
Phonology C-Command Syntax Conclusion

Subregular Syntax
The What, How, and Why

Thomas Graf

Stony Brook University
mail@thomasgraf.net

http://thomasgraf.net

You can get
the slides here
under “News”

SYNC 2018
December 1, 2018



Phonology C-Command Syntax Conclusion

A Mathematical Distinctness Theorem

I From a computational perspective,
there is a split between “P-side” and “S-side”.

regular < context-free < mildly context-sensitive < · · ·

Phonology

Morphology

Syntax

I Matches linguistic practice
(despite attempts at unification, e.g. DM)

I Why is syntax the outlier?

1



Phonology C-Command Syntax Conclusion

A Mathematical Distinctness Theorem

I From a computational perspective,
there is a split between “P-side” and “S-side”.

regular < context-free < mildly context-sensitive < · · ·

Phonology

Morphology

Syntax

Kaplan and Kay (1994)

I Matches linguistic practice
(despite attempts at unification, e.g. DM)

I Why is syntax the outlier?

1



Phonology C-Command Syntax Conclusion

A Mathematical Distinctness Theorem

I From a computational perspective,
there is a split between “P-side” and “S-side”.

regular < context-free < mildly context-sensitive < · · ·

Phonology

Morphology

Syntax

Kaplan and Kay (1994)

Karttunen et al. (1992)

I Matches linguistic practice
(despite attempts at unification, e.g. DM)

I Why is syntax the outlier?

1



Phonology C-Command Syntax Conclusion

A Mathematical Distinctness Theorem

I From a computational perspective,
there is a split between “P-side” and “S-side”.

regular < context-free < mildly context-sensitive < · · ·

Phonology

Morphology

Syntax

Kaplan and Kay (1994)

Karttunen et al. (1992)

Joshi (1985)
Shieber (1985)

I Matches linguistic practice
(despite attempts at unification, e.g. DM)

I Why is syntax the outlier?

1



Phonology C-Command Syntax Conclusion

An Alternative: Simple Syntax

I The postulated split is misleading.
I If we probe deeper, we find that

I syntax is just as simple,
I phonology, morphology, and syntax

are weaker than regular ⇒ subregular
I relativized locality plays a major role,
I and is approximated by the formal class TSL.

I This has repercussions for
I cognitive architecture of language,
I learning,
I processing.

2



Phonology C-Command Syntax Conclusion

Outline

1 Locality and Tiers in Phonology
Tier-Based Strictly Local (TSL)
The Cognitive Picture

2 c-Command Constraints in Syntax
c-Strings
The Cognitive Picture

3 Syntax
Minimalist Grammars
Merge is TSL
Move is TSL



Phonology C-Command Syntax Conclusion

The Subregular Program

I Received view: class of regular (= finite-state)
string languages maximally complex

I Subregular hierarchy: even weaker/simpler subclasses

I The tier-based strictly local (TSL) languages
have emerged as particularly important.

Jeff Jane Adam Kevin
Heinz Chandlee Jardine McMullin

3



Phonology C-Command Syntax Conclusion

Example: Word-Final Devoicing

I Captured by forbidding voiced segments at the end of a word

I German: Don’t have z$ or v$ or d$ (where $ = word edge).

Example: German

$ r a d $∗

∗z$
∗v$
∗d$

$ r a t $

4



Phonology C-Command Syntax Conclusion

Example: Word-Final Devoicing

I Captured by forbidding voiced segments at the end of a word

I German: Don’t have z$ or v$ or d$ (where $ = word edge).

Example: German

$ r a d $∗

∗z$
∗v$
∗d$

$ r a t $

4



Phonology C-Command Syntax Conclusion

Example: Word-Final Devoicing

I Captured by forbidding voiced segments at the end of a word

I German: Don’t have z$ or v$ or d$ (where $ = word edge).

Example: German

$ r a d $∗

∗z$
∗v$
∗d$

$ r a t $

4



Phonology C-Command Syntax Conclusion

Example: Word-Final Devoicing

I Captured by forbidding voiced segments at the end of a word

I German: Don’t have z$ or v$ or d$ (where $ = word edge).

Example: German

$ r a d $∗

∗z$
∗v$
∗d$

$ r a t $

4



Phonology C-Command Syntax Conclusion

Example: Word-Final Devoicing

I Captured by forbidding voiced segments at the end of a word

I German: Don’t have z$ or v$ or d$ (where $ = word edge).

Example: German

$ r a d $∗

∗z$
∗v$
∗d$

$ r a t $

4



Phonology C-Command Syntax Conclusion

Example: Word-Final Devoicing

I Captured by forbidding voiced segments at the end of a word

I German: Don’t have z$ or v$ or d$ (where $ = word edge).

Example: German

$ r a d $∗

∗z$
∗v$
∗d$

$ r a t $

4



Phonology C-Command Syntax Conclusion

Example: Word-Final Devoicing

I Captured by forbidding voiced segments at the end of a word

I German: Don’t have z$ or v$ or d$ (where $ = word edge).

Example: German

$ r a d $∗

∗z$
∗v$
∗d$

$ r a t $

4



Phonology C-Command Syntax Conclusion

Example: Word-Final Devoicing

I Captured by forbidding voiced segments at the end of a word

I German: Don’t have z$ or v$ or d$ (where $ = word edge).

Example: German

$ r a d $∗

∗z$
∗v$
∗d$

$ r a t $

4



Phonology C-Command Syntax Conclusion

Example: Word-Final Devoicing

I Captured by forbidding voiced segments at the end of a word

I German: Don’t have z$ or v$ or d$ (where $ = word edge).

Example: German

$ r a d $∗

∗z$
∗v$
∗d$

$ r a t $

4



Phonology C-Command Syntax Conclusion

Example: Word-Final Devoicing

I Captured by forbidding voiced segments at the end of a word

I German: Don’t have z$ or v$ or d$ (where $ = word edge).

Example: German

$ r a d $∗

∗z$
∗v$
∗d$

$ r a t $

4



Phonology C-Command Syntax Conclusion

Example: Word-Final Devoicing

I Captured by forbidding voiced segments at the end of a word

I German: Don’t have z$ or v$ or d$ (where $ = word edge).

Example: German

$ r a d $∗

∗z$
∗v$
∗d$

$ r a t $

4



Phonology C-Command Syntax Conclusion

Example: Word-Final Devoicing

I Captured by forbidding voiced segments at the end of a word

I German: Don’t have z$ or v$ or d$ (where $ = word edge).

Example: German

$ r a d $∗

∗z$
∗v$
∗d$

$ r a t $

4



Phonology C-Command Syntax Conclusion

Example: Intervocalic Voicing

I Captured by forbidding voiceless segments between vowels
I Suppose:

I [−voice] = {s,S}
I V = {a,i,u}

I Then: don’t have asa, aSa, asi, aSi, . . .

Example

$ a z u s a $∗

5



Phonology C-Command Syntax Conclusion

Example: Intervocalic Voicing

I Captured by forbidding voiceless segments between vowels
I Suppose:

I [−voice] = {s,S}
I V = {a,i,u}

I Then: don’t have asa, aSa, asi, aSi, . . .

