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Phonology C-Command Syntax Conclusion

A Mathematical Distinctness Theorem

I From a computational perspective,
there is a split between “P-side” and “S-side”.

regular < context-free < mildly context-sensitive < · · ·

Phonology

Morphology

Syntax

I Matches linguistic practice
(despite attempts at unification, e.g. DM)

I Why is syntax the outlier?
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Phonology C-Command Syntax Conclusion

An Alternative: Simple Syntax

I The postulated split is misleading.
I If we probe deeper, we find that

I syntax is just as simple,
I phonology, morphology, and syntax

are weaker than regular ⇒ subregular
I relativized locality plays a major role,
I and is approximated by the formal class TSL.

I This has repercussions for
I cognitive architecture of language,
I learning,
I processing.
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Phonology C-Command Syntax Conclusion

Outline

1 Locality and Tiers in Phonology
Tier-Based Strictly Local (TSL)
The Cognitive Picture

2 c-Command Constraints in Syntax
c-Strings
The Cognitive Picture

3 Syntax
Minimalist Grammars
Merge is TSL
Move is TSL



Phonology C-Command Syntax Conclusion

The Subregular Program

I Received view: class of regular (= finite-state)
string languages maximally complex

I Subregular hierarchy: even weaker/simpler subclasses

I The tier-based strictly local (TSL) languages
have emerged as particularly important.

Jeff Jane Adam Kevin
Heinz Chandlee Jardine McMullin
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Phonology C-Command Syntax Conclusion

Example: Word-Final Devoicing

I Captured by forbidding voiced segments at the end of a word

I German: Don’t have z$ or v$ or d$ (where $ = word edge).

Example: German

$ r a d $∗

∗z$
∗v$
∗d$

$ r a t $
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Phonology C-Command Syntax Conclusion

Example: Intervocalic Voicing

I Captured by forbidding voiceless segments between vowels
I Suppose:

I [−voice] = {s,S}
I V = {a,i,u}

I Then: don’t have asa, aSa, asi, aSi, . . .

Example

$ a z u s a $∗
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Phonology C-Command Syntax Conclusion

A Problem: Samala Sibilant Harmony
I If multiple sibilants occur in the same word,

they must all be +anterior (s,z) or −anterior (S,Z).
I In other words: Don’t mix purple and teal.

∗sS ∗sZ ∗zS ∗zZ
∗Ss ∗Zs ∗Sz ∗Zz

I But: Sibilants can be arbitrarily far away from each other!

Example: Samala

$ h a s x i n t i l a w a S $

$ h a S x i n t i l a w a S $

∗

$ s t a j a n o w o n w a S $∗
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Phonology C-Command Syntax Conclusion

Making Long-Distance Dependencies Local

I Let’s take a clue from phonology:
create locality with tiers.
(Goldsmith 1985; Heinz et al. 2011)

I Enforce constraints on tier,
rather than string Jeff Heinz

Example: Samala Revisited

1 Project sibilant tier

2 ∗sS, ∗sZ, ∗zS, ∗zZ, ∗Ss, ∗Zs, ∗Sz, ∗Zz

$ s S $

$ h a s x i n t i l a w a S $∗

$ S S $

$ h a S x i n t i l a w a S $
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Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

What may Project?

Tier projection controlled by

1 label of segment

2 local context

3 symbols already on tier
TSL

1

ITSL
1 + 2

OTSL
1 + 3

IOTSL
1 + 2 + 3

Non-final RHOL
Korean V-harmony

Uyghur
suffix harmony

Sanskrit
n-retroflexion

Hyunah Aniello Connor Suji
Baek De Santo Mayer Yang

8



Phonology C-Command Syntax Conclusion

TSL Across Language Modules

I Phonological dependencies fall within the TSL region.

I Morphological dependencies do, too.
(Aksënova et al. 2016; Aksënova and De Santo 2017;
Chandlee 2017)

I Phonology and morphology are computationally similar.

Alëna Sophie
Aksënova Moradi
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Phonology C-Command Syntax Conclusion

Why is TSL Relevant?

I Linguistically natural

I Captures wide range of phonotactic dependencies

I Correct and efficient learning algorithms
(I/O-TSL work in progress)
(Jardine and McMullin 2017)

I Low resource demand
I remember the last n symbols of a specific type
I requires little working memory
I no complex memory architecture

I Rules out unattested patterns
I center embedding
I harmony only if separated by even number of segments

10



Phonology C-Command Syntax Conclusion

Could Syntax Also be Subregular?

