Co	gnition
oc	00

Results

Open Issues

Computational Lessons from and for Language

Thomas Graf

Department of Linguistics mail@thomasgraf.net http://thomasgraf.net

> IACS Seminar Apr 28 2016

Cognition

Results

Open Issues

Conclusion $_{\odot}$

The Gretchenfrage

Cognition	Results	Open Issues	Conclusion
The Gretchenfra	age		

What role can linguistics play in the computational sciences?

Cognition	Results	Open Issues	Conclusion

Three Take Home Messages

- Language is a fundamentally computational problem. cognitive turn, mental grammars, structure inference
- Linguistics is a creator of computational results. subregular maps, finite-state decompositions
- Linguistics is a consumer of computational results. tensor spaces, game theory, ...

Cognition 0000	Results 0000000000000	Open Issues	Conclusion o
o			

1 Language as a Computational Problem

- 2 Results from Computational Linguistics
 - Some problems aren't as complex as you might think
 - And complex problems are simple problems in disguise

3 Computational Problems in Linguistics

- MSO-FSA conversion
- Parallel parsing

Jutline

- Tensor space semantics
- Game-Theoretic Pragmatics

Cognition ●○○○	000	ults 000000000000		Open Issues	Conclusion ○
	D	C 1 1	~		

Language as Part of Human Cognition

There's many views on language:

- cultural artifact
- a fixed system of preordained rules ("proper grammar")
- communication system
- system of signs

Cognitive Turn (Chomsky 1957, 1965)

Language is an aspect of human cognition.

Cognition ⊙●○○	Results	Open Issues	Conclusion O
Computational	Questions		

- What kind of representations are involved? strings, trees, graphs, hypergraphs, ...
- How can they be manipulated? subtree substitution, graph transductions, ...
- How can this domain knowledge be acquired from input data? Gold learning, PAC learning, MAT learning, ...
- How do speakers use their knowledge about a language in real-time listening and comprehension?
 recursive descent parsing, CKY, Earley, ...

Cognition ○○●○ Results

Open Issues

Conclusion

If You Want to Know More...

Robert C. Berwick - Noam Chomsky

Historical Role of Linguistics in Computational Sciences

- Foundations of formal language theory Chomsky (1956, 1959); Chomsky and Schützenberger (1963)
- Equivalence of CSGs and linear bounded automata Kuroda (1964)
- Initial motivation for tree transducers Rounds (1970)
- First parsing algorithms Yngve (1955)
- First string processing language (COMIT) Yngve (1958)

Cognition	Results	Open Issues	Conclusion
0000	•••••••		○
But What Have	You Recently Done	for Me?	

Lesson 1 Some problems are hard because the model is wrong.Lesson 2 And some complex problems are just simple problems in disguise.

Cognition	Results ○●○○○○○○○○○○	Open Issues	Conclusion O
Phonological Pa	atterns		

Phonology system regulating the distribution of sounds in words

Example			
word-final devoicing	rat	*rad	German
intervocalic voicing	nevið	*nefið	Icelandic
vowel harmony	kauralla	*kaurella	Finnish
sibilant harmony	tsaanééz	*t∫aanééz	Navajo
umlaut	mömmu	*mammu	Icelandic
dissimilation	lunaris	*lunalis	Latin

Computational Status Quo

Every known phonological system defines a regular string language.

Cognition	Results 000000000000	Open Issues	Conclusion ○
Finite-State Au	tomata		

A **finite-state automaton** (FSA) assigns every node in a string one of finitely many *states*, depending on

- the label of the node, and
- the state of the preceding node (if it exists).

The FSA accepts the string if the last state is a *final state*.

Cognitive Intuition

- States are a metaphor for memory configurations.
- Every symbol in the input induces a change from one memory configuration into another.
- Only finitely many memory configurations are needed. Thus the amount of working memory used by the automaton is finitely bounded.

Cognition	Results 000●0000000000	Open Issues	Conclusion O
Example: Sibila	ant Harmony		

ge∫osa

Cognition	Results ०००●००००००००	Open Issues	Conclusion O
Example: S	ibilant Harmony		

Cognition	Results ०००●००००००००	Open Issues	Conclusion O
Example: S	ibilant Harmony		

Cognition	Results ०००●००००००००	Open Issues	Conclusion O
Example: S	ibilant Harmony		

Cognition	Results ०००●००००००००	Open Issues	Conclusion O
Example: S	ibilant Harmony		