Example

$ a z u s a $∗

5



Phonology C-Command Syntax Conclusion

Example: Intervocalic Voicing

I Captured by forbidding voiceless segments between vowels
I Suppose:

I [−voice] = {s,S}
I V = {a,i,u}

I Then: don’t have asa, aSa, asi, aSi, . . .

Example

$ a z u s a $∗

5



Phonology C-Command Syntax Conclusion

Example: Intervocalic Voicing

I Captured by forbidding voiceless segments between vowels
I Suppose:

I [−voice] = {s,S}
I V = {a,i,u}

I Then: don’t have asa, aSa, asi, aSi, . . .

Example

$ a z u s a $∗

5



Phonology C-Command Syntax Conclusion

Example: Intervocalic Voicing

I Captured by forbidding voiceless segments between vowels
I Suppose:

I [−voice] = {s,S}
I V = {a,i,u}

I Then: don’t have asa, aSa, asi, aSi, . . .

Example

$ a z u s a $∗

5



Phonology C-Command Syntax Conclusion

Example: Intervocalic Voicing

I Captured by forbidding voiceless segments between vowels
I Suppose:

I [−voice] = {s,S}
I V = {a,i,u}

I Then: don’t have asa, aSa, asi, aSi, . . .

Example

$ a z u s a $∗

5



Phonology C-Command Syntax Conclusion

A Problem: Samala Sibilant Harmony
I If multiple sibilants occur in the same word,

they must all be +anterior (s,z) or −anterior (S,Z).
I In other words: Don’t mix purple and teal.

∗sS ∗sZ ∗zS ∗zZ
∗Ss ∗Zs ∗Sz ∗Zz

I But: Sibilants can be arbitrarily far away from each other!

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

$ s t a j a n o w o n w a S $∗

6



Phonology C-Command Syntax Conclusion

A Problem: Samala Sibilant Harmony
I If multiple sibilants occur in the same word,

they must all be +anterior (s,z) or −anterior (S,Z).
I In other words: Don’t mix purple and teal.

∗sS ∗sZ ∗zS ∗zZ
∗Ss ∗Zs ∗Sz ∗Zz

I But: Sibilants can be arbitrarily far away from each other!

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

$ s t a j a n o w o n w a S $∗

6



Phonology C-Command Syntax Conclusion

A Problem: Samala Sibilant Harmony
I If multiple sibilants occur in the same word,

they must all be +anterior (s,z) or −anterior (S,Z).
I In other words: Don’t mix purple and teal.

∗sS ∗sZ ∗zS ∗zZ
∗Ss ∗Zs ∗Sz ∗Zz

I But: Sibilants can be arbitrarily far away from each other!

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

$ s t a j a n o w o n w a S $∗

6



Phonology C-Command Syntax Conclusion

A Problem: Samala Sibilant Harmony
I If multiple sibilants occur in the same word,

they must all be +anterior (s,z) or −anterior (S,Z).
I In other words: Don’t mix purple and teal.

∗sS ∗sZ ∗zS ∗zZ
∗Ss ∗Zs ∗Sz ∗Zz

I But: Sibilants can be arbitrarily far away from each other!

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

$ s t a j a n o w o n w a S $∗

6



Phonology C-Command Syntax Conclusion

A Problem: Samala Sibilant Harmony
I If multiple sibilants occur in the same word,

they must all be +anterior (s,z) or −anterior (S,Z).
I In other words: Don’t mix purple and teal.

∗sS ∗sZ ∗zS ∗zZ
∗Ss ∗Zs ∗Sz ∗Zz

I But: Sibilants can be arbitrarily far away from each other!

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

$ s t a j a n o w o n w a S $∗

6



Phonology C-Command Syntax Conclusion

A Problem: Samala Sibilant Harmony
I If multiple sibilants occur in the same word,

they must all be +anterior (s,z) or −anterior (S,Z).
I In other words: Don’t mix purple and teal.

∗sS ∗sZ ∗zS ∗zZ
∗Ss ∗Zs ∗Sz ∗Zz

I But: Sibilants can be arbitrarily far away from each other!

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

$ s t a j a n o w o n w a S $∗

6



Phonology C-Command Syntax Conclusion

Making Long-Distance Dependencies Local

I Let’s take a clue from phonology:
create locality with tiers.
(Goldsmith 1985; Heinz et al. 2011)

I Enforce constraints on tier,
rather than string Jeff Heinz

Example: Samala Revisited

1 Project sibilant tier

2 ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

$ s S $

$ h a s x i n t i l a w a S $∗

$ S S $

$ h a S x i n t i l a w a S $

7



Phonology C-Command Syntax Conclusion

Making Long-Distance Dependencies Local

I Let’s take a clue from phonology:
create locality with tiers.
(Goldsmith 1985; Heinz et al. 2011)

I Enforce constraints on tier,
rather than string Jeff Heinz

Example: Samala Revisited

1 Project sibilant tier

2 ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

$ s S $

$ h a s x i n t i l a w a S $∗

$ S S $

$ h a S x i n t i l a w a S $

7



Phonology C-Command Syntax Conclusion

Making Long-Distance Dependencies Local

I Let’s take a clue from phonology:
create locality with tiers.
(Goldsmith 1985; Heinz et al. 2011)

I Enforce constraints on tier,
rather than string Jeff Heinz

Example: Samala Revisited

1 Project sibilant tier

2 ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

$ s S $

$ h a s x i n t i l a w a S $∗

$ S S $

$ h a S x i n t i l a w a S $

7



Phonology C-Command Syntax Conclusion

Making Long-Distance Dependencies Local

I Let’s take a clue from phonology:
create locality with tiers.
(Goldsmith 1985; Heinz et al. 2011)

I Enforce constraints on tier,
rather than string Jeff Heinz

Example: Samala Revisited

1 Project sibilant tier

2 ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

$ s S $

$ h a s x i n t i l a w a S $∗

$ S S $

$ h a S x i n t i l a w a S $

7



Phonology C-Command Syntax Conclusion

Making Long-Distance Dependencies Local

I Let’s take a clue from phonology:
create locality with tiers.
(Goldsmith 1985; Heinz et al. 2011)

I Enforce constraints on tier,
rather than string Jeff Heinz

Example: Samala Revisited

1 Project sibilant tier

2 ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

$ s S $

$ h a s x i n t i l a w a S $∗

$ S S $

$ h a S x i n t i l a w a S $

7



Phonology C-Command Syntax Conclusion

Making Long-Distance Dependencies Local

I Let’s take a clue from phonology:
create locality with tiers.
(Goldsmith 1985; Heinz et al. 2011)

I Enforce constraints on tier,
rather than string Jeff Heinz

Example: Samala Revisited

1 Project sibilant tier

2 ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

$ s S $

$ h a s x i n t i l a w a S $∗

$ S S $

$ h a S x i n t i l a w a S $

7



Phonology C-Command Syntax Conclusion

Making Long-Distance Dependencies Local

I Let’s take a clue from phonology:
create locality with tiers.
(Goldsmith 1985; Heinz et al. 2011)

I Enforce constraints on tier,
rather than string Jeff Heinz

Example: Samala Revisited

1 Project sibilant tier

2 ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

$ s S $

$ h a s x i n t i l a w a S $∗

$ S S $

$ h a S x i n t i l a w a S $

7



Phonology C-Command Syntax Conclusion

Making Long-Distance Dependencies Local

I Let’s take a clue from phonology:
create locality with tiers.
(Goldsmith 1985; Heinz et al. 2011)

I Enforce constraints on tier,
rather than string Jeff Heinz

Example: Samala Revisited

1 Project sibilant tier

2 ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

$ s S $

$ h a s x i n t i l a w a S $∗

$ S S $

$ h a S x i n t i l a w a S $

7



Phonology C-Command Syntax Conclusion

Making Long-Distance Dependencies Local

I Let’s take a clue from phonology:
create locality with tiers.
(Goldsmith 1985; Heinz et al. 2011)

I Enforce constraints on tier,
rather than string Jeff Heinz

Example: Samala Revisited

1 Project sibilant tier

2 ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

$ s S $

$ h a s x i n t i l a w a S $∗

$ S S $

$ h a S x i n t i l a w a S $

7



Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

TSL Across Language Modules

I Phonological dependencies fall within the TSL region.

