Graph Transductions and Typological Gaps in Morphological Paradigms

Thomas Graf

Stony Brook University mail@thomasgraf.net http://thomasgraf.net

MOL 2017 July 13–14, 2017

Prelude: So Many Boring Problems

 Theoretical linguists obsess about many problems that are boring to mathematical linguists.

Example: Person Case Constraint (PCC; Bonet 1994)

The well-formedness of clitic combinations is contingent on their person specification.

- (1) Roger le/*me leur a présenté. Roger 3SG.ACC/1SG.ACC 3PL.DAT has shown 'Roger has shown me/him to them.'
- The existence of the **PCC** is unremarkable.
 - captured by bigram model (very simple)
 - ► small problem space ⇒ no learnability issues

Take-Home Message: Boring = Interesting At Close-Up

Boring problems are interesting once we take a closer look.

Why the PCC is Interesting

- Out of 64 conceivable PCC variants, only 4 are attested.
- ► The attested PCCs form a mathematically natural class.
- And the mathematical account extends to seemingly unrelated phenomena in morphosyntax.
- Moral: We should study all linguistic phenomena, not just the usual suspects.

Technical Insight: Base Orders & Graph Transductions

Morphosyntactic phenomena can be given a natural explanation via **three components**:

- an independently motivated base hierarchy person, number, adjectival gradation, ...
- 2 maximally simple graph transductions to modify this hierarchy
- **3** a simple interpretation of the output graphs

1 The *ABA Generalization & Monotonicity

2 *ABA Revisited: Graph-Theoretic Approach

- Application to Pronoun Syncretism
- Beyond 3-Cell Systems

3 Person Case Constraint

4 Subregularity of Weakly Non-Inverting Graph Mappings

A Case Study: *ABA in Morphological Paradigms

Syncretism multiple forms built from same base

*ABA Generalization (Bobaljik 2012)

Two paradigmatic cells cannot be syncretic to the exclusion of any intervening cell.

Example: Adjectival Gradation

- (2) a. smart, smarter, smartest (AAA)
 - b. good, better, best (ABB)
 - c. * good, better, goodest (ABA)

*ABA Across Morphological Paradigms

Example: Pronoun Syncretism (Harbour 2015, 2016)

(3) a. mi, ni, ehi (ABC) Jarawa
b. n!aa, n!uu, n!uu (ABB) Damin
c. ne, ne, e (AAB) Winnebago
d. * I, you, I (ABA)

Example: Case Syncretism in Russian (Caha 2009)

Case	window.Sg	teacher.Pl	100
Nom	okn-o	ucitel-ja	st-o
Acc	okn-o	ucitel-ej	st-o
Gen	okn-a	ucitel-ej	st-a
Dat	okn-u	ucitel-jam	st-a
Inst	okn-om	ucitel-ami	st-a

*ABA Across Morphological Paradigms

Example: Pronoun Syncretism (Harbour 2015, 2016)

(3) a. mi, ni, ehi (ABC)
b. n!aa, n!uu, n!uu (ABB)
c. ne, ne, e (AAB) Wint
d. * I, you, I (ABA)

Jarawa

Damin

Winnebago

Example: Case Syncretism in Russian (Caha 2009)

Case	window.Sg	teacher.Pl	100
Nom	okn-o	ucitel-ja	st-o
Acc	okn-o	ucitel-ej	st-o
Gen	okn-a	ucitel-ej	st-a
Dat	okn-u	ucitel-jam	st-a
Inst	okn-om	ucitel-ami	st-a

*ABA: A First Account

• A mapping that produces ABA violates **monotonicity**.

Monotonicity for Pronoun Syncretism

- ▶ Suppose 3 < 2 < 1 (Zwicky 1977)
- A function f is monotonic iff $x \le y$ implies $f(x) \le f(y)$.
- ► No monotonic function from {1, 2, 3} to {A, B, C} can produce ABA!
- ► This holds irrespective of the ordering of {A, B, C}.

Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

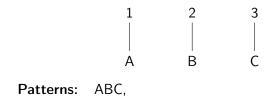
1	2	3
A	В	С

Patterns:

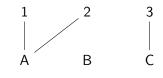
Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

Patterns:

Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)



Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)



Patterns: ABC,

Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

Patterns: ABC, AAB = AAC,

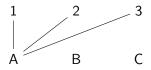
Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

Patterns: ABC, AAB = AAC,

Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)

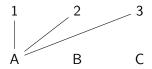
Patterns: ABC, AAB = AAC, ABB = ACC,

Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)



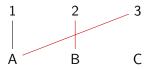
Patterns: ABC, AAB = AAC, ABB = ACC,

Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)



Patterns: ABC, AAB = AAC, ABB = ACC, AAA

Monotonicity is similar to No Crossing Branches constraint in autosegmental phonology. (Goldsmith 1976)



Patterns: ABC, AAB = AAC, ABB = ACC, AAA

Why Monotonicity?

- Why should spell-out functions be monotonic?
- Idea: Monotonicity matters in other areas.
 - NPI licensing in downward entailing contexts
 - Direction-preserving nature of movement in MGs
- **But:** Those are just-so stories.
 - Downward entailingness is neither necessary nor sufficient.
 - Various MG movement types are not direction-presevering.
- Maybe monotonicity is not the best characterization...

A More General View: Graph Structure Preservation

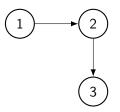
The General Idea

- *ABA is about structure preservation.
- Syncretism is modification of a base graph.
- Modification must not contradict orderings of base graph.

Definition (Weakly Non-Inverting Graph Mappings)

- Given input graph G and output graph G'
 - $x \triangleleft y$ iff y is reachable from x in G,
 - x ◄ y iff y is reachable from x in G'.
- A mapping from G to G' is weakly non-inverting iff x ⊲ y ∧ y ◀ x → x ◀ y

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:



- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

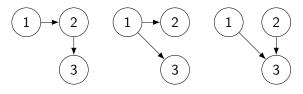
- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

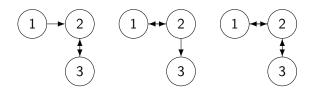
Weakly Non-Inverting Graph Mappings

- Since we want graphs to encode hierarchies, they must be weakly connected: ignoring the direction of arrows, all nodes are mutually reachable.
- And the mapping must be weakly non-inverting:

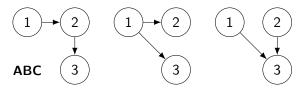
 $\mathsf{x} \triangleleft \mathsf{y} \land \mathsf{y} \blacktriangleleft \mathsf{x} \to \mathsf{x} \blacktriangleleft \mathsf{y}$

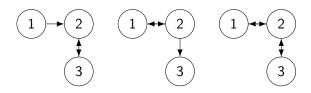
- Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- Then the previous set of graphs describes the class of attested syncretisms.



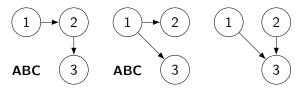


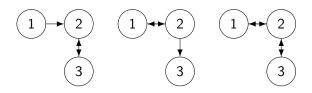
- Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- Then the previous set of graphs describes the class of attested syncretisms.



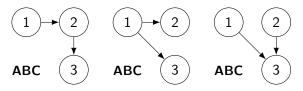


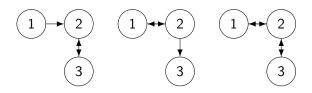
- Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- Then the previous set of graphs describes the class of attested syncretisms.



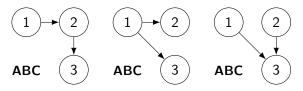


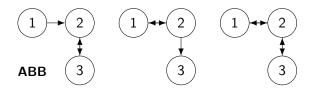
- Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- Then the previous set of graphs describes the class of attested syncretisms.



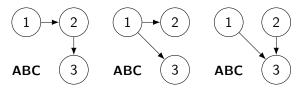


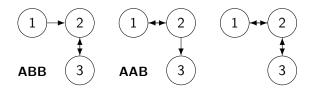
- Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- Then the previous set of graphs describes the class of attested syncretisms.