Cognition	Results	Open Issues	Conclusion O
Example: Sib	ilant Harmony		

Cognition	Results	Open Issues	Conclusion O
Example: Sib	ilant Harmony		

Cognition	Results	Open Issues	Conclusion O
Example: Sib	ilant Harmony		

Cognition	Results	Open Issues	Conclusion O
Example: Sib	ilant Harmony		

Cognition	Results	Open Issues	Conclusion O
Example: Sib	ilant Harmony		

Cognition	Results	Open Issues	Conclusion O
Example: Sib	ilant Harmony		

Cognition	Results	Open Issues	Conclusion O
Example: Sib	ilant Harmony		

Cognition	Results	Open Issues	Conclusion O
Example: Sib	ilant Harmony		

Cognition	Results ○○○○●○○○○○○○○	Open Issues	Conclusion O
Subregular Pho	nology		

Regular languages are computationally appealing, but

- closure properties do not reflect typology union of two phonological systems is not a phonological system
- there is no known learning algorithm for the full class of regular languages

Subregular Hypothesis (Heinz 2010)

Phonological systems define **subregular** string languages.

Cognition	Results	Open Issues	Conclusion
	0000000000000		
Subregula	Hierarchy		

- Many subregular classes were established a long time, even though they have largely been ignored. (McNaughton and Pappert 1971)
- Most of them aren't suitable for phonology. so linguists had to find new subregular classes:
 - strictly piecewise interval-based strictly piecewise (Graf under review) tier-based strictly local (Heinz et al. 2011)

(Rogers et al. 2010)

- $\bullet\,$ For every string, induce a substructure containing only s and $\int\,$
- \bullet Induced substructure may not contain the bigram ${\sf Js}$

Cognition	Results	Open Issues	Conclusion
Advantages of	the Subregular (0

In contrast to regular languages, these new subregular classes

- have more suitable closure properties,
- are efficiently learnable in the limit from positive text, (Heinz et al. 2012)
- share a lattice-structured grammar space.

They also have applications outside of language, e.g. robotics. (Chandlee et al. 2012)

First Take-Home Message

If you're currently working with regular languages, one of the weaker classes we have identified may suffice.

Cognition	Results	Open Issues	Conclusion
Advantages of	the Subregular (0

In contrast to regular languages, these new subregular classes

- have more suitable closure properties,
- are efficiently learnable in the limit from positive text, (Heinz et al. 2012)
- share a lattice-structured grammar space.

They also have applications outside of language, e.g. robotics. (Chandlee et al. 2012)

First Take-Home Message

If you're currently working with regular languages, one of the weaker classes we have identified may suffice.

Cognition	Results	Open Issues	Conclusion O
Factorizing Syn	tax		

syntax system regulating the distribution of words in sentences

- (1) Who did you say John likes?
- (2) Who did you say that John likes?
- (3) Who did you say likes John?
- (4) * Who did you say that likes John?

Syntax is Very, Very Complex

When viewed as string languages, natural languages are parallel multiple context-free languages (PMCFL; Kobele 2006).

 $\mathsf{REG} \subset \mathsf{DCFL} \subset \mathsf{CFL} \subset \mathsf{TAL} \subset \mathsf{MCFL} \subset \mathsf{PMCFL} \subset \mathsf{CSL}$

Results

Open Issues

Conclusion ○

Factorizing Syntax

syntax system regulating the distribution of words in sentences

- (1) Who did you say John likes?
- (2) Who did you say that John likes?
- (3) Who did you say likes John?
- (4) * Who did you say that likes John?

Syntax is Very, Very Complex

When viewed as string languages, natural languages are parallel multiple context-free languages (PMCFL; Kobele 2006).

 $\mathsf{REG} \subset \mathsf{DCFL} \subset \mathsf{CFL} \subset \mathsf{TAL} \subset \mathsf{MCFL} \subset \mathsf{PMCFL} \subset \mathsf{CSL}$

Cognition	Results	Open Issues	Conclusion
	000000000000000		
The Trout	he with PMCELs		

PMCFLs have many downsides:

- complex formalism, hard to reason about
- hard recognition problem (although PTIME)
- no useful learnability results

The Cognitive Conundrum

If PMCFLs are an accurate model of natural language syntax, then how come humans

- learn syntax easily from little data, and
- can produce and understand sentences in real-time?

Cognition	Results	Open Issues	Conclusion O
A Modular Solu	ution		

- Syntax is actually much simpler than it seems.
- The complexity arises from the interaction of **two finite-state components**:

Derivations a set of abstract structures generated by a regular tree grammar (\approx CFG) Interpretation a macro tree transducer that constructs the pronounced strings from the derivations

• Since the interpretation is fixed across languages, syntax can be reduced to regular tree grammars/CFGs.

Cognition	Results	Open Issues	Conclusion
	000000000000000000000000000000000000000		

Example: Output Tree

Cognition Results **Open Issues** Conclusion Example: Much Simpler Derivation Move Merge Move а Merge Move b Merge с Move Merge Move а Merge Move b Merge c Merge Merge

a Merg

- Transderivational constraints are optimization constraints: structure X is well-formed only if there is no better choice Y.
- These were believed to be intractable for syntax.
- But: actually linear tree transductions on derivations
 ⇒ computable in linear time! (Graf 2013)

Second Take-Home Message

- Decomposition/Modularization simplifies complex systems.
- Simpler representations allow for efficient implementations.