I Morphological dependencies do, too.
(Aksënova et al. 2016; Aksënova and De Santo 2017;
Chandlee 2017)

I Phonology and morphology are computationally similar.

Alëna Sophie
Aksënova Moradi

9



Phonology C-Command Syntax Conclusion

Why is TSL Relevant?

I Linguistically natural

I Captures wide range of phonotactic dependencies

I Correct and efficient learning algorithms
(I/O-TSL work in progress)
(Jardine and McMullin 2017)

I Low resource demand
I remember the last n symbols of a specific type
I requires little working memory
I no complex memory architecture

I Rules out unattested patterns
I center embedding
I harmony only if separated by even number of segments

10



Phonology C-Command Syntax Conclusion

Could Syntax Also be Subregular?

TSL < regular < context-free < mildly context-sensitive < · · ·

Phonology

Morphology

Syntax

Kaplan and Kay (1994)

Karttunen et al. (1992)

Shieber (1985)

I Syntax seems even more like an outlier. . .

I Don’t look at strings!
What about syntactic dependencies?

Nazila Shafiei 11



Phonology C-Command Syntax Conclusion

c-Strings

Command-Strings

The c[ommand]-string of a
node n contains

I n and

I every node that
commands n.

I easily computed from
dependency trees

I c-command constraints
seem to be largely
IOTSL over c-strings

Example

C

T

say

the

kids

that

T

likes

’s

Mary father

this

movie

this ’s likes T that the say T C

12



Phonology C-Command Syntax Conclusion

c-Strings

Command-Strings

The c[ommand]-string of a
node n contains

I n and

I every node that
commands n.

I easily computed from
dependency trees

I c-command constraints
seem to be largely
IOTSL over c-strings

Example

C

T

say

the

kids

that

T

likes

’s

Mary father

this

movie

this ’s likes T that the say T C
12



Phonology C-Command Syntax Conclusion

Principle A

Principle A (as a distributional constraint)

Every reflexive must be c-commanded by a DP in the same TP.

Equivalent c-String Constraint

If the c-string starts with a reflexive,
then at least one D must occur before the first T.

TSL Strategy for Principle A

1 Always project first symbol (ITSL)

2 Project D/T if previous symbol is Refl (OTSL)

3 Constraint: ∗Refl T (bigram)

13



Phonology C-Command Syntax Conclusion

Principle A

Principle A (as a distributional constraint)

Every reflexive must be c-commanded by a DP in the same TP.

Equivalent c-String Constraint

If the c-string starts with a reflexive,
then at least one D must occur before the first T.

TSL Strategy for Principle A

1 Always project first symbol (ITSL)

2 Project D/T if previous symbol is Refl (OTSL)

3 Constraint: ∗Refl T (bigram)

13



Phonology C-Command Syntax Conclusion

Principle A

Principle A (as a distributional constraint)

Every reflexive must be c-commanded by a DP in the same TP.

Equivalent c-String Constraint

If the c-string starts with a reflexive,
then at least one D must occur before the first T.

TSL Strategy for Principle A

1 Always project first symbol (ITSL)

2 Project D/T if previous symbol is Refl (OTSL)

3 Constraint: ∗Refl T (bigram)

13



Phonology C-Command Syntax Conclusion

Example of Principle A as a TSL Constraint

C

T

said

John C

T

praised

Bill himself

$ himself Bill $

himself Bill praised T C · · ·

C

T

said

John C

T

praised

himself Bill

$ himself T $

himself praised T C · · ·
14



Phonology C-Command Syntax Conclusion

Example of Principle A as a TSL Constraint

C

T

said

John C

T

praised

Bill himself

$ himself Bill $

himself Bill praised T C · · ·

C

T

said

John C

T

praised

himself Bill

$ himself T $

himself praised T C · · ·
14



Phonology C-Command Syntax Conclusion

Example of Principle A as a TSL Constraint

C

T

said

John C

T

praised

Bill himself

$ himself Bill $

himself Bill praised T C · · ·

C

T

said

John C

T

praised

himself Bill

$ himself T $

himself praised T C · · ·
14



Phonology C-Command Syntax Conclusion

Another Example: Swedish sig

I Swedish sig must be non-locally bound.

(1) a. John said Bill praised sig.

b. * Bill praised sig.

TSL Strategy for sig

1 Always project first symbol (ITSL)

2 Project T if previous symbol is sig (OTSL)

3 Project D if previous symbol is T (OTSL)

4 Constraint: ∗sig T $ (trigram)

$ sig T John $

sig Bill praised T C John · · ·

$ sig T $

sig Bill praised T C

15



Phonology C-Command Syntax Conclusion

Another Example: Swedish sig

I Swedish sig must be non-locally bound.

(1) a. John said Bill praised sig.

b. * Bill praised sig.

TSL Strategy for sig

1 Always project first symbol (ITSL)

2 Project T if previous symbol is sig (OTSL)

3 Project D if previous symbol is T (OTSL)

4 Constraint: ∗sig T $ (trigram)

$ sig T John $

sig Bill praised T C John · · ·

$ sig T $

sig Bill praised T C

15



Phonology C-Command Syntax Conclusion

Another Example: Swedish sig

I Swedish sig must be non-locally bound.

(1) a. John said Bill praised sig.

b. * Bill praised sig.

TSL Strategy for sig

1 Always project first symbol (ITSL)

2 Project T if previous symbol is sig (OTSL)

3 Project D if previous symbol is T (OTSL)

4 Constraint: ∗sig T $ (trigram)

$ sig T John $

sig Bill praised T C John · · ·

$ sig T $

sig Bill praised T C

15



Phonology C-Command Syntax Conclusion

Comparison to Phonology and Morphology

Similarities

I mostly bigram and trigram constraints

I simple structural contexts

I dependencies in phonology are also c-command-like
(Graf 2018a)

Differences

I OTSL seems more common in syntax

A Typological Prediction

Formal typology of syntactic constraints
should mirror phonology and morphology.

16



Phonology C-Command Syntax Conclusion

Connection to Parsing

I A tree is well-formed only if
each node has a well-formed c-string.

I verifiable by deterministic top-down tree automaton
with finite look-ahead
⇒ efficient incremental parsing

An Intriguing Hypothesis

I Why c-command (rather than, say, precedence)?

I Because it allows for more efficient processing!

