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Three Take Home Messages

1 Language is a fundamentally computational problem.
cognitive turn, mental grammars, structure inference

2 Linguistics is a creator of computational results.
subregular maps, finite-state decompositions

3 Linguistics is a consumer of computational results.
tensor spaces, game theory, . . .
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Outline

1 Language as a Computational Problem

2 Results from Computational Linguistics
Some problems aren’t as complex as you might think
And complex problems are simple problems in disguise

3 Computational Problems in Linguistics
MSO-FSA conversion
Parallel parsing
Tensor space semantics
Game-Theoretic Pragmatics
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Language as Part of Human Cognition

There’s many views on language:

cultural artifact

a fixed system of preordained rules (“proper grammar”)

communication system

system of signs
...

Cognitive Turn (Chomsky 1957, 1965)

Language is an aspect of human cognition.
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Computational Questions

What kind of representations are involved?
strings, trees, graphs, hypergraphs, . . .

How can they be manipulated?
subtree substitution, graph transductions, . . .

How can this domain knowledge be acquired from input data?
Gold learning, PAC learning, MAT learning, . . .

How do speakers use their knowledge about a language in
real-time listening and comprehension?
recursive descent parsing, CKY, Earley, . . .

...
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If You Want to Know More. . .
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Historical Role of Linguistics in Computational Sciences

Foundations of formal language theory
Chomsky (1956, 1959); Chomsky and Schützenberger (1963)

Equivalence of CSGs and linear bounded automata
Kuroda (1964)

Initial motivation for tree transducers
Rounds (1970)

First parsing algorithms
Yngve (1955)

First string processing language (COMIT)
Yngve (1958)
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But What Have You Recently Done for Me?

Lesson 1 Some problems are hard because the model is wrong.

Lesson 2 And some complex problems are just simple problems
in disguise.
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Phonological Patterns

Phonology system regulating the distribution of sounds in words

Example

word-final devoicing rat ∗rad German
intervocalic voicing nevið ∗nefið Icelandic

vowel harmony kauralla ∗kaurella Finnish
sibilant harmony tsaanééz ∗tSaanééz Navajo

umlaut mömmu ∗mammu Icelandic
dissimilation lunaris ∗lunalis Latin

Computational Status Quo

Every known phonological system defines a regular string language.
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Finite-State Automata

A finite-state automaton (FSA) assigns every node in a string
one of finitely many states, depending on

the label of the node, and

the state of the preceding node (if it exists).

The FSA accepts the string if the last state is a final state.

Cognitive Intuition

States are a metaphor for memory configurations.

Every symbol in the input induces a change from one memory
configuration into another.

Only finitely many memory configurations are needed.
Thus the amount of working memory used by the automaton
is finitely bounded.
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Example: Sibilant Harmony

Condition: S cannot be followed by s
Memory: 2 distinct states X and S

Xstart S
S

¬S ¬s

S e g o S a g e S o s a
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Subregular Phonology

Regular languages are computationally appealing, but

closure properties do not reflect typology
union of two phonological systems is not a phonological system

there is no known learning algorithm for the full class of
regular languages

Subregular Hypothesis (Heinz 2010)

Phonological systems define subregular
string languages.
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Subregular Hierarchy

Many subregular classes were established a long time,
even though they have largely been ignored.
(McNaughton and Pappert 1971)

Most of them aren’t suitable for phonology,
so linguists had to find new subregular classes:

strictly piecewise (Rogers et al. 2010)
interval-based strictly piecewise (Graf under review)
tier-based strictly local (Heinz et al. 2011)
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Example: Sibilant Harmony is Tier-Based Strictly Local

For every string, induce a substructure containing only s and S

Induced substructure may not contain the bigram Ss

e S i S i

S S

e S i s i

S s
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Advantages of the Subregular Classes

In contrast to regular languages, these new subregular classes

have more suitable closure properties,

are efficiently learnable in the limit from positive text,
(Heinz et al. 2012)

share a lattice-structured grammar space.

They also have applications outside of language, e.g. robotics.
(Chandlee et al. 2012)

First Take-Home Message

If you’re currently working with regular languages,
one of the weaker classes we have identified may suffice.
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Factorizing Syntax

syntax system regulating the distribution of words in
sentences

(1) Who did you say John likes?

