Subregular Morpho-Semantics The Expressive Limits of Monomorphemic Quantifiers

Thomas Graf

Stony Brook University mail@thomasgraf.net http://thomasgraf.net Rutgers University December 15, 2017 Vou can get the slides here under "News" Take-Home Message

- Supplement linguistic theory with computational perspective
- Typological gaps can be explained computationally.

Case Study: Morphosemantics of Quantifiers

A D-quantifier may have a monomorphemic realization only if its quantifier language is TSL.

Outline

1 TSL Patterns in Phonology, Morphology, and Syntax

2 TSL Morpho-Semantics

- Quantifier Languages
- All Monomorphemic Quantifiers are TSL
- Tightening the Characterization

3 A Broader Program

Subregular Hierarchy

- 1 define different classes of grammars
- 2 organize these classes into an expressivity hierarchy
- 3 needed level of expressivity?

Subregular Hierarchy

- define different classes of grammars
- 2 organize these classes into an expressivity hierarchy
- 3 needed level of expressivity?

. . .

Subregular Hierarchy

- 1 define different classes of grammars
- 2 organize these classes into an expressivity hierarchy
- 3 needed level of expressivity?

TSL: Tier-Based Strictly Local

- All patterns described by markedness constraints that are
 - inviolable,
 - locally bounded,
 - formalized as n-grams.
- Non-local dependencies are local over tiers. (Goldsmith 1976)
- Linguistic core idea:

Dependencies are local over the right structure.

- Captured by forbidding voiced segments at the end of a word
- German: Don't have z\$ or v\$ or d\$ (where \$ = word edge).

Example: German		
	*z\$	
* \$ r a d \$	* v\$	
	* d\$	

- Captured by forbidding voiced segments at the end of a word
- German: Don't have z\$ or v\$ or d\$ (where \$ = word edge).

Example: German		
	* z\$	
* \$ r a d \$	* v\$	
	* d\$	

- Captured by forbidding voiced segments at the end of a word
- German: Don't have z\$ or v\$ or d\$ (where \$ = word edge).

- Captured by forbidding voiced segments at the end of a word
- German: Don't have z\$ or v\$ or d\$ (where \$ = word edge).

- Captured by forbidding voiced segments at the end of a word
- German: Don't have z\$ or v\$ or d\$ (where \$ = word edge).

- Captured by forbidding voiced segments at the end of a word
- German: Don't have z\$ or v\$ or d\$ (where \$ = word edge).

- Captured by forbidding voiced segments at the end of a word
- German: Don't have z\$ or v\$ or d\$ (where \$ = word edge).

- Captured by forbidding voiced segments at the end of a word
- German: Don't have z\$ or v\$ or d\$ (where \$ = word edge).

Example: German			
* \$ r a d \$	*z\$ *v\$ *d\$	\$rat\$	

- Captured by forbidding voiced segments at the end of a word
- German: Don't have z\$ or v\$ or d\$ (where \$ = word edge).

Example: German			
* \$ r a d \$	*z\$ *v\$ *d\$	<mark>\$ r</mark> at \$	

- Captured by forbidding voiced segments at the end of a word
- German: Don't have z\$ or v\$ or d\$ (where \$ = word edge).

Example: German			
* \$ r a <mark>d \$</mark>	*z\$ *v\$ *d\$	\$rat\$	

- Captured by forbidding voiced segments at the end of a word
- German: Don't have z\$ or v\$ or d\$ (where \$ = word edge).

Example: German			
* \$ r a <mark>d \$</mark>	*z\$ *v\$ *d\$	\$ r <mark>a t</mark> \$	

- Captured by forbidding voiced segments at the end of a word
- German: Don't have z\$ or v\$ or d\$ (where \$ = word edge).

Example: German			
* \$ r a d \$	*z\$ *v\$ *d\$	\$ r a t \$	

- Captured by forbidding voiceless segments between vowels
- Suppose:
 - ► $[-\text{voice}] = \{s, \int\}$
 - ► $V = {a,i,u}$
- ► Then: don't have asa, a∫a, asi, a∫i, ...