I But syntax isn’t just c-command.
There’s also displacement/movement. . .

17



Phonology C-Command Syntax Conclusion

Connection to Parsing

I A tree is well-formed only if
each node has a well-formed c-string.

I verifiable by deterministic top-down tree automaton
with finite look-ahead
⇒ efficient incremental parsing

An Intriguing Hypothesis

I Why c-command (rather than, say, precedence)?

I Because it allows for more efficient processing!

I But syntax isn’t just c-command.
There’s also displacement/movement. . .

17



Phonology C-Command Syntax Conclusion

Connection to Parsing

I A tree is well-formed only if
each node has a well-formed c-string.

I verifiable by deterministic top-down tree automaton
with finite look-ahead
⇒ efficient incremental parsing

An Intriguing Hypothesis

I Why c-command (rather than, say, precedence)?

I Because it allows for more efficient processing!

I But syntax isn’t just c-command.
There’s also displacement/movement. . .

17



Phonology C-Command Syntax Conclusion

Minimalist Grammars

Ed Stabler

I Minimalist grammars (MGs) are a
formalization of Minimalist syntax.
(Stabler 1997, 2011)

I Operations: Merge and Move

I Adopt Chomsky-Borer hypothesis:
Grammar is just a finite list of
feature-annotated lexical items

Chemistry Syntax
atoms words

electrons features
molecules sentences

18



Phonology C-Command Syntax Conclusion

MG Syntax in Action
CP

DPw

D

which

N

man

C′

C

do Ti

-ed

TP

DPm

Mary

T′

ti VP

tm V’

V

kiss

tw

Move(wh)

Move(h)

Merge(T)

do Move(nom)

Merge(V)

-ed Merge(D)

Mary Merge(D)

kiss Merge(N)

which man

T+ h+ wh+ C−

D− nom−

D+ D+ V−

N+ D− wh− N−

V+ nom+ T− h−

Phrase Structure Tree

Derivation Tree

19



Phonology C-Command Syntax Conclusion

MG Syntax in Action
CP

DPw

D

which

N

man

C′

C

do Ti

-ed

TP

DPm

Mary

T′

ti VP

tm V’

V

kiss

tw

Move(wh)

Move(h)

Merge(T)

do Move(nom)

Merge(V)

-ed Merge(D)

Mary Merge(D)

kiss Merge(N)

which man

T+ h+ wh+ C−

D− nom−

D+ D+ V−

N+ D− wh− N−

V+ nom+ T− h−

Phrase Structure Tree Derivation Tree
19



Phonology C-Command Syntax Conclusion

The Central Role of Derivation Trees

I Derivation trees are rarely considered in generative syntax.
(but see Epstein et al. 1998)

I Satisfy Chomsky’s structural desiderata:
I no linear order
I label-free
I extension condition
I inclusiveness condition

I Contain all information to produce phrase structure trees
⇒ central data structure of Minimalist syntax

20



Phonology C-Command Syntax Conclusion

Merge is TSL

Merge(D)

Merge(N)

the student

Merge(D)

pranked me
N+ D− N− D+ D+ V− D−

I The selector features of the head have to match
the category features of the arguments.

I 1-to-1 match between selector features and category features.

I This is naturally expressed as TSL over trees.

21



Phonology C-Command Syntax Conclusion

Category Tiers for Merge

I Project tree tier for each category X.

I Every X− has a Merge node as its mother.

I Every Merge node has exactly one X− among its daughters.

$

Merge(N)

student

$

Merge(D)

Merge(N)

the student

Merge(D)

pranked me

$

Merge(D)

the

$

Merge(D)

me

$

N+ D− N− D+ D+ V− D−N− D−

D−

22



Phonology C-Command Syntax Conclusion

Category Tiers for Merge

I Project tree tier for each category X.

I Every X− has a Merge node as its mother.

I Every Merge node has exactly one X− among its daughters.

$

Merge(N)

student

$

Merge(D)

Merge(N)

the student

Merge(D)

pranked me

$

Merge(D)

the

$

Merge(D)

me

$

N+ D− N− D+ D+ V− D−N− D−

D−

22



Phonology C-Command Syntax Conclusion

Category Tiers for Merge

I Project tree tier for each category X.

I Every X− has a Merge node as its mother.

I Every Merge node has exactly one X− among its daughters.

$

Merge(N)

student

$

Merge(D)

Merge(N)

the student

Merge(D)

pranked me

$

Merge(D)

the

$

Merge(D)

me

$

N+ D− N− D+ D+ V− D−N− D−

D−

22



Phonology C-Command Syntax Conclusion

Illicit Merge Yields Ill-Formed Tiers

$

student

$

Merge(*)

student Merge(D)

pranked me

$

Merge(D)

Merge(D)

me

$

N−

D+ D+ V− D−

N−

D−

I This handles Merge.

I Moving on to Move. . .

23



Phonology C-Command Syntax Conclusion

Illicit Merge Yields Ill-Formed Tiers

$

student

$

Merge(*)

student Merge(D)

pranked me

$

Merge(D)

Merge(D)

me

$

N−

D+ D+ V− D−

N−

D−

I This handles Merge.

I Moving on to Move. . .

23



Phonology C-Command Syntax Conclusion

Illicit Merge Yields Ill-Formed Tiers

$

student

$

Merge(*)

student Merge(D)

pranked me

$

Merge(D)

Merge(D)

me

$

N−

D+ D+ V− D−

N−

D−

I This handles Merge.

I Moving on to Move. . .

23



Phonology C-Command Syntax Conclusion

Move: Single Movement Normal Form
I Assumption: every phrase at most one movement feature
I Intermediate landing sites not feature-triggered

(Graf et al. 2016)

Move(wh)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

who slept

CP

who C′

C TP

t T′

T VP

t slept

Move(wh)

Merge(T)

C Merge(V)

T Merge(D)

who slept

nom

wh
wh

24



Phonology C-Command Syntax Conclusion

Move: Single Movement Normal Form
I Assumption: every phrase at most one movement feature
I Intermediate landing sites not feature-triggered

(Graf et al. 2016)

Move(wh)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

who slept

CP

who C′

C TP

t T′

T VP

t slept

Move(wh)

Merge(T)

C Merge(V)

T Merge(D)

who slept

nom

wh
wh

24



Phonology C-Command Syntax Conclusion

Move: Single Movement Normal Form
I Assumption: every phrase at most one movement feature
I Intermediate landing sites not feature-triggered

(Graf et al. 2016)

Move(wh)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

who slept

CP

who C′

C TP

t T′

T VP

t slept

Move(wh)

Merge(T)

C Merge(V)

T Merge(D)

who slept

nom

wh
wh

24



Phonology C-Command Syntax Conclusion

Move: Single Movement Normal Form
I Assumption: every phrase at most one movement feature
I Intermediate landing sites not feature-triggered

(Graf et al. 2016)

Move(wh)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

who slept

CP

who C′

C TP

t T′

T VP

t slept

Move(wh)

Merge(T)

C Merge(V)

T Merge(D)

who slept

nom

wh
wh

24



Phonology C-Command Syntax Conclusion

Move: Single Movement Normal Form
I Assumption: every phrase at most one movement feature
I Intermediate landing sites not feature-triggered

(Graf et al. 2016)

Move(wh)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

who slept

CP

who C′

C TP

t T′

T VP

t slept

Move(wh)

Merge(T)

C Merge(V)

T Merge(D)

who slept

nom

wh
wh

24



Phonology C-Command Syntax Conclusion

Move: Single Movement Normal Form
I Assumption: every phrase at most one movement feature
I Intermediate landing sites not feature-triggered

(Graf et al. 2016)

Move(wh)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

who slept

CP

who C′

C TP

t T′

T VP

t slept

Move(wh)

Merge(T)

C Merge(V)

T Merge(D)

who slept

nom

wh
wh

24



Phonology C-Command Syntax Conclusion

Movement Tiers for Move
I Project tree tier for each movement type x.
I Every x− has a Move node as its mother.
I Every Move node has exactly one x− among its daughters.