- Transderivational constraints are optimization constraints: structure X is well-formed only if there is no better choice Y.
- These were believed to be intractable for syntax.
- But: actually linear tree transductions on derivations
 ⇒ computable in linear time! (Graf 2013)

Second Take-Home Message

- Decomposition/Modularization simplifies complex systems.
- Simpler representations allow for efficient implementations.

Dealing With Syntactic Constraints

Theorem (Graf 2011)

Every syntactic constraint can be precompiled into the grammar.

- Every syntactic constraint can be expressed as a formula of monadic second-order logic (MSO).
- Every MSO formula can be converted into an equivalent bottom-up tree automaton.
- Every bottom-up tree automaton can be precompiled into the grammar.

Question

Is there a significant blow-up in the size of the grammar?

Dealing With Syntactic Constraints

Theorem (Graf 2011)

Every syntactic constraint can be precompiled into the grammar.

- Every syntactic constraint can be expressed as a formula of monadic second-order logic (MSO).
- Every MSO formula can be converted into an equivalent bottom-up tree automaton.
- Every bottom-up tree automaton can be precompiled into the grammar.

Question

Is there a significant blow-up in the size of the grammar?

Cognition	Results	Open Issues ○●○○○○	Conclusion ○
What we Alread	dy Know		

- The size of the new grammar is **linearly** bounded by the size of the original grammar.
- But the factor grows **polynomially** in the size of the automaton.
- Each quantifier alternation in the MSO formula may induce an **exponential blow-up** in the size of the automaton.
- **But:** syntactic constraints do not need full MSO, first-order logic suffices.

- What is the conversion complexity for (fragments of) first-order logic?
- What is the bound on the size of the automata?

Cognition	Results	Open Issues	Conclusion O
Parallel Parsing			

- Humans parse sentences in real-time (= faster than linear).
- Yet our current grammar formalisms display horrible serial parsing performance:

CFG	$O(n^3)$
TAG	$O(n^6)$
<i>k</i> -MCFG	$O(n^{3k})$

• But **parallel parsing algorithms improve speed** significantly for CFGs:

Algorithm	Time	Processors
OCKY	O(n)	$O(n^4)$
Rytter	$O(\log n)$	$O(n^{6})$

- Can we reduce the number of processors and stay linear?
- Can we generalize these algorithms from CFGs?

Cognition 0000	Results	Open Issues	Conclusion ○
Parallel Parsing			

- Humans parse sentences in real-time (= faster than linear).
- Yet our current grammar formalisms display horrible serial parsing performance:

CFG	$O(n^3)$
TAG	$O(n^6)$
<i>k</i> -MCFG	$O(n^{3k})$

• But **parallel parsing algorithms improve speed** significantly for CFGs:

Algorithm	Time	Processors
OCKY	O(n)	$O(n^4)$
Rytter	$O(\log n)$	$O(n^{6})$

- Can we reduce the number of processors and stay linear?
- Can we generalize these algorithms from CFGs?

Cognition	Results	Open Issues	Conclusion O
More Parsing			

- CFG parsing can be treated as Boolean matrix multiplication.
- In theory this improves efficiency only marginally to $O(n^{2.7...})$.
- But there's a practical advantage: you can **reuse very efficient code** for matrix multiplication!

- Are Boolean tensor spaces the analog for MCFG?
- Can we reuse tensor space algorithms?

Cognition	Results	Open Issues	Conclusion O
More Parsing			

- CFG parsing can be treated as Boolean matrix multiplication.
- In theory this improves efficiency only marginally to $O(n^{2.7...})$.
- But there's a practical advantage: you can **reuse very efficient code** for matrix multiplication!

- Are Boolean tensor spaces the analog for MCFG?
- Can we reuse tensor space algorithms?

Cognition	Results	Open Issues	Conclusion
Tensor space	semantics		

- New idea: word meanings as vectors in tensor spaces
- But linguists care about how sentence meaning arises from combining word meanings.
- Greg Kobele: meaning composition in PTIME

Example	e
every	$\lambda f_{\langle e,t \rangle} \lambda g_{\langle e,t \rangle} . orall x [f(x) o g(x)]$
boy	λx_e .boy(x)
slept	$\lambda x_e.slept(x)$
every	boy slept = $\forall x [boy(x) \rightarrow slept(x)]$

- What are the tensor space analogs of our logical combinators?
- Do they preserve PTIME complexity?