Example

* **\$ a** z **u s a \$**

- Captured by forbidding voiceless segments between vowels
- Suppose:
 - ► $[-\text{voice}] = \{s, \int\}$
 - ► $V = {a,i,u}$
- ► Then: don't have asa, a∫a, asi, a∫i, ...

Example

* **\$ a** z **u s a \$**

- Captured by forbidding voiceless segments between vowels
- Suppose:
 - ► $[-\text{voice}] = \{s, \int\}$
 - ▶ $V = {a,i,u}$
- ► Then: don't have asa, a∫a, asi, a∫i, ...

- Captured by forbidding voiceless segments between vowels
- Suppose:
 - ► $[-\text{voice}] = \{s, \int\}$
 - ▶ $V = {a,i,u}$
- ► Then: don't have asa, a∫a, asi, a∫i, ...

- Captured by forbidding voiceless segments between vowels
- Suppose:
 - ► $[-\text{voice}] = \{s, \int\}$
 - ▶ $V = {a,i,u}$
- ► Then: don't have asa, a∫a, asi, a∫i, ...

- Captured by forbidding voiceless segments between vowels
- Suppose:
 - ► $[-\text{voice}] = \{s, \int\}$
 - ▶ $V = {a,i,u}$
- ► Then: don't have asa, a∫a, asi, a∫i, ...

TSL

Adding Tiers: Samala Sibilant Harmony

- ► If multiple sibilants occur in the same word, they must all be +anterior (s,z) or -anterior (∫,3).
- In other words: Don't mix purple and teal.

But: Sibilants can be arbitrarily far away from each other!

Example: Samala

```
*$hasxintilawa∫$
```

```
$ha∫xintilawa∫$
```

- ► If multiple sibilants occur in the same word, they must all be +anterior (s,z) or -anterior (∫,3).
- In other words: Don't mix purple and teal.

But: Sibilants can be arbitrarily far away from each other!

Example: Samala

*\$ha**s**xintilawa∫\$

\$ha∫xintilawa∫\$

- ► If multiple sibilants occur in the same word, they must all be +anterior (s,z) or -anterior (∫,3).
- In other words: Don't mix purple and teal.

But: Sibilants can be arbitrarily far away from each other!

Example: Samala

\$ha∫xintilawa∫\$

- ► If multiple sibilants occur in the same word, they must all be +anterior (s,z) or -anterior (∫,3).
- In other words: Don't mix purple and teal.

But: Sibilants can be arbitrarily far away from each other!

Example: Samala

- ► If multiple sibilants occur in the same word, they must all be +anterior (s,z) or -anterior (∫,3).
- In other words: Don't mix purple and teal.

But: Sibilants can be arbitrarily far away from each other!

Example: Samala

*\$<mark>s</mark>tajanowonwa∫\$

- ► If multiple sibilants occur in the same word, they must all be +anterior (s,z) or -anterior (∫,3).
- In other words: Don't mix purple and teal.

But: Sibilants can be arbitrarily far away from each other!

Example: Samala

- Let's take a hint from phonology: create locality with a tier. (Heinz et al. 2011)
- Restriction 1: only 1 tier
- Restriction 2: projection is determined by the segments, not their environment

Jeff Heinz

Example: Samala Revisited

```
Project sibilant tier
*sſ, *sʒ, *zʃ, *zʒ, *ʃs, *ʒs, *ʃz, *ʒz
```

*\$hasxintilawa\$\$ \$ha\$xintilawa\$\$

- Let's take a hint from phonology: create locality with a tier. (Heinz et al. 2011)
- Restriction 1: only 1 tier
- Restriction 2: projection is determined by the segments, not their environment

Jeff Heinz

Example: Samala Revisited

```
    Project sibilant tier
```

2 *s∫, *sȝ, *z∫, *zȝ, *∫s, *ȝs, *∫z, *ȝz

*\$ha<mark>s</mark>xintilawa∫\$\$ha∫xintilawa∫\$

- Let's take a hint from phonology: create locality with a tier. (Heinz et al. 2011)
- Restriction 1: only 1 tier
- Restriction 2: projection is determined by the segments, not their environment