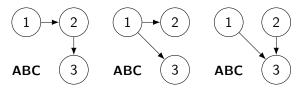


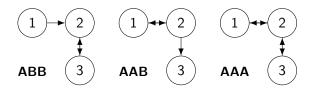
- Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- Then the previous set of graphs describes the class of attested syncretisms.





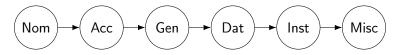
- Suppose two cells may be syncretic iff they are mutually reachable in a graph.
- Then the previous set of graphs describes the class of attested syncretisms.



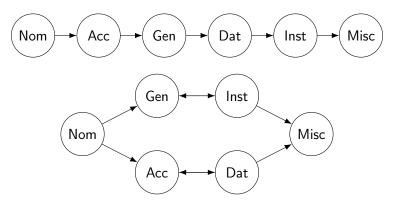


- ► The previous account works for any 3-cell paradigm.
- Some morphosyntactic phenomena have many different cells. case syncretism, noun stem allomorphy
- For those, weakly non-inverting maps incorrectly allow ABA!

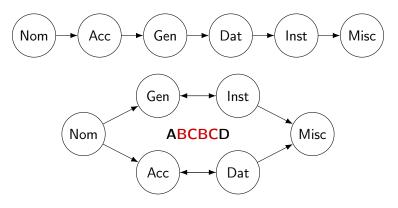
- ► The previous account works for any 3-cell paradigm.
- Some morphosyntactic phenomena have many different cells. case syncretism, noun stem allomorphy
- For those, weakly non-inverting maps incorrectly allow ABA!



- ► The previous account works for any 3-cell paradigm.
- Some morphosyntactic phenomena have many different cells. case syncretism, noun stem allomorphy
- For those, weakly non-inverting maps incorrectly allow ABA!



- ► The previous account works for any 3-cell paradigm.
- Some morphosyntactic phenomena have many different cells. case syncretism, noun stem allomorphy
- For those, weakly non-inverting maps incorrectly allow ABA!

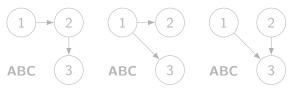


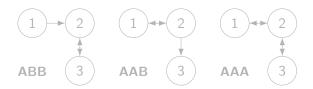
The Fix: A Stronger Connectivity Requirement

Weakly non-inverting maps still obey *ABA if output graphs must be connected:

 $\forall \mathsf{x}, \mathsf{y}[\mathsf{x} \blacktriangleleft \mathsf{y} \lor \mathsf{y} \blacktriangleleft \mathsf{x}]$

▶ We can also assume this for 3-cell paradigms.



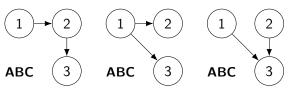


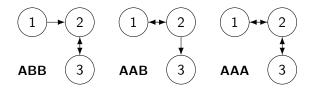
The Fix: A Stronger Connectivity Requirement

Weakly non-inverting maps still obey *ABA if output graphs must be connected:

 $\forall \mathsf{x}, \mathsf{y}[\mathsf{x} \blacktriangleleft \mathsf{y} \lor \mathsf{y} \blacktriangleleft \mathsf{x}]$

▶ We can also assume this for 3-cell paradigms.



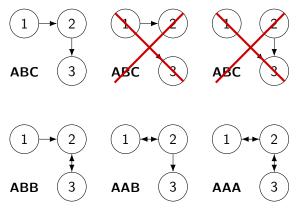


The Fix: A Stronger Connectivity Requirement

Weakly non-inverting maps still obey *ABA if output graphs must be connected:

 $\forall \mathsf{x}, \mathsf{y}[\mathsf{x} \blacktriangleleft \mathsf{y} \lor \mathsf{y} \blacktriangleleft \mathsf{x}]$

• We can also assume this for 3-cell paradigms.