TSL < regular < context-free < mildly context-sensitive < · · ·

Phonology

Morphology

Syntax

Kaplan and Kay (1994)

Karttunen et al. (1992)

Shieber (1985)

I Syntax seems even more like an outlier. . .

I Don’t look at strings!
What about syntactic dependencies?

Nazila Shafiei 11



Phonology C-Command Syntax Conclusion

c-Strings

Command-Strings

The c[ommand]-string of a
node n contains

I n and

I every node that
commands n.

I easily computed from
dependency trees

I c-command constraints
seem to be largely
IOTSL over c-strings

Example

C

T

say

the

kids

that

T

likes

’s

Mary father

this

movie

this ’s likes T that the say T C

12
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Phonology C-Command Syntax Conclusion

Principle A

Principle A (as a distributional constraint)

Every reflexive must be c-commanded by a DP in the same TP.

Equivalent c-String Constraint

If the c-string starts with a reflexive,
then at least one D must occur before the first T.

TSL Strategy for Principle A

1 Always project first symbol (ITSL)

2 Project D/T if previous symbol is Refl (OTSL)

3 Constraint: ∗Refl T (bigram)

13
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Phonology C-Command Syntax Conclusion

Example of Principle A as a TSL Constraint

C

T

said

John C

T

praised

Bill himself

$ himself Bill $

himself Bill praised T C · · ·

C

T

said

John C

T

praised

himself Bill

$ himself T $

himself praised T C · · ·
14
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Phonology C-Command Syntax Conclusion

Another Example: Swedish sig

I Swedish sig must be non-locally bound.

(1) a. John said Bill praised sig.

b. * Bill praised sig.

TSL Strategy for sig

1 Always project first symbol (ITSL)

2 Project T if previous symbol is sig (OTSL)

3 Project D if previous symbol is T (OTSL)

4 Constraint: ∗sig T $ (trigram)

$ sig T John $

sig Bill praised T C John · · ·

$ sig T $

sig Bill praised T C

15
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$ sig T $

sig Bill praised T C

15
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Comparison to Phonology and Morphology

Similarities

I mostly bigram and trigram constraints

I simple structural contexts

I dependencies in phonology are also c-command-like
(Graf 2018a)

Differences

I OTSL seems more common in syntax

A Typological Prediction

Formal typology of syntactic constraints
should mirror phonology and morphology.
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Phonology C-Command Syntax Conclusion

Connection to Parsing

I A tree is well-formed only if
each node has a well-formed c-string.

I verifiable by deterministic top-down tree automaton
with finite look-ahead
⇒ efficient incremental parsing

An Intriguing Hypothesis

I Why c-command (rather than, say, precedence)?

I Because it allows for more efficient processing!

I But syntax isn’t just c-command.
There’s also displacement/movement. . .
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Minimalist Grammars

Ed Stabler

I Minimalist grammars (MGs) are a
formalization of Minimalist syntax.
(Stabler 1997, 2011)

I Operations: Merge and Move

I Adopt Chomsky-Borer hypothesis:
Grammar is just a finite list of
feature-annotated lexical items

Chemistry Syntax
atoms words

electrons features
molecules sentences

18
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MG Syntax in Action
CP

DPw

D

which

N

man

C′

C

do Ti

-ed

TP

DPm

Mary

T′

ti VP

tm V’

V

kiss

tw

Move(wh)

Move(h)

Merge(T)

do Move(nom)

Merge(V)

-ed Merge(D)

Mary Merge(D)

kiss Merge(N)

which man

T+ h+ wh+ C−

D− nom−

D+ D+ V−

N+ D− wh− N−

V+ nom+ T− h−

Phrase Structure Tree

Derivation Tree
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The Central Role of Derivation Trees

I Derivation trees are rarely considered in generative syntax.
(but see Epstein et al. 1998)

I Satisfy Chomsky’s structural desiderata:
I no linear order
I label-free
I extension condition
I inclusiveness condition

I Contain all information to produce phrase structure trees
⇒ central data structure of Minimalist syntax
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Merge is TSL

Merge(D)

Merge(N)

the student

Merge(D)

pranked me
N+ D− N− D+ D+ V− D−

I The selector features of the head have to match
the category features of the arguments.

I 1-to-1 match between selector features and category features.

I This is naturally expressed as TSL over trees.
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Category Tiers for Merge

I Project tree tier for each category X.