Jeff Heinz

Example: Samala Revisited

- Let's take a hint from phonology: create locality with a tier. (Heinz et al. 2011)
- Restriction 1: only 1 tier
- Restriction 2: projection is determined by the segments, not their environment

Jeff Heinz

Example: Samala Revisited
- Let's take a hint from phonology: create locality with a tier. (Heinz et al. 2011)
- Restriction 1: only 1 tier
- Restriction 2: projection is determined by the segments, not their environment

Jeff Heinz

- Let's take a hint from phonology: create locality with a tier. (Heinz et al. 2011)
- Restriction 1: only 1 tier
- Restriction 2: projection is determined by the segments, not their environment

Jeff Heinz

- Let's take a hint from phonology: create locality with a tier. (Heinz et al. 2011)
- Restriction 1: only 1 tier
- Restriction 2: projection is determined by the segments, not their environment

Jeff Heinz

- Let's take a hint from phonology: create locality with a tier. (Heinz et al. 2011)
- Restriction 1: only 1 tier
- Restriction 2: projection is determined by the segments, not their environment

Jeff Heinz

- Let's take a hint from phonology: create locality with a tier. (Heinz et al. 2011)
- Restriction 1: only 1 tier
- Restriction 2: projection is determined by the segments, not their environment

Jeff Heinz

```
Project sibilant tier

2 *sſ, *sʒ, *zʃ, *zʒ, *ʃs, *ʒs, *ʃz, *ʒz

$ s
$ $ $

$ l
|

*$ hasxintilawaʃ$
$ haſxintilawaʃ$
```

TSL

Culminativity: Simple Counting with TSL

Why is TSL Interesting?

- Linguistically natural
- Correct and very efficient learning algorithm (Jardine and McMullin 2017)
- Low resource demands \Rightarrow cognitively plausible
- Captures wide range of phonotactic dependencies
- Cannot generate many unattested patterns

- Harmony only holds between initial and final segments
- Linguistically plausible, yet unattested

Why is TSL Interesting?

- Linguistically natural
- Correct and very efficient learning algorithm (Jardine and McMullin 2017)
- Low resource demands \Rightarrow cognitively plausible
- Captures wide range of phonotactic dependencies
- Cannot generate many unattested patterns

- Harmony only holds between initial and final segments
- Linguistically plausible, yet unattested

Why is TSL Interesting?

- Linguistically natural
- Correct and very efficient learning algorithm (Jardine and McMullin 2017)
- Low resource demands \Rightarrow cognitively plausible
- Captures wide range of phonotactic dependencies
- Cannot generate many unattested patterns

- Harmony only holds between initial and final segments
- Linguistically plausible, yet unattested

TSL

Why is TSL Interesting?

- Linguistically natural
- Correct and very efficient learning algorithm (Jardine and McMullin 2017)
- Low resource demands \Rightarrow cognitively plausible
- Captures wide range of phonotactic dependencies
- Cannot generate many unattested patterns

- Harmony only holds between initial and final segments
- Linguistically plausible, yet unattested

TSL Semantics

- TSL seems to play an important role in
 - phonology,
 - morphology,
 - syntax.
- What's missing? Semantics!
- But TSL is about strings/trees.
- What is a semantic string language?

Formal Language Theory for Semantics

Quantifier Languages Meanings as strings of truth values (van Benthem 1986)

- "Tense Languages" Meanings as strings of events (Fernando 2011)
- I'll only talk about quantifier languages here.
- Ongoing work with Rob Pasternak on subregularity of tense languages

Evaluating the Truth of Quantifiers

- (1) a. Every student cheated.
 - b. No student cheated.
 - c. Some student cheated.
 - d. Three students cheated.

students	John	Mary	Sue
cheated	yes	no	yes
string	Y	Ν	Y

- (1a): False, because the string contains a N
- ▶ (1b): False, because the string contains a Y
- ▶ (1c): **True**, because the string contains a Y
- ▶ (1d): **False**, because the string does not contain three Ys

Evaluating the Truth of Quantifiers

- (1) a. Every student cheated.
 - b. No student cheated.
 - c. Some student cheated.
 - d. Three students cheated.