$

Move(top)

this

$

Move(top)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(D)

likes Merge(N)

this man

$

Move(nom)

Bill

$
N− nom−

D− top−

V+ nom+ T−

T+ top+ C−

25



Phonology C-Command Syntax Conclusion

Movement Tiers for Move
I Project tree tier for each movement type x.
I Every x− has a Move node as its mother.
I Every Move node has exactly one x− among its daughters.

$

Move(top)

this

$

Move(top)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(D)

likes Merge(N)

this man

$

Move(nom)

Bill

$
N− nom−

D− top−

V+ nom+ T−

T+ top+ C−

25



Phonology C-Command Syntax Conclusion

Movement Tiers for Move
I Project tree tier for each movement type x.
I Every x− has a Move node as its mother.
I Every Move node has exactly one x− among its daughters.

$

Move(top)

this

$

Move(top)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(D)

likes Merge(N)

this man

$

Move(nom)

Bill

$
N− nom−

D− top−

V+ nom+ T−

T+ top+ C−

25



Phonology C-Command Syntax Conclusion

Movement Tiers for Move
I Project tree tier for each movement type x.
I Every x− has a Move node as its mother.
I Every Move node has exactly one x− among its daughters.

$

Move(top)

this

$

Move(top)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(D)

likes Merge(N)

this man

$

Move(nom)

Bill

$
N− nom−

D− top−

V+ nom+ T−

T+ top+ C−

25



Phonology C-Command Syntax Conclusion

Movement Tiers for Move
I Project tree tier for each movement type x.
I Every x− has a Move node as its mother.
I Every Move node has exactly one x− among its daughters.

$

Move(top)

this

$

Move(top)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(D)

likes Merge(N)

this man

$

Move(nom)

Bill

$
N− nom−

D− top−

V+ nom+ T−

T+ top+ C−

25



Phonology C-Command Syntax Conclusion

A Tier With Multiple Movers
Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(C)

thinks Merge(T)

that Move(nom)

Merge(V)

T Merge(D)

Sue left

$

Move(nom)

Bill

$

Move(nom)

Sue

$

26



Phonology C-Command Syntax Conclusion

A Tier With Multiple Movers
Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(C)

thinks Merge(T)

that Move(nom)

Merge(V)

T Merge(D)

Sue left

$

Move(nom)

Bill

$

Move(nom)

Sue

$

26



Phonology C-Command Syntax Conclusion

A Tier With Multiple Movers
Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(C)

thinks Merge(T)

that Move(nom)

Merge(V)

T Merge(D)

Sue left

$

Move(nom)

Bill

$

Move(nom)

Sue

$

26



Phonology C-Command Syntax Conclusion

A Tier With Multiple Movers
Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(C)

thinks Merge(T)

that Move(nom)

Merge(V)

T Merge(D)

Sue left

$

Move(nom)

Bill

$

Move(nom)

Sue

$

26



Phonology C-Command Syntax Conclusion

Blocking Simple Cases of Illicit Movement

$

this

$

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(D)

likes Merge(N)

this man

$

Move(nom)

$

N−

D− top−

V+ nom+ T−

T+ C−

27



Phonology C-Command Syntax Conclusion

Blocking Simple Cases of Illicit Movement

$

this

$

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(D)

likes Merge(N)

this man

$

Move(nom)

$

N−

D− top−

V+ nom+ T−

T+ C−

27



Phonology C-Command Syntax Conclusion

Blocking Simple Cases of Illicit Movement

$

this

$

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(D)

likes Merge(N)

this man

$

Move(nom)

$

N−

D− top−

V+ nom+ T−

T+ C−

27



Phonology C-Command Syntax Conclusion

Blocking Simple Cases of Illicit Movement

$

this

$

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(D)

likes Merge(N)

this man

$

Move(nom)

$

N−

D− top−

V+ nom+ T−

T+ C−

27



Phonology C-Command Syntax Conclusion

Blocking Many-to-One Movement

$

Move(wh)

what

$

who

$

Move(wh)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(P)

Merge(D)

gave what

Merge(D)

to who

$

Move(nom)

Bill

$

28



Phonology C-Command Syntax Conclusion

Blocking Many-to-One Movement

$

Move(wh)

what

$

who

$

Move(wh)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(P)

Merge(D)

gave what

Merge(D)

to who

$

Move(nom)

Bill

$

28



Phonology C-Command Syntax Conclusion

Blocking Many-to-One Movement

$

Move(wh)

what

$

who

$

Move(wh)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(P)

Merge(D)

gave what

Merge(D)

to who

$

Move(nom)

Bill

$

28



Phonology C-Command Syntax Conclusion

Blocking Many-to-One Movement

$

Move(wh)

what

$

who

$

Move(wh)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(P)

Merge(D)

gave what

Merge(D)

to who

$

Move(nom)

Bill

$

28



Phonology C-Command Syntax Conclusion

The Common Core of Merge and Move

TSL Strategy for Merge

I Project tree tier for each category X.

I Every X− has a Merge node as its mother.

I Every Merge node has exactly one X− among its daughters.

TSL Strategy for Move

I Project tree tier for each movement type x.

I Every x− has a Move node as its mother.

I Every Move node has exactly one x− among its daughters.

Note: constraints again highly local

29



Phonology C-Command Syntax Conclusion

Summary

I Syntax looks like a complex outlier.
I But not if we choose appropriate representations:

I c-command dependencies are TSL over c-strings
I Merge and Move are TSL over derivation trees

I Computational parallelism:
I phonology is TSL
I morphology is TSL
I syntax is TSL

30



Phonology C-Command Syntax Conclusion

Work In Progress

I Movement
I Interaction of movement and c-command
I Complexity without

Single Movement Normal Form

I Empirical work
I limits of c-string constraints
I unified treatment of island constraints
I modeling specific phenomena

(e.g. case assignment)

I Processing & Learning
I compiling c-string constraints

into MG parser
I learning via semantic bootstrapping

Sabine Laszakovits

Mai Ha Vu
31



Phonology C-Command Syntax Conclusion

Open Issues

I experimental evidence for computational parallelism

I even tighter subclasses of TSL

I full predicted typology

I model concrete aspects of acquisition

Join the program!

32



Phonology C-Command Syntax Conclusion

Open Issues

I experimental evidence for computational parallelism

I even tighter subclasses of TSL

I full predicted typology

I model concrete aspects of acquisition

Join the program!