PCC

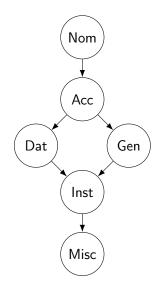
'arm'

A Note on Case Syncretism

 Attested syncretisms of Acc & Dat and Acc & Gen in Icelandic (Harðarson 2016)

Example

- ▶ drottning-∅/-u/-ar/-u 'daughter'
- ▶ arm-ar/-a/-a/-um
- Modified case hierarchy as base (Blake 2001)
- Prediction: some language has Acc & Dat and Gen & Inst, or Acc & Gen and Dat & Inst



PCC

Interim Summary

- Weakly non-inverting graph mappings preserve aspects of the base order.
- ► This structure preservation derives the *ABA generalization.
- Some ad hoc stipulations are still needed in certain cases.
- Those reflect aspects of the grammatical machinery, which the graph-theoretic view abstracts away from.

Phenomenon	Target graph	Constraints
Pronoun allomorphy Adjectival gradation Case syncretism Noun stem suppletion	(weakly) connected (weakly) connected connected connected	

The Graph-Theoretic View of the Person Case Constraint

There are four attested variants of the PCC: S(trong)-PCC DO must be 3. (Bonet 1994) U(Itrastrong)-PCC DO is less prominent than IO, where 3 is less prominent than 2, and 2 is less prominent than 1. (Nevins 2007) W(eak)-PCC 3IO combines only with 3DO. (Bonet 1994) M(e first)-PCC If IO is 2 or 3, then DO is not 1. (Nevins 2007)

- But symmetric variants have been discovered. (Stegovec 2016)
- This looks like a mess!

A More Systematic Perspective (Walkow 2012)

$IO\downarrow/DO\rightarrow$	1	2	3	$\rm IO{\downarrow}/\rm DO{\rightarrow}$	1	2	3
1	NA	\checkmark	\checkmark	1	NA	*	\checkmark
2	*	NA	\checkmark	2	*	NA	\checkmark
3	*	*	NA	3	*	*	NA
ι	J-PC(С		S	-PCC	2	
							-
$IO\downarrow/DO\rightarrow$	1	2	3	IO↓/DO→	1	2	3
$\frac{10{\downarrow}/\text{D0}{\rightarrow}}{1}$	1 NA	2 √	3	$\frac{10{\downarrow}/\text{DO}{\rightarrow}}{1}$	1 NA	$\frac{2}{\checkmark}$	$\frac{3}{}$
$\frac{10{\downarrow}/\text{DO}{\rightarrow}}{1}$		2 √ NA	3 ✓ ✓	$\frac{10\downarrow/D0\rightarrow}{1}$		$\frac{2}{\sqrt{NA}}$	$\frac{3}{\checkmark}$
1	NA	\checkmark	3 ✓ ✓ NA	1	NA	\checkmark	3 ✓ ✓ NA

PCC

Graph-Theoretic Unification

Generalized PCC			
y must not be			
reachable from x.			

Standard PCCs: y = IO, x = DO

Symmetric PCCs: y = DO, x = IO

U	1	2	3
1	NA	\checkmark	\checkmark
2	*	NA	\checkmark
3	*	*	NA
S	1	2	3
1	NA	*	\checkmark
2	*	NA	\checkmark
3	*	*	NA
W	1	2	3
W 1	1 NA	2 √	3 ✓
		2 ✓ NA	\checkmark
1	NA	\checkmark	3 ✓ ✓ NA
1 2	NA √	√ NA	\checkmark
1 2	NA √	√ NA	\checkmark
1 2 3	NA ✓ ∗	√ NA *	√ √ NA
1 2 3 M1	NA ✓ *	√ NA *	√ √ NA

Extending the PCC

What about the other two graphs?

- The first is currently unattested.
- The second blocks all clitic combinations, as in Cairene Arabic. (Shlonsky 1997:207, Walkow p.c.)
- ► So 5 out of 6 graphs are attested PCCs.