students	John	Mary	Sue
cheated	yes	no	yes
string	Y	Ν	Y

- (1a): False, because the string contains a N
- (1b): False, because the string contains a Y
- (1c): True, because the string contains a Y
- ▶ (1d): False, because the string does not contain three Ys

Formalization Step 1: Binary String Languages

Idea: Convert relation between sets A and B into set of Yes/No-strings

Definition (Binary String Language)

1 A, B: arbitrary sets

- **2** f(A, B): maps each $a \in A$ to Y if $a \in B$, otherwise N
- **3** e(A): arbitrary enumeration of A
- **4** L(A, B): all e(A), relabeled by f(A, B)

Example

Set of Set of				Mary, Su Sue, Bill,	-
2 f(A , B)): N	lohn ⊢ ⁄Iary ⊢ Sue ⊢	→ N		
3 e(A):	2) 3) 4) 5)	John John Mary Mary Sue Sue	Sue John Sue John	Mary Sue John Mary	
4 L(A,B): {	YNY, YYN, NYY	}		

Formalization Step 2: Quantifier Language

Idea: Every quantifier is a set of acceptable Yes/No-strings

Definition (Quantifier Language)

L(Q) is the **quantifier language** of Q iff it holds for all A and B that Q(A, B) is true iff $L(A, B) \subseteq L(Q)$.

Example

- L(every) = set of all strings containing no N
- ► Why?
 - every(A, B) iff $A \subseteq B$
 - If $A \subseteq B$, then no binary string contains N.
 - If some binary string contains N, then $A \not\subseteq B$.

Formalization Step 2: Quantifier Language

Idea: Every quantifier is a set of acceptable Yes/No-strings

Definition (Quantifier Language)

L(Q) is the **quantifier language** of Q iff it holds for all A and B that Q(A, B) is true iff $L(A, B) \subseteq L(Q)$.

Example

- L(every) = set of all strings containing no N
- ► Why?
 - every(A, B) iff $A \subseteq B$
 - If $A \subseteq B$, then no binary string contains N.
 - If some binary string contains N, then $A \not\subseteq B$.

Quantifier Constraint every no some at least n at most n exactly n not all all but n most an even number

Quantifier Constraint every $|\mathbf{N}| = 0$ no some at least n at most n exactly n not all all but n most an even number

Quantifier Constraint every $|\mathbf{N}| = 0$ $|\mathbf{Y}| = 0$ no some at least n at most n exactly n not all all but n most an even number

an

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \ge 1$
at least <mark>n</mark>	
at most <mark>n</mark>	
exactly <mark>n</mark>	
not all	
all but <mark>n</mark>	
most	
even number	

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \ge 1$
at least <mark>n</mark>	$ \mathbf{Y} \ge \mathbf{n}$
at most <mark>n</mark>	
exactly n	
not all	
all but <mark>n</mark>	
most	
an even number	

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \ge 1$
at least <mark>n</mark>	$ \mathbf{Y} \ge \mathbf{n}$
at most <mark>n</mark>	$ \mathbf{Y} \leq \mathbf{n}$
exactly <mark>n</mark>	
not all	
all but <mark>n</mark>	
most	
an even number	

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \ge 1$
at least <mark>n</mark>	$ \mathbf{Y} \ge \mathbf{n}$
at most <mark>n</mark>	$ \mathbf{Y} \leq \mathbf{n}$
exactly n	$ \mathbf{Y} = \mathbf{n}$
not all	
all but <mark>n</mark>	
most	
an even number	

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \ge 1$
at least <mark>n</mark>	$ \mathbf{Y} \ge \mathbf{n}$
at most <mark>n</mark>	$ \mathbf{Y} \leq \mathbf{n}$
exactly <mark>n</mark>	$ \mathbf{Y} = \mathbf{n}$
not all	$ \mathbf{N} \ge 1$
all but <mark>n</mark>	
most	
an even number	