(2) Who did you say that John likes?

(3) Who did you say likes John?

(4) * Who did you say that likes John?

Syntax is Very, Very Complex

When viewed as string languages, natural languages are
parallel multiple context-free languages (PMCFL; Kobele 2006).

REG ⊂ DCFL ⊂ CFL ⊂ TAL ⊂ MCFL ⊂ PMCFL ⊂ CSL
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The Trouble with PMCFLs

PMCFLs have many downsides:

complex formalism, hard to reason about

hard recognition problem (although PTIME)

no useful learnability results

The Cognitive Conundrum

If PMCFLs are an accurate model of natural language syntax,
then how come humans

learn syntax easily from little data, and

can produce and understand sentences in real-time?

14
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A Modular Solution

Syntax is actually much simpler than it seems.

The complexity arises from the interaction of
two finite-state components:

Derivations a set of abstract structures generated by a
regular tree grammar (≈ CFG)

Interpretation a macro tree transducer that constructs
the pronounced strings from the derivations

Since the interpretation is fixed across languages,
syntax can be reduced to regular tree grammars/CFGs.
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Example: Output Tree
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Example: Much Simpler Derivation
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One of Many Application: Transderivational Constraints

Transderivational constraints are optimization constraints:
structure X is well-formed only if there is no better choice Y .

These were believed to be intractable for syntax.

But: actually linear tree transductions on derivations
⇒ computable in linear time! (Graf 2013)

Second Take-Home Message

Decomposition/Modularization simplifies complex systems.

Simpler representations allow for efficient implementations.

18
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Dealing With Syntactic Constraints

Theorem (Graf 2011)

Every syntactic constraint can be precompiled into the grammar.

1 Every syntactic constraint can be expressed as a formula of
monadic second-order logic (MSO).

2 Every MSO formula can be converted into an equivalent
bottom-up tree automaton.

3 Every bottom-up tree automaton can be
precompiled into the grammar.

Question

Is there a significant blow-up in the size of the grammar?

19
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What we Already Know

The size of the new grammar is linearly bounded by
the size of the original grammar.

But the factor grows polynomially in the size of
the automaton.

Each quantifier alternation in the MSO formula may induce
an exponential blow-up in the size of the automaton.

But: syntactic constraints do not need full MSO,
first-order logic suffices.

Research Project

What is the conversion complexity for (fragments of)
first-order logic?

What is the bound on the size of the automata?
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Parallel Parsing

Humans parse sentences in real-time (= faster than linear).

Yet our current grammar formalisms display
horrible serial parsing performance:

CFG O(n3)
TAG O(n6)
k-MCFG O(n3k)

But parallel parsing algorithms improve speed significantly
for CFGs:

Algorithm Time Processors
OCKY O(n) O(n4)
Rytter O(log n) O(n6)

Research Project

Can we reduce the number of processors and stay linear?

Can we generalize these algorithms from CFGs?
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More Parsing

CFG parsing can be treated as Boolean matrix multiplication.

In theory this improves efficiency only marginally to O(n2.7...).

But there’s a practical advantage:
you can reuse very efficient code for matrix multiplication!

Research Project

Are Boolean tensor spaces the analog for MCFG?

Can we reuse tensor space algorithms?
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Tensor space semantics

New idea: word meanings as vectors in tensor spaces

But linguists care about how sentence meaning arises from
combining word meanings.

Greg Kobele: meaning composition in PTIME

Example

every λf〈e,t〉λg〈e,t〉.∀x [f (x)→ g(x)]
boy λxe .boy(x)
slept λxe .slept(x)

every boy slept = ∀x [boy(x)→ slept(x)]

Research Project

What are the tensor space analogs of our logical combinators?

Do they preserve PTIME complexity?
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Game-Theoretic Pragmatics

Pragmatics study of intended (rather than literal) meaning

Example

Can you pass the salt 6= physical capability to pass the salt

I could care less = I don’t care at all

One successful model of pragmatics is bidirectional OT,
which is equivalent to signaling games.

Research Project

How are signaling games computed?

How can we integrate them with parsing?
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The Bigger Picture: Symbiosis

Computational questions in linguistics give rise to
general-purpose methods, techniques and results.

Linguistics also needs to import know-how from other
computational fields to solve many challenges.
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