I Every X− has a Merge node as its mother.

I Every Merge node has exactly one X− among its daughters.

$

Merge(N)

student

$

Merge(D)

Merge(N)

the student

Merge(D)

pranked me

$

Merge(D)

the

$

Merge(D)

me

$

N+ D− N− D+ D+ V− D−N− D−

D−
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Illicit Merge Yields Ill-Formed Tiers

$

student

$

Merge(*)

student Merge(D)

pranked me

$

Merge(D)

Merge(D)

me

$

N−

D+ D+ V− D−

N−

D−

I This handles Merge.

I Moving on to Move. . .
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Illicit Merge Yields Ill-Formed Tiers
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student
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N−
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D−
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Illicit Merge Yields Ill-Formed Tiers
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Move: Single Movement Normal Form
I Assumption: every phrase at most one movement feature
I Intermediate landing sites not feature-triggered

(Graf et al. 2016)

Move(wh)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

who slept

CP

who C′

C TP

t T′

T VP

t slept

Move(wh)

Merge(T)

C Merge(V)

T Merge(D)

who slept

nom

wh
wh
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Movement Tiers for Move
I Project tree tier for each movement type x.
I Every x− has a Move node as its mother.
I Every Move node has exactly one x− among its daughters.

$

Move(top)

this

$

Move(top)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(D)

likes Merge(N)

this man

$

Move(nom)

Bill

$
N− nom−

D− top−

V+ nom+ T−

T+ top+ C−
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A Tier With Multiple Movers
Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(C)

thinks Merge(T)

that Move(nom)

Merge(V)

T Merge(D)

Sue left

$

Move(nom)

Bill

$

Move(nom)

Sue

$
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Blocking Simple Cases of Illicit Movement
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Blocking Many-to-One Movement

$

Move(wh)

what

$

who

$

Move(wh)

Merge(T)

C Move(nom)

Merge(V)

T Merge(D)

Bill Merge(P)

Merge(D)

gave what

Merge(D)

to who

$

Move(nom)

Bill

$
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The Common Core of Merge and Move

TSL Strategy for Merge

I Project tree tier for each category X.

I Every X− has a Merge node as its mother.

I Every Merge node has exactly one X− among its daughters.

TSL Strategy for Move

I Project tree tier for each movement type x.

I Every x− has a Move node as its mother.

I Every Move node has exactly one x− among its daughters.

Note: constraints again highly local
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Summary

I Syntax looks like a complex outlier.
I But not if we choose appropriate representations:

I c-command dependencies are TSL over c-strings
I Merge and Move are TSL over derivation trees

I Computational parallelism:
I phonology is TSL
I morphology is TSL
I syntax is TSL
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Work In Progress

I Movement
I Interaction of movement and c-command
I Complexity without

Single Movement Normal Form

I Empirical work
I limits of c-string constraints
I unified treatment of island constraints
I modeling specific phenomena

(e.g. case assignment)

I Processing & Learning
I compiling c-string constraints

into MG parser
I learning via semantic bootstrapping

Sabine Laszakovits

Mai Ha Vu
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Open Issues

I experimental evidence for computational parallelism

I even tighter subclasses of TSL

I full predicted typology

I model concrete aspects of acquisition

Join the program!
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Resources and Readings

1 Survey papers: Pullum and Rogers (2006); Heinz (2011a,b,
2018); Rogers and Pullum (2011); Chandlee and Heinz (2016)

2 TSL and its extensions: Heinz et al. (2011); McMullin
(2016); Baek (2017); De Santo (2017); De Santo and Graf
(2017); Graf (2017c); Graf and Mayer (2018); Mayer and
Major (2018); Yang (2018)

3 TSL morphology: Aksënova et al. (2016); Graf (2017b)

4 TSL morpho-semantics: Graf (2017d)

5 TSL syntax: Graf (2012a, 2018b); Graf and Shafiei (2019);
Vu (2018); Vu et al. (2019)

6 Mappings: Courcelle and Engelfriet (2012); Chandlee (2014,
2017); Jardine (2016)

7 Learnability: Heinz (2010); Kasprzik and Kötzing (2010);
Heinz et al. (2012); Jardine et al. (2014); Lai (2015); Jardine
and Heinz (2016); Jardine and McMullin (2017)
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Psychological Reality of Derivation Trees

Central role of derivation trees backed up by processing data:

I Derivation trees can be parsed top-down (Stabler 2013)