Cognition	Results	Open Issues ○○○○●○	Conclusion O
Tensor space	e semantics		

- New idea: word meanings as vectors in tensor spaces
- But linguists care about how sentence meaning arises from combining word meanings.
- Greg Kobele: meaning composition in PTIME

Example	e
every	$\lambda f_{\langle e,t \rangle} \lambda g_{\langle e,t \rangle} . \forall x [f(x) \rightarrow g(x)]$
boy	λx_e .boy(x)
slept	$\lambda x_e.slept(x)$
every	boy $slept = \forall x [boy(x) \to slept(x)]$

- What are the tensor space analogs of our logical combinators?
- Do they preserve PTIME complexity?

Cognition	Results	Open Issues ○○○○○●	Conclusion ○
Game-Theoretic	c Pragmatics		

Pragmatics study of intended (rather than literal) meaning

Example

- $\bullet\,$ Can you pass the salt \neq physical capability to pass the salt
- I could care less = I don't care at all

One successful model of pragmatics is bidirectional OT, which is equivalent to **signaling games**.

- How are signaling games computed?
- How can we integrate them with parsing?

Cognition	Results	Open Issues ○○○○○●	Conclusion ○
Game-Theoretic	c Pragmatics		

Pragmatics study of intended (rather than literal) meaning

Example

- $\bullet\,$ Can you pass the salt \neq physical capability to pass the salt
- I could care less = I don't care at all

One successful model of pragmatics is bidirectional OT, which is equivalent to **signaling games**.

- How are signaling games computed?
- How can we integrate them with parsing?

Cognition	Results	Open Issues	Conclusion
			•
The Bigger Pic	ture: Symbiosis		

- Computational questions in linguistics give rise to general-purpose methods, techniques and results.
- Linguistics also needs to import know-how from other computational fields to solve many challenges.

References I

- Chandlee, Jane, Jie Fu, Konstantinos Karydis, Cesar Koirala, Jeffrey Heinz, and Herbert G. Tanner. 2012. Integrating grammatical inference into robotic planning. In *Proceedings of the Eleventh International Conference on Grammatical Inference* (*ICGI 2012*), ed. Jeffrey Heinz, Colin de la Higuera, and Tim Oates, volume 21, 69–83. JMLR Workshop and Conference Proceedings.
- Chomsky, Noam. 1956. Three models for the description of language. *IRE Transactions on Information Theory* 2:113–124.
- Chomsky, Noam. 1957. Syntactic structures. The Hague: Mouton.
- Chomsky, Noam. 1959. On certain formal properties of grammars. *Information and Control* 2:137–167.
- Chomsky, Noam. 1965. Aspects of the theory of syntax. Cambridge, MA: MIT Press.
- Chomsky, Noam, and M. P. Schützenberger. 1963. The algebraic theory of context-free languages. In *Computer programming and formal systems*, ed.
 P. Braffort and D. Hirschberg, Studies in Logic and the Foundations of Mathematics, 118–161. Amsterdam: North-Holland.
- Graf, Thomas. 2011. Closure properties of minimalist derivation tree languages. In LACL 2011, ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of Lecture Notes in Artificial Intelligence, 96–111. Heidelberg: Springer.

References II

- Graf, Thomas. 2013. Local and transderivational constraints in syntax and semantics. Doctoral Dissertation, UCLA.
- Heinz, Jeffrey. 2010. Learning long-distance phonotactics. *Linguistic Inquiry* 41:623–661.
- Heinz, Jeffrey, Anna Kasprzik, and Timo Kötzing. 2012. Learning with lattice-structure hypothesis spaces. *Theoretical Computer Science* 457:111–127.
- Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local constraints in phonology. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, 58–64.
- Kobele, Gregory M. 2006. *Generating copies: An investigation into structural identity in language and grammar*. Doctoral Dissertation, UCLA.
- Kuroda, Sige-Yuki. 1964. Classes of languages and linear-bounded automata. Information and Control 7:207–223.
- McNaughton, Robert, and Seymour Pappert. 1971. *Counter-free automata*. Cambridge, MA: MIT Press.
- Rogers, James, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Vischer, David Wellcome, and Sean Wibel. 2010. On languages piecewise testable in the strict sense. In *The mathematics of language*, ed. Christan Ebert, Gerhard Jäger, and Jens Michaelis, volume 6149 of *Lecture Notes in Artificial Intelligence*, 255–265. Heidelberg: Springer.

References III

- Rounds, William C. 1970. Mappings on grammars and trees. *Mathematical Systems Theory* 4:257–287.
- Yngve, Victor. 1958. A programming language for mechanical translation. *Mechanical Translation* 5:25–41.
- Yngve, Victor H. 1955. Syntax and the problem of multiple meaning. In *Machine translation of languages*, ed. William N. Locke and A. Donald Booth, 208–226. Cambrdige, MA: MIT Press.