf{John}]\!] \oplus [\![\mathsf{Mary}]\!] = \mathsf{John} \oplus \mathsf{Mary}$ 

- If we take the set of individuals and all possible mereological sums thereof, we once again get a Boolean lattice.
- Semantically, coordination corresponds to meet in this lattice.



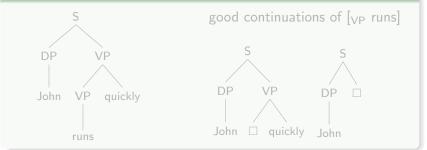
# Example Lattice for Coordination Semantics



### Example

f(John and Mary) = $f(John) \wedge f(Mary) =$  $J \oplus M =$ [John and Mary]



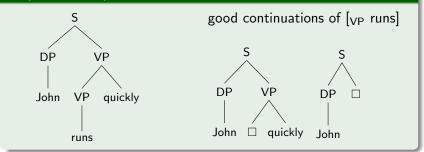

- Adjunction and coordination have similar semantics: meet over a specific lattice.
- Key idea for syntax
  - Merger of an adjunct equals meet over a syntactic lattice.
  - Merger of an argument does not.
- Ojuncts are introduced by an operation that corresponds to meet in the syntactic and semantic lattices.
- If the syntax or semantics is more complicated than meet, then we are not dealing with an ojunct.

| Strong Islands | Optionality<br>00000 | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|----------------------|-------------------------|------------|-----------------|-----------------|
| Good Co        | ntinuatior           | າຣ                      |            |                 |                 |

### Definition (Good Continuation)

Tree **s** is a good continuation of tree **t** iff adding **s** above **t** yields a well-formed tree.

#### Simplified Example




| Strong Islands | Optionality | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|-------------|-------------------------|------------|-----------------|-----------------|
| Good Co        | ntinuatior  | າຣ                      |            |                 |                 |

### Definition (Good Continuation)

Tree **s** is a good continuation of tree **t** iff adding **s** above **t** yields a well-formed tree.

### Simplified Example





Arguments, Adjuncts, and Continuations

- **Observation 1: Identifying trees with their continuations** Every tree can be associated with its set of good continuations. We also call this its **continuation set**.
- Observation 2: Argument Merge is non-intersective If tree t is merged with argument r, the two have disjoint continuation sets.
  - The good continuations of t must include an argument like r.
  - The good continuations of  ${\bf r}$  cannot include an argument like  ${\bf r}.$



# • Observation 3: Adjunction is intersective If tree t can have an adjunct a, they have overlapping continuation sets.

- The set of good continuations for a includes trees without a.
- By optionality, the set of good continuations for **t** does, too.

In fact, the continuation set of the tree t' that results from adjunction of **a** to **t** is exactly the intersection of their continuation sets.

| Strong Islands | <b>Optionality</b><br>00000 | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>O |
|----------------|-----------------------------|-------------------------|------------|-----------------|-----------------|
| Continua       | tion Latti                  | ce                      |            |                 |                 |

- $\bullet$  Let  $\mathbb C$  be the set of all continuations, and  $2^{\mathbb E}$  its powerset.
- We can order the elements of  $2^{\mathbb{E}}$  by the subset relation  $\subseteq$ .
- This yields the Boolean lattice C := (2<sup>E</sup>, ⊆), which has exactly the same properties as the event lattice and the mereology lattice.
- Let f be a function that maps every phrase/word to an element of C.
- Adjunction of A to XP, yielding t, must obey the property that  $f(t) = f(A) \wedge f(XP)$ .

| Strong Islands | <b>Optionality</b><br>00000 | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>● |
|----------------|-----------------------------|-------------------------|------------|-----------------|-----------------|
| Conclusion     | n                           |                         |            |                 |                 |

• Why do we see (strong) island effects? Because islandhood is a necessary consequence of optionality and requirements at target site.

### • Why are there exceptions?

Because some adjuncts/conjuncts have complex semantics that requires a more powerful operation

 $\Rightarrow$  does not capture optimality

### **Remaining Problems**

- adjunct/conjunct semantics can be more complicated (causation, tense, distributivity)
- cross-linguistic variation (e.g. extraction from relative clauses in Scandinavian)
- Why do resumptive pronouns repair island violations?

| Strong Islands | <b>Optionality</b><br>00000 | <b>Deriving Islands</b> | Exceptions | Linked Algebras | Conclusion<br>● |
|----------------|-----------------------------|-------------------------|------------|-----------------|-----------------|
| Conclusion     | n                           |                         |            |                 |                 |

• Why do we see (strong) island effects? Because islandhood is a necessary consequence of optionality and requirements at target site.