32



Phonology C-Command Syntax Conclusion

Resources and Readings

1 Survey papers: Pullum and Rogers (2006); Heinz (2011a,b,
2018); Rogers and Pullum (2011); Chandlee and Heinz (2016)

2 TSL and its extensions: Heinz et al. (2011); McMullin
(2016); Baek (2017); De Santo (2017); De Santo and Graf
(2017); Graf (2017c); Graf and Mayer (2018); Mayer and
Major (2018); Yang (2018)

3 TSL morphology: Aksënova et al. (2016); Graf (2017b)

4 TSL morpho-semantics: Graf (2017d)

5 TSL syntax: Graf (2012a, 2018b); Graf and Shafiei (2019);
Vu (2018); Vu et al. (2019)

6 Mappings: Courcelle and Engelfriet (2012); Chandlee (2014,
2017); Jardine (2016)

7 Learnability: Heinz (2010); Kasprzik and Kötzing (2010);
Heinz et al. (2012); Jardine et al. (2014); Lai (2015); Jardine
and Heinz (2016); Jardine and McMullin (2017)

33



Syntax Supplement References

Appendix



Syntax Supplement References

Psychological Reality of Derivation Trees

Central role of derivation trees backed up by processing data:

I Derivation trees can be parsed top-down (Stabler 2013)

I Parsing models update Derivational Theory of Complexity,
make correct processing predictions for

I right < center embedding (Kobele et al. 2013)
I crossing < nested dependencies (Kobele et al. 2013)
I SC-RC < RC-SC (Graf et al. 2017)
I SRC < ORC in English (Graf et al. 2017)
I SRC < ORC in East-Asian (Graf et al. 2017)
I quantifier scope preferences (Pasternak 2016)
I stacked relative clauses (Zhang 2017)
I Korean attachment ambiguities

34



Syntax Supplement References

Technical Fertility of Derivation Trees
Derivation trees made it easy for MGs to accommodate
the full syntactic toolbox:

I sidewards movement (Stabler 2006; Graf 2013)

I affix hopping (Graf 2012b, 2013)

I clustering movement (Gärtner and Michaelis 2010)

I tucking in (Graf 2013)

I ATB movement (Kobele 2008)

I copy movement (Kobele 2006)

I extraposition (Hunter and Frank 2014)

I Late Merge (Kobele 2010; Graf 2014a)

I Agree (Kobele 2011; Graf 2012a)

I adjunction (Fowlie 2013; Graf 2014b; Hunter 2015)

I TAG-style adjunction (Graf 2012c)

35



Syntax Supplement References

Even More MG Extensions

I local and global constraints (Kobele 2011; Graf 2012a, 2017a)

I transderivational constraints (Graf 2010, 2013)

I Principle A and B (Graf and Abner 2012)

I GPSG-style feature percolation (Kobele 2008)

I idioms (Kobele 2012)

I grafts (multi-rooted multi-dominance trees) (Graf in progress)

Long Story Short

Derivation trees are a more useful and fertile data structure than
phrase structure trees.

36



Syntax Supplement References

Even More MG Extensions

I local and global constraints (Kobele 2011; Graf 2012a, 2017a)

I transderivational constraints (Graf 2010, 2013)

I Principle A and B (Graf and Abner 2012)

I GPSG-style feature percolation (Kobele 2008)

I idioms (Kobele 2012)

I grafts (multi-rooted multi-dominance trees) (Graf in progress)

Long Story Short

Derivation trees are a more useful and fertile data structure than
phrase structure trees.

36



Syntax Supplement References

References I

Aksënova, Alëna, and Aniello De Santo. 2017. Strict locality in morphological
derivations. URL https://linguistics.stonybrook.edu/sites/default/

files/uploads/u105/cls-SL-pres.pdf, slides of a talk presented at CLS 2017.

Aksënova, Alëna, Thomas Graf, and Sedigheh Moradi. 2016. Morphotactics as
tier-based strictly local dependencies. In Proceedings of the 14th SIGMORPHON
Workshop on Computational Research in Phonetics, Phonology, and Morphology ,
121–130. URL https://www.aclweb.org/anthology/W/W16/W16-2019.pdf.

Baek, Hyunah. 2017. Computational representation of unbounded stress: Tiers with
structural features. Ms., Stony Brook University; to appear in Proceedings of CLS
53.

Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral Dissertation,
University of Delaware. URL http://udspace.udel.edu/handle/19716/13374.

Chandlee, Jane. 2017. Computational locality in morphological maps. Morphology
27:599–641.

Chandlee, Jane, and Jeffrey Heinz. 2016. Computational phonology. Ms., Haverford
College and University of Delaware.

Courcelle, Bruno, and Joost Engelfriet. 2012. Graph structure and monadic
second-order logic: A language-theoretic approach. Cambridge, UK: Cambridge
University Press.

37

https://linguistics.stonybrook.edu/sites/default/files/uploads/u105/cls-SL-pres.pdf
https://linguistics.stonybrook.edu/sites/default/files/uploads/u105/cls-SL-pres.pdf
https://www.aclweb.org/anthology/W/W16/W16-2019.pdf
http://udspace.udel.edu/handle/19716/13374


Syntax Supplement References

References II

De Santo, Aniello. 2017. Extending TSL languages: Conjunction as multiple
tier-projection. Ms., Stony Brook University.

De Santo, Aniello, and Thomas Graf. 2017. Structure sensitive tier projection:
Applications and formal properties. Ms., Stony Brook University.

Epstein, Samuel D., Erich M. Groat, Ruriko Kawashima, and Hisatsugu Kitahara.
1998. A derivational approach to syntactic relations. Oxford: Oxford University
Press.

Fowlie, Meaghan. 2013. Order and optionality: Minimalist grammars with adjunction.
In Proceedings of the 13th Meeting on the Mathematics of Language (MoL 13),
ed. András Kornai and Marco Kuhlmann, 12–20.

Gärtner, Hans-Martin, and Jens Michaelis. 2010. On the treatment of
multiple-wh-interrogatives in Minimalist grammars. In Language and logos, ed.
Thomas Hanneforth and Gisbert Fanselow, 339–366. Berlin: Akademie Verlag.

Goldsmith, John. 1985. A principled exception to the coordinate structure constraint.
In Papers from the Twenty-First Annual Regional Meeting of the Chicago
Linguistic Society , 133–143.

Graf, Thomas. 2010. A tree transducer model of reference-set computation. UCLA
Working Papers in Linguistics 15:1–53.

38



Syntax Supplement References

References III

Graf, Thomas. 2012a. Locality and the complexity of Minimalist derivation tree
languages. In Formal Grammar 2010/2011 , ed. Philippe de Groot and Mark-Jan
Nederhof, volume 7395 of Lecture Notes in Computer Science, 208–227.
Heidelberg: Springer. URL
http://dx.doi.org/10.1007/978-3-642-32024-8_14.

Graf, Thomas. 2012b. Movement-generalized Minimalist grammars. In LACL 2012 ,
ed. Denis Béchet and Alexander J. Dikovsky, volume 7351 of Lecture Notes in
Computer Science, 58–73. URL
http://dx.doi.org/10.1007/978-3-642-31262-5_4.