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \ge 1$
at least <mark>n</mark>	$ \mathbf{Y} \ge \mathbf{n}$
at most <mark>n</mark>	$ \mathbf{Y} \leq \mathbf{n}$
exactly n	$ \mathbf{Y} = \mathbf{n}$
not all	$ \mathbf{N} \ge 1$
all but <mark>n</mark>	$ \mathbf{N} = \mathbf{n}$
most	
an even number	

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \ge 1$
at least <mark>n</mark>	$ \mathbf{Y} \ge \mathbf{n}$
at most <mark>n</mark>	$ \mathbf{Y} \leq \mathbf{n}$
exactly n	$ \mathbf{Y} = \mathbf{n}$
not all	$ \mathbf{N} \geq 1$
all but <mark>n</mark>	$ \mathbf{N} = \mathbf{n}$
most	$ \mathbf{Y} > \mathbf{N} $
an even number	

Constraint
$ \mathbf{N} = 0$
$ \mathbf{Y} = 0$
$ \mathbf{Y} \ge 1$
$ \mathbf{Y} \ge \mathbf{n}$
$ \mathbf{Y} \leq \mathbf{n}$
$ \mathbf{Y} = \mathbf{n}$
$ \mathbf{N} \geq 1$
N = n
$ \mathbf{Y} > \mathbf{N} $
$ \mathbf{Y} $ even

TSL Quantifier Languages for every and no

TSL Quantifier Languages for every and no

\$ N N N N \$ \$ N N Y N \$

***Y**

\$ N N N N \$

\$ N N Y N \$

19

SL

SL

Most Quantifier Languages Require a Tier

*\$\$, *\$N\$, *\$NN\$, *NNNN

\$ N N Y N \$ \$ N Y Y N \$ \$ N N N N N \$

iL

5L

\$NN N\$	\$N N \$	\$ N N N N \$
\$ N N Y N \$	\$ N Y Y N \$	\$ N N N N \$

*\$\$, *\$N\$, *\$NN\$, *NNNN

\$ N N N \$	\$ N N \$	\$ N N N N \$
\$ N N Y N \$	\$ N Y Y N \$	\$ N N N N \$

\$ <mark>NN N\$</mark>	\$N N \$	\$ N N N N \$
\$ N N Y N \$	\$ N Y Y N \$	\$ N N N N \$

SNNYNS

Most Quantifier Languages Require a Tier

SNYYN

SNNNN

L

Most Quantifier Languages Require a Tier

\$ N N N \$	\$ N N \$	\$ N N N N \$
\$ N N Y N \$	\$ N Y Y N \$	\$ N N N N \$

\$

Quantifier	Constraint	<i>n</i> -grams	Tier	
every	$ \mathbf{N} = 0$	* N	none	
no	$ \mathbf{Y} = 0$	* Y	none	
some	$ \mathbf{Y} \ge 1$	*\$\$	Υ	
at least <mark>n</mark>	$ \mathbf{Y} \ge \mathbf{n}$	*\$ Y ^m \$ (m < n)	Υ	
at most <mark>n</mark>	$ \mathbf{Y} \leq \mathbf{n}$	* Y ⁿ⁺¹	Υ	
exactly <mark>n</mark>	$ \mathbf{Y} = \mathbf{n}$	at least $+$ at most	Υ	
not all	$ N \ge 1$	*\$\$	Ν	
all but <mark>n</mark>	$ \mathbf{N} = \mathbf{n}$	at least $+$ at most	Ν	
Quantifier	TSL?	Tier	Mono.	(Paperno 2011)
-----------------	------	------	-------	----------------
every	yes	none	yes	
no	yes	none	yes	
some	yes	Y	yes	
(at least) two	yes	Y	yes	
(at most) two	yes	Y	yes	
not all	yes	Ν	no	
all but one	yes	Ν	no	
even number	no		no	
prime number	no		no	
infinitely many	no		no	
most	no		???	

Quantifier	TSL?	Tier	Mono.	(Paperno 2011)
every	yes	none	yes	
no	yes	none	yes	
some	yes	Υ	yes	
(at least) two	yes	Υ	yes	
(at most) two	yes	Υ	yes	
not all	yes	Ν	no	
all but one	yes	Ν	no	
even number	no		no	
prime number	no		no	
infinitely many	no		no	
most	no		???	

