Grammar Size and Quantitative Restrictions on Movement

Thomas Graf

Stony Brook University mail@thomasgraf.net http://thomasgraf.net

> SCiL 2018 Jan 4–7, 2018

Outline

1 Movement in Minimalist Grammars

- Merge and Move
- Intermediate Movement

2 Single Movement Normal Form

3 Movement Constraints and Grammar Size: A Curious Conspiracy

Minimalist Grammars (MGs)

- Minimalist grammars (MGs) are a formalization of Chomskyan syntax (Stabler 1997, 2011)
- Succinct formalism for defining MCFGs
- Operations: Merge and Move
- Grammar is just a finite list of feature-annotated lexical items (LIs)

Chemistry	Syntax
atoms	words
electrons	features
molecules	sentences

the	men	like	which	men
$N^+ D^-$	N ⁻	D^+ D^+ V^-	N ⁺ D ⁻	N ⁻

- the and men have matching features, triggering Merge
- same steps for *which men*
- ► like merged with which men
- *like* merged with the men

the	men	like	which	men
N ⁺ D ⁻	N ⁻	$D^+ D^+ V^-$	N ⁺ D ⁻	N ⁻

- the and men have matching features, triggering Merge
- same steps for *which men*
- like merged with which men
- ► like merged with the men

Merge combines subtrees to encode head-argument dependencies. category feature N^- , V^- , ... selector feature N^+ , V^+ , ...

the and men have matching features, triggering Merge

- same steps for *which men*
- like merged with which men
- ► *like* merged with *the men*

- the and men have matching features, triggering Merge
- same steps for which men
- like merged with which men
- ► like merged with the men

Merge combines subtrees to encode head-argument dependencies. category feature N^- , V^- , ... selector feature N^+ , V^+ , ...

the and men have matching features, triggering Merge

- same steps for which men
- like merged with which men
- ► like merged with the men

- the and men have matching features, triggering Merge
- same steps for which men
- like merged with which men
- ► *like* merged with *the men*

- the and men have matching features, triggering Merge
- same steps for which men
- like merged with which men
- ► *like* merged with *the men*

- the and men have matching features, triggering Merge
- same steps for which men
- like merged with which men
- like merged with the men

- the and men have matching features, triggering Merge
- same steps for *which men*
- like merged with which men
- like merged with the men

Merge in Derivation Trees

MGs

Move displaces subtrees to derive the correct linear order. licensee feature wh^- , top⁻,... licensor feature wh^+ , top⁺,...

- ► Merge do
- Move triggered by features of opposite polarity

Move displaces subtrees to derive the correct linear order. licensee feature wh^- , top⁻,... licensor feature wh^+ , top⁺,...

Merge do

Move triggered by features of opposite polarity

Move displaces subtrees to derive the correct linear order. licensee feature wh^- , top⁻, ... licensor feature wh^+ , top⁺, ...

Merge do

Move triggered by features of opposite polarity

Move displaces subtrees to derive the correct linear order. licensee feature wh^- , top⁻,... licensor feature wh^+ , top⁺,...

► Merge *do*

Move triggered by features of opposite polarity

Move displaces subtrees to derive the correct **linear order**. licensee feature wh^- , top⁻,... licensor feature wh^+ , top⁺,...

- ► Merge *do*
- Move triggered by features of opposite polarity

Move in Derivation Trees

Move in Derivation Trees

Intermediate Movement

Intermediate movement is possible, but has no effect on output.

MGs

An Issue with Intermediate Movement

Minimalist analyses posit an unbounded number of intermediate landing sites.

(1) Who does John think *t* that Mary believes *t* that Sue said *t* that ... *t* that Bill hates *t*?

But every LI can only carry finitely many features!

Derivational Solution (Kobele 2006)

- Only final landing site has feature.
- Intermediate movement is inserted by mapping to phrase structure trees

Recipe for Successive Cyclic Movement

Add trace in every crossed Spec, CP.

Generalization: No Intermediate Movement (Graf et al. 2016)

Alëna Aksënova

Aniello De Santo

- Kobele's solution can be generalized.
- Intermediate movement never needs to be feature triggered.
- It is derivationally redundant.