Graf, Thomas. 2012c. Tree adjunction as Minimalist lowering. In Proceedings of the
11th International Workshop on Tree Adjoining Grammars and Related Formalisms
(TAG+11), 19–27. URL
http://www.aclweb.org/old_anthology/W/W12/W12-4603.pdf.

Graf, Thomas. 2013. Local and transderivational constraints in syntax and semantics.
Doctoral Dissertation, UCLA. URL
http://thomasgraf.net/doc/papers/Graf13Thesis.pdf.

Graf, Thomas. 2014a. Late merge as lowering movement in Minimalist grammars. In
LACL 2014 , ed. Nicholas Asher and Sergei Soloviev, volume 8535 of Lecture Notes
in Computer Science, 107–121. Heidelberg: Springer. URL
https://doi.org/10.1007/978-3-662-43742-1_9.

39

http://dx.doi.org/10.1007/978-3-642-32024-8_14
http://dx.doi.org/10.1007/978-3-642-31262-5_4
http://www.aclweb.org/old_anthology/W/W12/W12-4603.pdf
http://thomasgraf.net/doc/papers/Graf13Thesis.pdf
https://doi.org/10.1007/978-3-662-43742-1_9


Syntax Supplement References

References IV

Graf, Thomas. 2014b. Models of adjunction in Minimalist grammars. In Formal
Grammar 2014 , ed. Glynn Morrill, Reinhard Muskens, Rainer Osswald, and Frank
Richter, volume 8612 of Lecture Notes in Computer Science, 52–68. Heidelberg:
Springer. URL https://doi.org/10.1007/978-3-662-44121-3_4.

Graf, Thomas. 2017a. A computational guide to the dichotomy of features and
constraints. Glossa 2:1–36. URL https://dx.doi.org/10.5334/gjgl.212.

Graf, Thomas. 2017b. Graph transductions and typological gaps in morphological
paradigms. In Proceedings of the 15th Meeting on the Mathematics of Language
(MOL 2017), 114–126. URL http://www.aclweb.org/anthology/W17-3411.

Graf, Thomas. 2017c. The power of locality domains in phonology. Phonology
34:385–405. URL https://dx.doi.org/10.1017/S0952675717000197.

Graf, Thomas. 2017d. The subregular complexity of monomorphemic quantifiers. URL
http://thomasgraf.net/doc/papers/Graf17SP.pdf, ms., Stony Brook
University.

Graf, Thomas. 2018a. Locality domains and phonological c-command over strings. In
Proceedings of NELS 2017 . URL http://ling.auf.net/lingbuzz/004080, to
appear.

Graf, Thomas. 2018b. Why movement comes for free once you have adjunction. In
Proceedings of CLS 53 . URL http://ling.auf.net/lingbuzz/003943, to appear.

40

https://doi.org/10.1007/978-3-662-44121-3_4
https://dx.doi.org/10.5334/gjgl.212
http://www.aclweb.org/anthology/W17-3411
https://dx.doi.org/10.1017/S0952675717000197
http://thomasgraf.net/doc/papers/Graf17SP.pdf
http://ling.auf.net/lingbuzz/004080
http://ling.auf.net/lingbuzz/003943


Syntax Supplement References

References V

Graf, Thomas, and Natasha Abner. 2012. Is syntactic binding rational? In
Proceedings of the 11th International Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+11), 189–197. URL
http://thomasgraf.net/doc/papers/GrafAbner12TAG.pdf.

Graf, Thomas, Alëna Aksënova, and Aniello De Santo. 2016. A single movement
normal form for Minimalist grammars. In Formal Grammar: 20th and 21st
International Conferences, FG 2015, Barcelona, Spain, August 2015, Revised
Selected Papers. FG 2016, Bozen, Italy, August 2016 , ed. Annie Foret, Glyn Morrill,
Reinhard Muskens, Rainer Osswald, and Sylvain Pogodalla, 200–215. Berlin,
Heidelberg: Springer. URL https://doi.org/10.1007/978-3-662-53042-9_12.

Graf, Thomas, and Connor Mayer. 2018. Sanskrit n-retroflexion is input-output
tier-based strictly local. In Proceedings of SIGMORPHON 2018 . To appear.

Graf, Thomas, James Monette, and Chong Zhang. 2017. Relative clauses as a
benchmark for Minimalist parsing. Journal of Language Modelling 5:57–106. URL
http://dx.doi.org/10.15398/jlm.v5i1.157.

Graf, Thomas, and Nazila Shafiei. 2019. C-command dependencies as TSL string
constraints. In Proccedings of SCiL 2019 . To appear.

Heinz, Jeffrey. 2010. String extension learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, 897–906. URL
http://www.aclweb.org/anthology/P10-1092.pdf.

41

http://thomasgraf.net/doc/papers/GrafAbner12TAG.pdf
https://doi.org/10.1007/978-3-662-53042-9_12
http://dx.doi.org/10.15398/jlm.v5i1.157
http://www.aclweb.org/anthology/P10-1092.pdf


Syntax Supplement References

References VI
Heinz, Jeffrey. 2011a. Computational phonology — part I: Foundations. Language and

Linguistics Compass 5:140–152.

Heinz, Jeffrey. 2011b. Computational phonology — part II: Grammars, learning, and
the future. Language and Linguistics Compass 5:153–168.

Heinz, Jeffrey. 2018. The computational nature of phonological generalizations. In
Phonological typology , ed. Larry Hyman and Frank Plank, Phonetics and
Phonology, chapter 5, 126–195. Mouton De Gruyter.

Heinz, Jeffrey, Anna Kasprzik, and Timo Kötzing. 2012. Learning in the limit with
lattice-structured hypothesis spaces. Theoretical Computer Science 457:111–127.
URL https://doi.org/10.1016/j.tcs.2012.07.017.

Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local
constraints in phonology. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics, 58–64. URL
http://www.aclweb.org/anthology/P11-2011.

Hunter, Tim. 2015. Deconstructing merge and move to make room for adjunction.
Syntax 18:266–319.

Hunter, Tim, and Robert Frank. 2014. Eliminating rightward movement:
Extraposition as flexible linearization of adjuncts. Linguistic Inquiry 45:227–267.

Jardine, Adam. 2016. Computationally, tone is different. Phonology 33:247–283. URL
https://doi.org/10.1017/S0952675716000129.

42

https://doi.org/10.1016/j.tcs.2012.07.017
http://www.aclweb.org/anthology/P11-2011
https://doi.org/10.1017/S0952675716000129


Syntax Supplement References

References VII

Jardine, Adam, Jane Chandlee, Rémi Eryaud, and Jeffrey Heinz. 2014. Very efficient
learning of structured classes of subsequential functions from positive data. In
Proceedings of the 12th International Conference on Grammatical Inference (ICGI
2014), JMLR Workshop Proceedings, 94–108. URL
http://www.jmlr.org/proceedings/papers/v34/jardine14a.html.

Jardine, Adam, and Jeffrey Heinz. 2016. Learning tier-based strictly 2-local languages.
Transactions of the ACL 4:87–98. URL
https://aclweb.org/anthology/Q/Q16/Q16-1007.pdf.

Jardine, Adam, and Kevin McMullin. 2017. Efficient learning of tier-based strictly
k-local languages. In Proceedings of Language and Automata Theory and
Applications, Lecture Notes in Computer Science, 64–76. Berlin: Springer. URL
https://doi.org/10.1007/978-3-319-53733-7_4.