21

Quantifier	TSL?	Tier	Mono.	(Paperno 2011)
every	yes	none	yes	
no	yes	none	yes	
some	yes	Υ	yes	
(at least) two	yes	Υ	yes	
(at most) two	yes	Υ	yes	
not all	yes	Ν	no	
all but one	yes	Ν	no	
even number	no		no	
prime number	no		no	
infinitely many	no		no	
most	no		???	

TSL

Quantifier	TSL?	Tier	Mono.	(Paperno 2011)
every	yes	none	yes	
no	yes	none	yes	
some	yes	Υ	yes	
(at least) two	yes	Υ	yes	
(at most) two	yes	Y	yes	
not all	yes	Ν	no	
all but one	yes	Ν	no	
even number	no		no	
prime number	no		no	
infinitely many	no		no	
most	no		???	

21

The Case of most

There is good semantic evidence that "most" is

internally complex and hence not monomorphemic. (Hackl 2009)

	Quantifier	TSL?	Tier	Mono.
	every	yes	none	yes
	no	yes	none	yes
	some	yes	Υ	yes
	(at least) two	yes	Y	yes
	(at most) two	yes	Y	yes
	not all	yes	Ν	no
	all but one	yes	Ν	no
	even number	no		no
	prime number	no		no
	infinitely many	no		no
most		no		no

A New Upper Bound on Typological Variation

TSL Interpretation Conjecture

If a language uses a quantifier as a monomorphemic determiner, then its quantifier language must be TSL.

TSL is Too Large

- ► All monomorphemic quantifiers are TSL.
- But not all TSL-definable quantifiers are monomorphemic.
- Why might that be?

Quantifier	TSL?	Tier	Mono.
every	yes	none	yes
no	yes	none	yes
some	yes	Y	yes
(at least) two	yes	Y	yes
(at most) two	yes	Y	yes
not all	yes	Ν	no
all but one	yes	Ν	no

Definition (Monotonicity)

- ▶ Let **A** and **B** be two sets with orders \leq_A and \leq_B , respectively.
- A function f from A to B is monotonic iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

Definition (Monotonicity)

- ▶ Let **A** and **B** be two sets with orders \leq_A and \leq_B , respectively.
- A function f from A to B is monotonic iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

Definition (Monotonicity)

- ▶ Let **A** and **B** be two sets with orders \leq_A and \leq_B , respectively.
- A function f from A to B is monotonic iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

Definition (Monotonicity)

- ▶ Let **A** and **B** be two sets with orders \leq_A and \leq_B , respectively.
- A function f from A to B is monotonic iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

Definition (Monotonicity)

- ▶ Let **A** and **B** be two sets with orders \leq_A and \leq_B , respectively.
- A function f from A to B is monotonic iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

Definition (Monotonicity)

- ▶ Let **A** and **B** be two sets with orders \leq_A and \leq_B , respectively.
- A function f from A to B is monotonic iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

Definition (Monotonicity)

- ▶ Let **A** and **B** be two sets with orders \leq_A and \leq_B , respectively.
- A function f from A to B is monotonic iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

Definition (Monotonicity)

- ▶ Let **A** and **B** be two sets with orders \leq_A and \leq_B , respectively.
- A function f from A to B is monotonic iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

Definition (Monotonicity)

- ▶ Let **A** and **B** be two sets with orders \leq_A and \leq_B , respectively.
- A function f from A to B is monotonic iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

Definition (Monotonicity)

- ▶ Let **A** and **B** be two sets with orders \leq_A and \leq_B , respectively.
- A function f from A to B is monotonic iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

Monotonicity in Language

Monotonicity in phonology

- No Crossing Branches constraint
- Natural classes are convex

Monotonicity in morphology

*ABA

Monotonicity in syntax

- Subcategorization < A-Move < A'-Move</p>
- Adjunct Island Constraint & Coordinate Structure Constraint

Monotonicity in semantics

Everywhere...

- Suppose, then, that monotonicity is a desirable trait.
- How does monotonicity relate to tier projection?

Monotonicity forbids projecting only N.