### • Why are there exceptions?

Because some adjuncts/conjuncts have complex semantics that requires a more powerful operation

 $\Rightarrow$  does not capture optimality

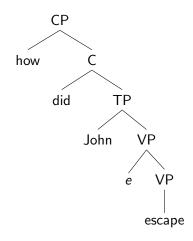
### **Remaining Problems**

- adjunct/conjunct semantics can be more complicated (causation, tense, distributivity)
- cross-linguistic variation (e.g. extraction from relative clauses in Scandinavian)
- Why do resumptive pronouns repair island violations?

| References   | <b>Movement of Islands</b> | More on Exceptions | Problems |
|--------------|----------------------------|--------------------|----------|
| References I |                            |                    |          |

- Aoun, Joseph, Lina Choueiri, and Norbert Hornstein. 2001. Resumption, movement and derivational economy. *Linguistic Inquiry* 32:371–403.
- Chomsky, Noam. 1995. The minimalist program. Cambridge, Mass.: MIT Press.

Cinque, Guglielmo. 1999. Adverbs and functional heads: A cross-linguistic perspective. Oxford: Oxford University Press.

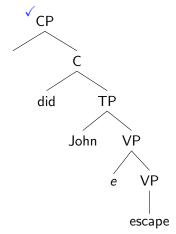

- Culicover, Peter W., and Ray Jackendoff. 1997. Semantic subordination despite syntactic coordination. *Linguistic Inquiry* 28:195–217.
- Dowty, David. 2003. The dual analysis of adjuncts/complements in categorial grammar. Berlin: Mouton de Gruyter.
- Erteschik-Shir, Nomi. 1973. On the nature of island constraints. Doctoral Dissertation, MIT.
- Frey, Werner, and Hans-Martin G\u00e4rtner. 2002. On the treatment of scrambling and adjunction in minimalist grammars. In Proceedings of the Conference on Formal Grammar (FGTrento), 41–52. Trento.
- Hunter, Tim. 2012. Deconstructing merge and move to make room for adjunction. To appear in *Syntax*.
- Kehler, Andrew. 2002. *Coherence, reference, and the theory of grammar*. Stanford: CSLI.

| References    | <b>Movement of Islands</b> | More on Exceptions | Problems |
|---------------|----------------------------|--------------------|----------|
| References II |                            |                    |          |

- Needham, Stephanie, and Ida Toivonen. 2011. Derived arguments. In *Proceedings of the LFG11 Conference*, ed. Miriam Butt and Tracy Holloway King, 401–421.
- Stepanov, Arthur. 2001. Late adjunction and minimalist phrase structure. *Syntax* 4:94–125.
- Truswell, Robert. 2007. Tense, events, and extraction from adjuncts. In *Proceedings* of the 43rd Annual Meeting of the Chicago Linguistic Society.

| References | Movement of Islands<br>●○ | More on Exceptions | Problems |
|------------|---------------------------|--------------------|----------|
| Why Islan  | ds May Move               |                    |          |

Displacement of an ojunct possible via base merger

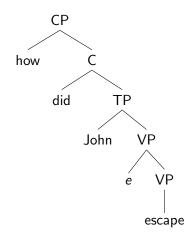



Base Merge Exemption

1) Tree is an ojunct extension

| References | Movement of Islands<br>●○ | More on Exceptions | Problems |
|------------|---------------------------|--------------------|----------|
| Why Island | ds May Move               |                    |          |

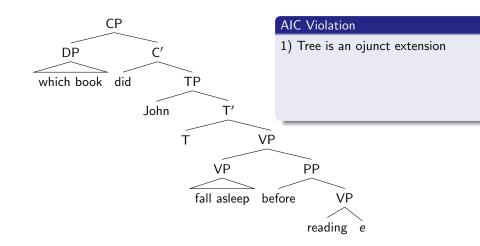
Displacement of an ojunct possible via base merger



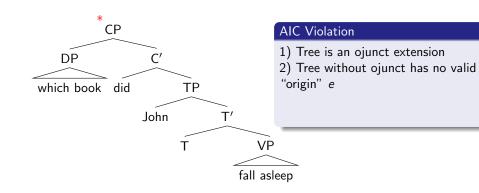

#### Base Merge Exemption

 Tree is an ojunct extension
 Tree without ojunct satisfies feature calculus

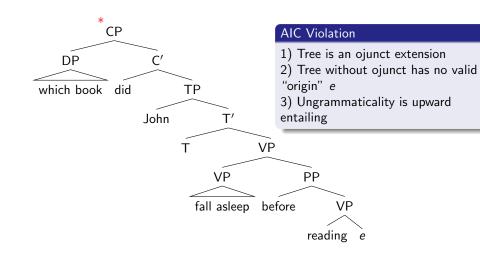
| References | Movement of Islands<br>●○ | More on Exceptions | Problems |
|------------|---------------------------|--------------------|----------|
| Why Island | s May Move                |                    |          |