Joshi, Aravind. 1985. Tree-adjoining grammars: How much context sensitivity is
required to provide reasonable structural descriptions? In Natural language
parsing , ed. David Dowty, Lauri Karttunen, and Arnold Zwicky, 206–250.
Cambridge: Cambridge University Press.

Kaplan, Ronald M., and Martin Kay. 1994. Regular models of phonological rule
systems. Computational Linguistics 20:331–378. URL
http://www.aclweb.org/anthology/J94-3001.pdf.

43

http://www.jmlr.org/proceedings/papers/v34/jardine14a.html
https://aclweb.org/anthology/Q/Q16/Q16-1007.pdf
https://doi.org/10.1007/978-3-319-53733-7_4
http://www.aclweb.org/anthology/J94-3001.pdf


Syntax Supplement References

References VIII
Karttunen, Lauri, Ronald M. Kaplan, and Annie Zaenen. 1992. Two-level morphology

with composition. In COLING’92 , 141–148. URL
http://www.aclweb.org/anthology/C92-1025.

Kasprzik, Anna, and Timo Kötzing. 2010. String extension learning using lattices. In
Language and automata theory and applications: 4th international conference,
LATA 2010, Trier, Germany, May 24-28, 2010 , ed. Adrian-Horia Dediu, Henning
Fernau, and Carlos Mart́ın-Vide, 380–391. Berlin, Heidelberg: Springer. URL
http://dx.doi.org/10.1007/978-3-642-13089-2_32.

Kobele, Gregory M. 2006. Generating copies: An investigation into structural identity
in language and grammar . Doctoral Dissertation, UCLA. URL
http://home.uchicago.edu/~gkobele/files/Kobele06GeneratingCopies.pdf.

Kobele, Gregory M. 2008. Across-the-board extraction and Minimalist grammars. In
Proceedings of the Ninth International Workshop on Tree Adjoining Grammars and
Related Frameworks.

Kobele, Gregory M. 2010. On late adjunction in Minimalist grammars. URL
http://research.nii.ac.jp/~kanazawa/mcfgplus/2010/

2010-Kobele10LateAdjunction.pdf, slides for a talk given at MCFG+ 2010.

Kobele, Gregory M. 2011. Minimalist tree languages are closed under intersection with
recognizable tree languages. In LACL 2011 , ed. Sylvain Pogodalla and
Jean-Philippe Prost, volume 6736 of Lecture Notes in Artificial Intelligence,
129–144. URL https://doi.org/10.1007/978-3-642-22221-4_9.

44

http://www.aclweb.org/anthology/C92-1025
http://dx.doi.org/10.1007/978-3-642-13089-2_32
http://home.uchicago.edu/~gkobele/files/Kobele06GeneratingCopies.pdf
http://research.nii.ac.jp/~kanazawa/mcfgplus/2010/2010-Kobele10LateAdjunction.pdf
http://research.nii.ac.jp/~kanazawa/mcfgplus/2010/2010-Kobele10LateAdjunction.pdf
https://doi.org/10.1007/978-3-642-22221-4_9


Syntax Supplement References

References IX

Kobele, Gregory M. 2012. Idioms and extended transducers. In Proceedings of the
11th International Workshop on Tree Adjoining Grammars and Related Formalisms
(TAG+11), 153–161. Paris, France. URL
http://www.aclweb.org/anthology-new/W/W12/W12-4618.

Kobele, Gregory M., Sabrina Gerth, and John T. Hale. 2013. Memory resource
allocation in top-down Minimalist parsing. In Formal Grammar: 17th and 18th
International Conferences, FG 2012, Opole, Poland, August 2012, Revised Selected
Papers, FG 2013, Düsseldorf, Germany, August 2013 , ed. Glyn Morrill and
Mark-Jan Nederhof, 32–51. Berlin, Heidelberg: Springer. URL
https://doi.org/10.1007/978-3-642-39998-5_3.

Lai, Regine. 2015. Learnable vs. unlearnable harmony patterns. Linguistic Inquiry
46:425–451.

Mayer, Connor, and Travis Major. 2018. A challenge for tier-based strict locality from
Uyghur backness harmony. In Proceedings of Formal Grammar 2018 . To appear.

McMullin, Kevin. 2016. Tier-based locality in long-distance phonotactics: Learnability
and typology . Doctoral Dissertation, University of British Columbia.

Pasternak, Robert. 2016. Memory usage and scope ambiguity resolution. Qualifying
paper, Stony Brook University.

45

http://www.aclweb.org/anthology-new/W/W12/W12-4618
https://doi.org/10.1007/978-3-642-39998-5_3


Syntax Supplement References

References X

Pullum, Geoffrey K., and James Rogers. 2006. Animal pattern-learning experiments:
Some mathematical background. Ms., Radcliffe Institute for Advanced Study,
Harvard University.

Rogers, James, and Geoffrey K. Pullum. 2011. Aural pattern recognition experiments
and the subregular hierarchy. Journal of Logic, Language and Information
20:329–342.

Shieber, Stuart M. 1985. Evidence against the context-freeness of natural language.
Linguistics and Philosophy 8:333–345. URL
http://dx.doi.org/10.1007/BF00630917.

Stabler, Edward P. 1997. Derivational Minimalism. In Logical aspects of
computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in
Computer Science, 68–95. Berlin: Springer. URL
https://doi.org/10.1007/BFb0052152.

Stabler, Edward P. 2006. Sidewards without copying. In Formal Grammar ’06,
Proceedings of the Conference, ed. Gerald Penn, Giorgio Satta, and Shuly Wintner,
133–146. Stanford: CSLI.

Stabler, Edward P. 2011. Computational perspectives on Minimalism. In Oxford
handbook of linguistic Minimalism, ed. Cedric Boeckx, 617–643. Oxford: Oxford
University Press.

46

http://dx.doi.org/10.1007/BF00630917
https://doi.org/10.1007/BFb0052152


Syntax Supplement References

References XI

Stabler, Edward P. 2013. Two models of minimalist, incremental syntactic analysis.
Topics in Cognitive Science 5:611–633. URL
https://dx.doi.org/10.1111/tops.12031.

Vu, Mai Ha. 2018. Towards a formal description of NPI-licensing patterns. In
Proceedings of the Society for Computation in Linguistics, volume 1, 154–163.

Vu, Mai Ha, Nazila Shafiei, and Thomas Graf. 2019. Case assignment in TSL syntax:
A case study. In Proccedings of SCiL 2019 . To appear.

Yang, Su Ji. 2018. Subregular complexity in Korean phonotactics. Undergraduate
honors thesis, Stony Brook University.

Zhang, Chong. 2017. Stacked relatives: Their structure, processing, and computation.
Doctoral Dissertation, Stony Brook University.

47

https://dx.doi.org/10.1111/tops.12031

	Locality and Tiers in Phonology
	Tier-Based Strictly Local (TSL)
	The Cognitive Picture

	c-Command Constraints in Syntax
	c-Strings
	The Cognitive Picture

	Syntax
	Minimalist Grammars
	Merge is TSL
	Move is TSL

	Syntax Supplement
	Derivation Trees