- Suppose, then, that monotonicity is a desirable trait.
- How does monotonicity relate to tier projection?

Project: Y

- Suppose, then, that monotonicity is a desirable trait.
- How does monotonicity relate to tier projection?

Project: Yand N

- Suppose, then, that monotonicity is a desirable trait.
- How does monotonicity relate to tier projection?

Project: nothing

- Suppose, then, that monotonicity is a desirable trait.
- How does monotonicity relate to tier projection?

Project: forbidden

- Suppose, then, that monotonicity is a desirable trait.
- How does monotonicity relate to tier projection?

Project: forbidden

Adding Tiers for every and no

- every and no are the only quantifiers without tier
- But: no tier = tier containing everything

- ► So *every* and *no* can be viewed as using the tier {Y,N}.
- This satisfies monotonicity.

Remaining Issues & Extensions

- TSL also allows for some unnatural quantifiers; ruling them out requires some stipulations.
- What about fuzzy quantifiers? many, few, ...
- TSL makes cognitive complexity predictions; we're working on experiments.
- Where else in semantics does TSL matter?
 - adverbial quantifiers
 - temporal semantics
 - modals
- But those are just small pieces of a much larger puzzle...

The Bigger Goal

- Computational approaches are abstract and content-neutral.
- This isn't a problem but a virtue.
- Abstraction makes it possible to identify parallels between very different domains.

A Program of Subregular Unification

- To what extent can very different properties of language be reduced to the same computational property?
- What are the implications for
 - typological variation,
 - ▶ learnability,
 - cognition at large?

The Bigger Goal

- Computational approaches are abstract and content-neutral.
- This isn't a problem but a virtue.
- Abstraction makes it possible to identify parallels between very different domains.

A Program of Subregular Unification

- To what extent can very different properties of language be reduced to the same computational property?
- What are the implications for
 - typological variation,
 - learnability,
 - cognition at large?

Place of Morphosemantics

Conclusion

- Among determiners, all monomorphemic quantifiers have quantifier languages that are TSL.
- The opposite does not hold, additional restrictions on TSL are needed.
- ▶ Why does it matter? Because TSL is everywhere in language.
- Ultimate goal:

computational explanation of typological variation

References I

- van Benthem, Johan. 1986. Semantic automata. In Essays in logical semantics, 151-176. Dordrecht: Springer.
- Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral Dissertation, University of Delaware. URL http://udspace.udel.edu/handle/19716/13374.
- Fernando, Tim. 2011. Regular relations for temporal propositions. Natural Language Engineering 11:163-184.
- Goldsmith, John, 1976. Autosegmental phonology, Doctoral Dissertation, MIT.
- Graf, Thomas. 2017. The power of locality domains in phonology. Phonology In press.
- Hackl, Martin. 2009. On the grammar and processing of proportional quantifiers: Most versus more than half. Natural Language Semantics 17:63-98.
- Heinz, Jeffrey. 2009. On the role of locality in learning stress patterns. Phonology 26:303-351. URL https://doi.org/10.1017/S0952675709990145.
- Heinz, Jeffrey. 2010. Learning long-distance phonotactics. Linguistic Inquiry 41:623-661. URL http://dx.doi.org/10.1162/LING_a_00015.
- Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner, 2011. Tier-based strictly local constraints in phonology. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, 58-64. URL http://www.aclweb.org/anthology/P11-2011.

References II

- Jardine, Adam. 2016. Computationally, tone is different. Phonology URL http:// udel.edu/~ajardine/files/jardinemscomputationallytoneisdifferent.pdf, to appear.
- Jardine, Adam, and Kevin McMullin. 2017. Efficient learning of tier-based strictly k-local languages. In *Proceedings of Language and Automata Theory and Applications*, Lecture Notes in Computer Science, 64–76. Springer.
- McMullin, Kevin. 2016. *Tier-based locality in long-distance phonotactics: Learnability and typology*. Doctoral Dissertation, Uniersity of British Columbia.
- Paperno, Denis. 2011. Learnable classes of natural language quantifiers: Two perspectives. URL http://paperno.bol.ucla.edu/q_learning.pdf, ms., UCLA.