Summary of Relevant Graph Classes

Phenomenon	Target graph	Constraints
Pronoun allomorphy	(w-)connected	none
Adjectival gradation	(w-)connected	$2 \blacktriangleleft 1 \rightarrow 3 \blacktriangleleft 1$
Case syncretism	connected	none
Noun stem suppletion	connected	$\exists \mathbf{z}[\mathbf{z} \triangleleft \mathbf{x}] \rightarrow (\mathbf{x} \blacktriangleleft \mathbf{y} \leftrightarrow \mathbf{y} \blacktriangleleft \mathbf{x})$
PCC	w-connected	$3 \blacklozenge 2 \rightarrow 3 \blacktriangleleft 1$

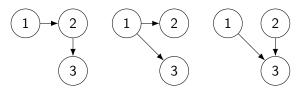
- ► This is a fairly natural characterization.
- Generative accounts are too fine-grained, only mathematics allows for this unification.

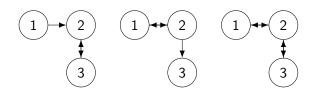
Summary of Relevant Graph Classes

Phenomenon	Target graph	Constraints
Pronoun allomorphy	(w-)connected	none
Adjectival gradation	(w-)connected	$2 \blacktriangleleft 1 \rightarrow 3 \blacktriangleleft 1$
Case syncretism	connected	none
Noun stem suppletion	connected	$\exists \mathbf{z}[\mathbf{z} \triangleleft \mathbf{x}] \rightarrow (\mathbf{x} \blacktriangleleft \mathbf{y} \leftrightarrow \mathbf{y} \blacktriangleleft \mathbf{x})$
PCC	w-connected	$3 \blacklozenge 2 \rightarrow 3 \blacktriangleleft 1$

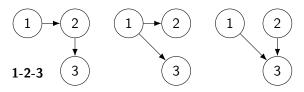
- This is a fairly natural characterization.
- Generative accounts are too fine-grained, only mathematics allows for this unification.

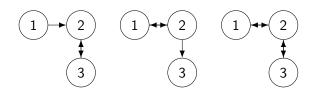
- From a certain perspective, being weakly non-inverting is computationally simple.
- ▶ All the required graphs can be represented as strings.



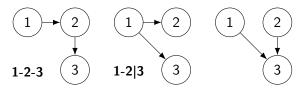


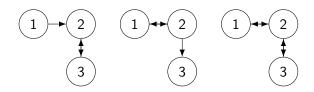
- From a certain perspective, being weakly non-inverting is computationally simple.
- ▶ All the required graphs can be represented as strings.



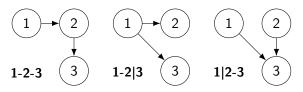


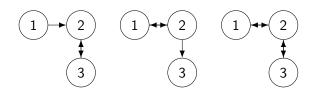
- From a certain perspective, being weakly non-inverting is computationally simple.
- ▶ All the required graphs can be represented as strings.



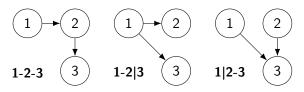


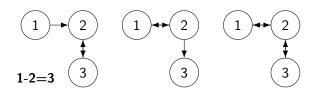
- From a certain perspective, being weakly non-inverting is computationally simple.
- ▶ All the required graphs can be represented as strings.



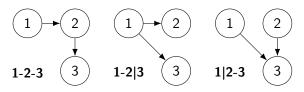


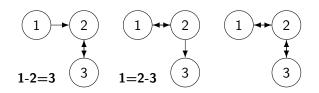
- From a certain perspective, being weakly non-inverting is computationally simple.
- ▶ All the required graphs can be represented as strings.



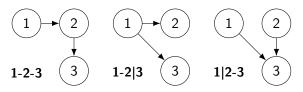


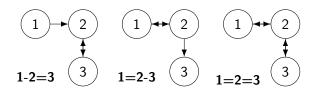
- From a certain perspective, being weakly non-inverting is computationally simple.
- ▶ All the required graphs can be represented as strings.