Definition (Single Movement Normal Form)

An MG is in single movement normal form **(SMNF)** iff every LI has at most one licensee feature.

Theorem

For every MG there is a strongly equivalent MG that is in SMNF.

MGs have one central locality restriction on Move.

Shortest Move Constraint (SMC)

MGs have one central locality restriction on Move.

Shortest Move Constraint (SMC)

MGs have one central locality restriction on Move.

Shortest Move Constraint (SMC)

MGs have one central locality restriction on Move.

Shortest Move Constraint (SMC)

MGs have one central locality restriction on Move.

Shortest Move Constraint (SMC)

A Work-Around with Subscripts

Feature Subscripting

- ► For every LI *l*, only keep its last licensee feature.
- Add subscripts to licensee features to avoid SMC violations.

A Work-Around with Subscripts

Feature Subscripting

- ► For every LI *l*, only keep its last licensee feature.
- Add subscripts to licensee features to avoid SMC violations.

Lexical Blow-Up

- SMNF translation induces linear lexical blow-up
- Effect varies a lot depending on movement configurations:

lower bound linear size reduction(!),

1:1 for non-redundant grammars

upper bound large linear blow-up

$$\sum_{\mathbf{l}\in \mathbf{Lex}} \mu^{\gamma(\mathbf{l})+\delta(\mathbf{l})}$$

- μ ... maximum number of required indices
- $\gamma(1) \dots$ number of licensor features of LI *l* in original grammar
- $\delta(1)$... 1 if *l* has licensee features, 0 otherwise

Abstract Example (the Math)

The original grammar contains a single LI.

$$c :: C^+ g^+ f^+ C^+ g^+ f^+ C^- g^- f^-$$

► The SMNF grammar contains 8 variants.

$$\begin{array}{ll} \mathsf{c} :: \ \mathsf{C}^+ \ f_0^+ \ \mathsf{C}^+ \ f_0^+ \ \mathsf{C}^- \ f_0^- & \mathsf{c} :: \ \mathsf{C}^+ \ f_0^+ \ \mathsf{C}^+ \ f_0^+ \ \mathsf{C}^- \ f_1^- \\ \mathsf{c} :: \ \mathsf{C}^+ \ f_0^+ \ \mathsf{C}^+ \ f_1^+ \ \mathsf{C}^- \ f_0^- & \mathsf{c} :: \ \mathsf{C}^+ \ f_0^+ \ \mathsf{C}^+ \ f_1^+ \ \mathsf{C}^- \ f_1^- \\ \mathsf{c} :: \ \mathsf{C}^+ \ f_1^+ \ \mathsf{C}^+ \ f_0^+ \ \mathsf{C}^- \ f_0^- & \mathsf{c} :: \ \mathsf{C}^+ \ f_1^+ \ \mathsf{C}^+ \ f_0^+ \ \mathsf{C}^- \ f_1^- \\ \mathsf{c} :: \ \mathsf{C}^+ \ f_1^+ \ \mathsf{C}^+ \ f_1^+ \ \mathsf{C}^- \ f_0^- & \mathsf{c} :: \ \mathsf{C}^+ \ f_1^+ \ \mathsf{C}^+ \ f_1^+ \ \mathsf{C}^- \ f_1^- \end{array}$$

- We can get n variants of the LI by changing the phonetic exponent, so the grammar size increases at least by 8n.
- But we can keep increasing number **m** of arguments:

$$2^{m+1} \times n$$

Interim Summary

- Every MG is a finite set of LIs.
- The more LIs, the larger the grammar.
- Derivation trees are the primary data structure.
- Intermediate movement is derivationally redundant and costly:
 - complicates proofs
 - increases computational complexity (Graf and Heinz 2015)
 - at odds with MG processing models (Graf et al. 2017)
- But SMNF MGs may be much larger, which is bad for
 - parsing
 - learning
 - explanatory adequacy

A New Empirical Puzzle

Are the movement configurations we find in natural language exactly those that **induce little lexical blow-up**?

