Pogo sticks and wasps: A skeptic's guide to computational linguistics

Thomas Graf
Stony Brook University
mail@thomasgraf.net
Kasisto
October 11, 2018

Two lessons

Two lessons

Lesson 1

Pogo sticks don't fly.

Two lessons

Lesson 1

Lesson 2

Pogo sticks don't fly.
Wasps are strangely stupid.

An alternate history of flight

- It is the 19th century, and airplanes aren't a thing yet.
- Three competitors at the first national flight competition:

Icarus Inc

An alternate history of flight

- It is the 19th century, and airplanes aren't a thing yet.
- Three competitors at the first national flight competition:

Icarus Inc

An alternate history of flight

- It is the 19th century, and airplanes aren't a thing yet.
- Three competitors at the first national flight competition:

Icarus Inc

Leonardo LLC

An alternate history of flight

- It is the 19th century, and airplanes aren't a thing yet.
- Three competitors at the first national flight competition:

Icarus Inc

Leonardo LLC

An alternate history of flight

- It is the 19th century, and airplanes aren't a thing yet.
- Three competitors at the first national flight competition:

Icarus Inc

Leonardo LLC

Timmy

An alternate history of flight [cont.]

- After Timmy's victory, pogo sticks are all the rage.
- Better and better pogo sticks hit the market.
- By 1930, the US is the world's leading pogo stick nation.

An alternate history of flight [cont.]

- By 1952, the US is occupied by Japan and Nazi Germany.
- Its pogo sticks were no match for airplanes.
- Nobody knows what happened to Timmy.

Language technology = pogo sticks

- Like flight, language technology is the future.
- Like pogo sticks, hyped solutions are not the answer:
- Deep Learning
- Big Data
- embeddings
- RNNs, LSTMs
- seq2seq
- Let's talk about them...

The current hype: Deep Learning

- One learning model is all over the media right now: Deep Learning
- Deep learning = very large and complex neural networks
- Neural networks imitate the human brain.

Standard model of the human brain

- connected network of neurons
- input activates neurons, which start "firing" (= emitting electrical current)
- current activates other neurons \Rightarrow activation patterns
- learning $=$ strengthening connection between specific neurons

The current hype: Deep Learning

- One learning model is all over the media right now: Deep Learning
- Deep learning = very large and complex neural networks
- Neural networks imitate the human brain.

Standard model of the human brain

- connected network of neurons
- input activates neurons, which start "firing" (= emitting electrical current)
- current activates other neurons \Rightarrow activation patterns
- learning $=$ strengthening connection between specific neurons

The perceptron

- input layer: neurons that are sensitive to input
- output layer: neurons that represent output values
- connections: weighted links between input and output layer
- most activated output neuron represents decision

The perceptron

- input layer: neurons that are sensitive to input
- output layer: neurons that represent output values
- connections: weighted links between input and output layer
- most activated output neuron represents decision

The perceptron

- input layer: neurons that are sensitive to input
- output layer: neurons that represent output values
- connections: weighted links between input and output layer
- most activated output neuron represents decision

For the friendly neighborhood mathematician

- Perceptrons are linear functions (matrix multiplication).

Example (Computing Hi Dear)

$$
\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right) \otimes\left(\begin{array}{cc}
3 & 1 \\
0 & 5 \\
10 & 0
\end{array}\right)=\left(\begin{array}{ll}
3 & 6
\end{array}\right)
$$

- Since matrix multiplication is associative, every multi-layer perceptron can be reduced to one layer.

Example (Adding more weight to spam score)

$$
\left(\begin{array}{ll}
3 & 6
\end{array}\right) \otimes\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
9 & 6
\end{array}\right)=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right) \times\left(\begin{array}{cc}
9 & 1 \\
0 & 5 \\
30 & 0
\end{array}\right)
$$

Neural networks: The big picture

- Modern neural networks are just the perceptron on steroids.
- There's a lot of jargon:
- RNNs
- LSTMs
- embeddings
- encoder/decoder
- seq2seq
- Mathematically, modern neural networks intersperse linear functions ($=$ perceptron layers) with non-linear functions.
- And that's it.

Neural networks aren't a magic bullet

Are neural networks right for you?

- Data hungry

If you don't have tons of data, don't even try.

- Resource hungry

Large networks take forever to train.

- Black boxes

Nobody knows what they do. It's trial and error.

- Do not scale

If your objectives change, you're back to square 1 .

- No safeties

If something goes wrong, it often goes really wrong.

Neural networks in one picture

THIS IS YOUR MACHINE LEARNING SYSTEM?
YUP! YOU POUR THE DATA INTO THIS BIG PILE OF LINEAR ALGEBRA, THEN COLLECT THE ANSLLERS ON THE OTHER SIDE.
WHAT IF THE ANSWERS ARE WRONG?)