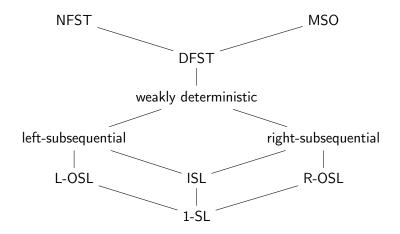
- From a certain perspective, being weakly non-inverting is computationally simple.
- ▶ All the required graphs can be represented as strings.





Subregular String Mappings

For weak mappings, we look at subregular string transductions.



1-SL Mappings

- 1-SL relations/maps = state-free N/DFST transductions
- This is sufficient to compute weakly non-inverting maps over the string representations.

• Switching the order of **ab** requires memorizing $a \Rightarrow not 1-SL$

$$a:\varepsilon$$
 a $b:ba$

1-SL Mappings

- I-SL relations/maps = state-free N/DFST transductions
- This is sufficient to compute weakly non-inverting maps over the string representations.

• Switching the order of ab requires memorizing $a \Rightarrow$ not 1-SL

$$a: \varepsilon a b: ba$$

Extrapolating to Graph Mappings

- ► Of course 1-SL could reverse direction with a symbol for inverse order (←) in the string representations.
- But strings capture the idea that reversal is costly, cf.:
 - impossibility of local rotations with LBUTTs
 - markedness of metathesis in phonology
- Current graph transductions don't capture this, deleting and adding edges is cheap.
- Maybe we need a different view of graph transductions, or a more restricted transduction class (DAG, tree, string).
- Bottom line: class of attested patterns should reduce to computational simplicity

Conclusion

- Graphs generalize across domains of morphosyntax
 - Base hierarchy
 - Maximally simple transduction (1-SL)
- Approach could be about markedness rather than well-formedness (weaker typological claim)
- But: a lot of work still to be done Gender Case Constraint, inverse marking, resolved agreement, ...

Two General Points

- ▶ More work on subregular graph transductions, please!
- Mathematical view also useful for "boring" linguistic problems

Conclusion

- Graphs generalize across domains of morphosyntax
 - Base hierarchy
 - Maximally simple transduction (1-SL)
- Approach could be about markedness rather than well-formedness (weaker typological claim)
- But: a lot of work still to be done Gender Case Constraint, inverse marking, resolved agreement, ...

Two General Points

- More work on subregular graph transductions, please!
- Mathematical view also useful for "boring" linguistic problems

References I

- Blake, Barry J. 2001. Case. Cambridge: Cambridge University Press.
- Bobaljik, Jonathan D. 2012. Universals in comparative morphology: Suppletion, superlatives, and the structure of words. Cambridge, MA: MIT Press.
- Bonet, Eulàlia. 1994. The Person-Case Constraint: A morphological approach. In *The Morphology-Syntax Connection*, number 22 in MIT Working Papers in Linguistics, 33–52.
- Caha, Pavel. 2009. *The Nanosyntax of case*. Doctoral Dissertation, University of Tromsø.
- Goldsmith, John. 1976. Autosegmental phonology. Doctoral Dissertation, MIT.
- Harbour, Daniel. 2015. Poor pronoun systems and what they teach us. Nordlyd 41.
- Harbour, Daniel. 2016. Parameters of poor pronoun systems. *Linguistic Inquiry* 47:706–722.
- Harðarson, Gísli Rúnar. 2016. A case for a Weak Case Contiguity Hypothesis a reply to Caha. *Natural Language and Linguistic Theory* 34:1329–1343.
- Nevins, Andrew. 2007. The representation of third person and its consequences for person-case effects. *Natural Language and Linguistic Theory* 25:273–313.
- Shlonsky, Ur. 1997. *Clause structure and word order in Hebrew and Arabic*. Oxford: Oxford University Press.

References II

- Stegovec, Adrian. 2016. A Person Case Constraint without Case. Ms., University of Connecticut.
- Walkow, Martin. 2012. *Goals, big and small*. Doctoral Dissertation, University of Massachusetts Amherst.
- Zwicky, Arnold. 1977. Hierarchies of person. In *Chicago Linguistic Society*, volume 13, 714–733.