Interim Summary

- Every MG is a finite set of LIs.
- The more LIs, the larger the grammar.
- Derivation trees are the primary data structure.
- Intermediate movement is derivationally redundant and costly:
 - complicates proofs
 - increases computational complexity (Graf and Heinz 2015)
 - at odds with MG processing models (Graf et al. 2017)
- But SMNF MGs may be much larger, which is bad for
 - parsing
 - learning
 - explanatory adequacy

A New Empirical Puzzle

Are the movement configurations we find in natural language exactly those that **induce little lexical blow-up**?

What Produces a Large Blow-Up in Grammar Size?

Large blow-up occurs whenever there are multiple LIs s.t.

- 1 they all have the same final movement feature, and
- 2 they have overlapping movement paths, and
- 3 their relative configuration is not fixed across derivations.
- That's easy to do with abstract examples, but natural examples are tough.

The Constraint-Grammar-Size Conspiracy

Patterns that would induce a large blow-up are independently forbidden.

What Produces a Large Blow-Up in Grammar Size?

- Large blow-up occurs whenever there are multiple LIs s.t.
 - 1 they all have the same final movement feature, and
 - 2 they have overlapping movement paths, and
 - 3 their relative configuration is not fixed across derivations.
- That's easy to do with abstract examples, but natural examples are tough.

The Constraint-Grammar-Size Conspiracy

Patterns that would induce a large blow-up are independently forbidden.

John wonders who Bill saw.

John wonders who Bill saw.

- John wonders who Bill saw.
- * Who wonders Bill saw?

Freezing Effects

- One could also get overlapping paths by extracting an *f*-mover from within an *f*-mover.
- But this produces freezing effects.
- (5) It seems your comment about John annoys Sue.
- (6) * John seems your comment about *t* annoys Sue.
- (7) * Who don't you know [which pictures of *t*] Mary bought.

Wh-Islands

- Multiple A'-movers of the same type would also be an option.
- But here the wh-island constraint intervenes.
- (8) a. What_{wh} did John say Mary gave t_{wh} to Bill?
 - What_{wh0} did John say who_{wh1} Mary gave t_{wh0} to t_{wh1}? (Wh-island violation)
 - c. * What_{wh0} did Bill think which_{wh1} man t_{wh1} says who_{wh1} Mary gave t_{wh0} to t_{wh1} ?
 - d. * What_{wh0} did Sue claim who_{wh1} Bill thinks which_{wh2} man t_{wh2} says Mary gave t_{wh0} to t_{wh1}?

Taking Stock

- MGs are all about two structure-building operations: Merge and Move.
- Intermediate movement complicates formalism
- SMNF simplifies MGs, but at the risk of larger lexicons.
- Realistic grammars block the truly dangerous configurations.
- Unclear whether this is coincidence or conspiracy

References I

Graf, Thomas, Alëna Aksënova, and Aniello De Santo. 2016. A single movement normal form for Minimalist grammars. In *Formal Grammar : 20th and 21st International Conferences, FG 2015, Barcelona, Spain, August 2015, Revised Selected Papers. FG 2016, Bozen, Italy, August 2016,* ed. Annie Foret, Glyn Morrill, Reinhard Muskens, Rainer Osswald, and Sylvain Pogodalla, 200–215. Berlin, Heidelberg: Springer. URL https://doi.org/10.1007/978-3-662-53042-9_12.

- Graf, Thomas, and Jeffrey Heinz. 2015. Commonality in disparity: The computational view of syntax and phonology. Slides of a talk given at GLOW 2015, April 18, Paris, France.
- Graf, Thomas, James Monette, and Chong Zhang. 2017. Relative clauses as a benchmark for Minimalist parsing. *Journal of Language Modelling* 5:57–106. URL http://dx.doi.org/10.15398/jlm.v5i1.157.
- Kobele, Gregory M. 2006. Generating copies: An investigation into structural identity in language and grammar. Doctoral Dissertation, UCLA. URL http: //home.uchicago.edu/~gkobele/files/Kobele06GeneratingCopies.pdf.
- Stabler, Edward P. 1997. Derivational Minimalism. In Logical aspects of computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in Computer Science, 68–95. Berlin: Springer. URL https://doi.org/10.1007/BFb0052152.
- Stabler, Edward P. 2011. Computational perspectives on Minimalism. In Oxford handbook of linguistic Minimalism, ed. Cedric Boeckx, 617–643. Oxford: Oxford University Press.