A common reply

> We're not aiming for perfection, it just has to be good enough.

Every engineer ever

My reply

1 It's still a bad choice for engineering:

- expensive (resources, time, labor)
- scales badly
- not modular

2 Your notions of "good enough" are wrong:

- precision
- recall
- F-score

They all ignore error quality.

Let's go to wasp school

Lesson 2

Wasps are strangely stupid.

Let's go to wasp school

Lesson 2

Wasps are strangely stupid.

Volunteer needed!

What we learned from wasp school

- Users endow systems with human-like qualities.
- When human biases are violated, the illusion breaks down.
- Breaking the illusion is jarring.

The true task of language technology

- Trick humans into considering you human-like.
- Minimize errors that violate human biases.

Biases in human cognition: a quick experiment

Biases in human cognition: a quick experiment

Biases in human cognition: a quick experiment

Biases in human cognition: a quick experiment

blip	not blip	blip	not blip
not gnok	not gnok	gnok	gnok
not bnik	not bnik	bnik	not bnik
glop	glop	not glop	glop
blok	blok	blok	blok

blip gnok not bnik

blip

blip

Biases in human cognition: a quick experiment

blip	not blip	blip	not blip blip	blip		
not gnok	not gnok	gnok	gnok			
not bnik	not bnik	bnik	not bnik			
glop	glop	not glop	glop			
blok	blok	blok	blok			
blip not red						

Biases in human cognition: a quick experiment

blip	not blip	blip	not blip	blip	blip	blip
not gnok	not gnok	gnok	gnok	gnok		
not bnik	not bnik	bnik	not bnik			
glop	glop	not glop	glop			
blok	blok	blok	blok			
blip not red						

Biases in human cognition: a quick experiment

blip	not blip	blip	not blip	blip	blip	blip
not gnok	not gnok	gnok	gnok	gnok	gnok	
not bnik	not bnik	bnik	not bnik			
glop	glop	not glop	glop			
blok	blok	blok	blok			
blip not red						

Biases in human cognition: a quick experiment

Biases in human cognition: a quick experiment

blip not blip blip	not blip	blip	blip	blip		
not gnok	not gnok	gnok	gnok	gnok	gnok	gnok
not bnik not bnik	bnik	not bnik				
glop	glop not glop glop					
blok blok	blok	blok				
gnok brown or rectangular						

Biases in human cognition: a quick experiment

blip not blip	blip	not blip	blip	blip	blip	
not gnok	not gnok	gnok	gnok	gnok	gnok	gnok
not bnik not bnik	bnik	not bnik	bnik			
glop	glop not glop glop					
blok	blok	blok	blok			
glip not red						
gnok brown or rectangular						

Biases in human cognition: a quick experiment

blip not blip	blip	not blip	blip	blip	blip	
not gnok	not gnok	gnok	gnok	gnok	gnok	gnok
not bnik not bnik	bnik	not bnik	bnik	bnik		
glop	glop not glop	glop				
blok blok	blok	blok				
gnok brown or rectangular						

Biases in human cognition: a quick experiment

blip not blip	blip	not blip	blip	blip	blip	
not gnok	not gnok	gnok	gnok	gnok	gnok	gnok
not bnik not bnik	bnik	not bnik	bnik	bnik	bnik	
glop	glop not glop	glop				
blok blok	blok	blok				
gnok brown or rectangular						

Biases in human cognition: a quick experiment

blip	not blip	blip	not blip	blip	blip	blip
not gnok	not gnok	gnok	gnok	gnok	gnok	gnok
not bnik	not bnik	bnik	not bnik	bnik	bnik	bnik
glop	glop	not glop	glop			
blok	blok	blok	blok			
blip not red						
gnok brown or rectangular						
bnik blip and gnok						

Biases in human cognition: a quick experiment

blip	not blip	blip	not blip	blip	blip	blip
not gnok	not gnok	gnok	gnok	gnok	gnok	gnok
not bnik	not bnik	bnik	not bnik	bnik	bnik	bnik
glop	glop	not glop	glop	glop		
blok	blok	blok	blok			
blip not red						
gnok brown or rectangular						
bnik blip and gnok						

Biases in human cognition: a quick experiment

blip	not blip	blip	not blip	blip	blip	blip
not gnok	not gnok	gnok	gnok	gnok	gnok	gnok
not bnik	not bnik	bnik	not bnik	bnik	bnik	bnik
glop	glop	not glop	glop	glop	glop	
blok	blok	blok	blok			
blip not red						
gnok brown or rectangular						
bnik blip and gnok						

Biases in human cognition: a quick experiment

blip	not blip	blip	not blip	blip	blip	blip
not gnok	not gnok	gnok	gnok	gnok	gnok	gnok
not bnik	not bnik	bnik	not bnik	bnik	bnik	bnik
glop	glop	not glop	glop	glop	glop	glop
blok	blok	blok	blok			
blip not red						
gnok brown or rectangular						
bnik blip and gnok						