Displacement of an ojunct possible via base merger




#### Base Merge Exemption

 Tree is an ojunct extension
 Tree without ojunct satisfies feature calculus
 Grammaticality isn't upward entailing ⇒ nothing follows














| References    | <b>Movement of Islands</b> | More on Exceptions<br>●○○ | Problems |
|---------------|----------------------------|---------------------------|----------|
| Conjuncts and | Agreement                  |                           |          |

At a surface-level, conjuncts matter for  $\phi$ -agreement and semantic number requirements.

- (15) Ed \*(and Greg) are brewing beer.
- (16) Ed \*(and Greg) met.

### Possible Answer

- Optionality must hold with respect to morphological dependencies, not specific feature values.
- Semantic requirements are ignored.

| References    | OO                   | OeO More on Exceptions | 00 |
|---------------|----------------------|------------------------|----|
| Binding and N | Pls in Coordinations |                        |    |
|               |                      |                        |    |

- (17) a. ? Every woman and no man has ever had a period.
  - b. \* Every woman has ever had a period.
- (18) \* (Jón og) afar sínir voru Jón and grandpas POSS-REFL.NOM.PL were glaðir. happy.NOM.PL '(Jón and) his grandpas were happy.'

Worrying, but all cases of extraction are deviant for independent reasons. Optionality is not the issue:

- (19) a. \* Which actress has (every TMZ reporter and) no fanboy of *t* ever talked to?
  - b. \* Which field did the dean introduce every professor (of *t*) and no student of *t* to any senators?

| References   | <b>Movement of Islands</b> | More on Exceptions<br>○○● | Problems |
|--------------|----------------------------|---------------------------|----------|
| Consequences |                            |                           |          |

Optionality must be computed over **abstract structures** that allow us to ignore

- concrete  $\phi$ -feature instantiations,
- some semantic requirements
  - size of set denoted by DP,
  - NPI-licensing,
  - binding requirements.

If one relegates these conditions to PF and LF, then optionality — over syntactic trees with Agree dependencies — should apply to these cases.

# Remaining Challenge 1: Cross-linguistic variation

- The class of ojuncts should be relatively stable across languages.
- But there is cross-linguistic variation, e.g. extractability from relative clauses in Scandinavian (Erteschik-Shir 1973).

### A (Stipulative) Solution

Extraction from ojuncts is possible if the feature at the target site need not be checked. Languages could differ as to which features must always be checked.

# Remaining Challenge 1: Cross-linguistic variation

- The class of ojuncts should be relatively stable across languages.
- But there is cross-linguistic variation, e.g. extractability from relative clauses in Scandinavian (Erteschik-Shir 1973).

## A (Stipulative) Solution

Extraction from ojuncts is possible if the feature at the target site need not be checked. Languages could differ as to which features must always be checked.

| R |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |

# Remaining Challenge 2: Resumptive Pronouns

No island violations with resumptive pronoun instead of trace (e.g. Lebanese Arabic)

(20) ha-l-muttahame tfeeʒa?to lamma/la?anno this-the-suspect.SGFEM surprised.2 when/because Srəfto ?ənno hiyye nhabasit.
know.2 that she imprisoned.3SGFEM
'This suspect, you were surprised when/because you knew that she was imprisoned.' Aoun et al. (2001:575)

### follows if binding rather than movement is involved

### Problems

- Antecedent and adjunct must both be dropped ⇒ discontinuous ojuncts?
- Why only licit with overt pronouns?

| R |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |

Pr

# Remaining Challenge 2: Resumptive Pronouns

No island violations with resumptive pronoun instead of trace (e.g. Lebanese Arabic)

(20) ha-l-muttahame tfeeʒa?to lamma/la?anno this-the-suspect.SGFEM surprised.2 when/because Srəfto ?ənno hiyye nhabasit.
know.2 that she imprisoned.3SGFEM
'This suspect, you were surprised when/because you knew that she was imprisoned.' Aoun et al. (2001:575)

follows if binding rather than movement is involved

| oł | plems                                       |
|----|---------------------------------------------|
| •  | Antecedent and adjunct must both be dropped |
|    | $\Rightarrow$ discontinuous ojuncts?        |
| •  | Why only licit with overt pronouns?         |