Biases in human cognition: a quick experiment

blip	not blip	blip	not blip	blip	blip	blip
not gnok	not gnok	gnok	gnok	gnok	gnok	gnok
not bnik	not bnik	bnik	not bnik	bnik	bnik	bnik
glop	glop	not glop	glop	glop	glop	glop
blok	blok	blok	blok			
blip not red						
gnok brown or rectangular						
bnik blip and gnok						
glop if bnik and not brown, then not rectangular						

Biases in human cognition: a quick experiment

blip	not blip	blip	not blip	blip	blip	blip
not gnok	not gnok	gnok	gnok	gnok	gnok	gnok
not bnik	not bnik	bnik	not bnik	bnik	bnik	bnik
glop	glop	not glop	glop	glop	glop	glop
blok	blok	blok	blok	not blok		
blip not red						
gnok brown or rectangular						
bnik blip and gnok						
glop if bnik and not brown, then not rectangular						

Biases in human cognition: a quick experiment

blip	not blip	blip	not blip	blip	blip	blip
not gnok	not gnok	gnok	gnok	gnok	gnok	gnok
not bnik	not bnik	bnik	not bnik	bnik	bnik	bnik
glop	glop	not glop	glop	glop	glop	glop
blok	blok	blok	blok	not blok	not blok	
blip not red						
gnok brown or rectangular						
bnik blip and gnok						
glop if bnik and not brown, then not rectangular						

Biases in human cognition: a quick experiment

blip	not blip	blip	not blip	blip	blip	blip
not gnok	not gnok	gnok	gnok	gnok	gnok	gnok
not bnik	not bnik	bnik	not bnik	bnik	bnik	bnik
glop	glop	not glop	glop	glop	glop	glop
blok	blok	blok	blok	not blok	not blok	not blok
blip not red						
gnok brown or rectangular						
bnik blip and gnok						
glop if bnik and not brown, then not rectangular						

Biases in human cognition: a quick experiment

Human language bias and unreasonable expectations

Human bias is a much bigger issue for language than for, say, cars.

Robots' Narrow Range of Language Competence

Robots' Narrow Range of Language Competence

completely human

Robots' Narrow Range of Language Competence

completely human

perfect but weird voice

Robots' Narrow Range of Language Competence

completely human

perfect but weird voice

Arnold

Fake it till you make it!

- Language technology is still largely smokes and mirrors.
- User-facing software has to fool the user.
- Neural networks can't do that, they will trip up in weird ways.
- A hand-designed model is a better conman.

Be wrong, not weird

- 90% performance can be better than 99%.
- It depends on how unnatural the errors are.

So what's the alternative?

- "Traditional methods" that build on formal language theory are still very useful.
- Many long-known results have been forgotten, new ones have gone unnoticed.

Automata

CFGs

S	$\rightarrow \mathrm{NP}$ VP
NP	\rightarrow
$\mathrm{Det}(\mathrm{AP}) \mathrm{N} \mid \mathrm{PN}$	
AP	$\rightarrow \mathrm{A}(\mathrm{AP})$
VP	$\rightarrow \mathrm{V} \mid \mathrm{V}$ sub S
Det	\rightarrow the
A	\rightarrow old
N	\rightarrow man \| woman
V	\rightarrow died
Vsub	\rightarrow thinks

Using automata

- Intersection parsing of CFGs
- parsing $=$ generation with CFG that recognizes regular language containing input
- done via Bar-Hillel construction
- combine regex pattern matching with structural description
- Automata approximation of CFGs
- convert CFG into almost equivalent automaton
- linear-time parsing
- Discourse parsing
- parse an entire text rather than individual sentences
- simplifies meaning extraction
- Semiring parsing
- modularize parsing algorithm for multiple tasks
- recognition, structure, best n-structures, ...

Tree transducers

- Tree transducer $=$ rewriting mechanism for trees
- syntax-directed translation (cf. compiling)
- transfer parses into meanings
(e.g. Abstract Meaning Representations)
- seq2seq $=$ neural network counterpart for string transducers
- encoding trees for neural networks is really hard

Wrapping up

- Don't get me wrong, Deep Learning can be useful.
- But NNs are not a magic fix.
- The symbolic methods are still good, and it's where we'll see true progress.

Wrapping up

- Don't get me wrong, Deep Learning can be useful.
- But NNs are not a magic fix.
- The symbolic methods are still good, and it's where we'll see true progress.

Lesson 1

Pogo sticks don't fly.

Wrapping up

- Don't get me wrong, Deep Learning can be useful.
- But NNs are not a magic fix.
- The symbolic methods are still good, and it's where we'll see true progress.

Lesson 1

Pogo sticks don't fly.

Lesson 2

Wasps are strangely stupid.