I Parsing models update Derivational Theory of Complexity,
make correct processing predictions for

I right < center embedding (Kobele et al. 2013)
I crossing < nested dependencies (Kobele et al. 2013)
I SC-RC < RC-SC (Graf et al. 2017)
I SRC < ORC in English (Graf et al. 2017)
I SRC < ORC in East-Asian (Graf et al. 2017)
I quantifier scope preferences (Pasternak 2016)
I stacked relative clauses (Zhang 2017)
I Korean attachment ambiguities
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Technical Fertility of Derivation Trees
Derivation trees made it easy for MGs to accommodate
the full syntactic toolbox:

I sidewards movement (Stabler 2006; Graf 2013)

I affix hopping (Graf 2012b, 2013)

I clustering movement (Gärtner and Michaelis 2010)

I tucking in (Graf 2013)

I ATB movement (Kobele 2008)

I copy movement (Kobele 2006)

I extraposition (Hunter and Frank 2014)

I Late Merge (Kobele 2010; Graf 2014a)

I Agree (Kobele 2011; Graf 2012a)

I adjunction (Fowlie 2013; Graf 2014b; Hunter 2015)

I TAG-style adjunction (Graf 2012c)
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Even More MG Extensions

I local and global constraints (Kobele 2011; Graf 2012a, 2017a)

I transderivational constraints (Graf 2010, 2013)

I Principle A and B (Graf and Abner 2012)

I GPSG-style feature percolation (Kobele 2008)

I idioms (Kobele 2012)

I grafts (multi-rooted multi-dominance trees) (Graf in progress)

Long Story Short

Derivation trees are a more useful and fertile data structure than
phrase structure trees.
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Graf, Thomas, Alëna Aksënova, and Aniello De Santo. 2016. A single movement
normal form for Minimalist grammars. In Formal Grammar: 20th and 21st
International Conferences, FG 2015, Barcelona, Spain, August 2015, Revised
Selected Papers. FG 2016, Bozen, Italy, August 2016 , ed. Annie Foret, Glyn Morrill,
Reinhard Muskens, Rainer Osswald, and Sylvain Pogodalla, 200–215. Berlin,
Heidelberg: Springer. URL https://doi.org/10.1007/978-3-662-53042-9_12.

Graf, Thomas, and Connor Mayer. 2018. Sanskrit n-retroflexion is input-output
tier-based strictly local. In Proceedings of SIGMORPHON 2018 . To appear.

Graf, Thomas, James Monette, and Chong Zhang. 2017. Relative clauses as a
benchmark for Minimalist parsing. Journal of Language Modelling 5:57–106. URL
http://dx.doi.org/10.15398/jlm.v5i1.157.

Graf, Thomas, and Nazila Shafiei. 2019. C-command dependencies as TSL string
constraints. In Proccedings of SCiL 2019 . To appear.

Heinz, Jeffrey. 2010. String extension learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, 897–906. URL
http://www.aclweb.org/anthology/P10-1092.pdf.

41

http://thomasgraf.net/doc/papers/GrafAbner12TAG.pdf
https://doi.org/10.1007/978-3-662-53042-9_12
http://dx.doi.org/10.15398/jlm.v5i1.157
http://www.aclweb.org/anthology/P10-1092.pdf


Syntax Supplement References

References VI
Heinz, Jeffrey. 2011a. Computational phonology — part I: Foundations. Language and

Linguistics Compass 5:140–152.

Heinz, Jeffrey. 2011b. Computational phonology — part II: Grammars, learning, and
the future. Language and Linguistics Compass 5:153–168.

Heinz, Jeffrey. 2018. The computational nature of phonological generalizations. In
Phonological typology , ed. Larry Hyman and Frank Plank, Phonetics and
Phonology, chapter 5, 126–195. Mouton De Gruyter.

Heinz, Jeffrey, Anna Kasprzik, and Timo Kötzing. 2012. Learning in the limit with
lattice-structured hypothesis spaces. Theoretical Computer Science 457:111–127.
URL https://doi.org/10.1016/j.tcs.2012.07.017.

Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local
constraints in phonology. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics, 58–64. URL
http://www.aclweb.org/anthology/P11-2011.

Hunter, Tim. 2015. Deconstructing merge and move to make room for adjunction.
Syntax 18:266–319.

Hunter, Tim, and Robert Frank. 2014. Eliminating rightward movement:
Extraposition as flexible linearization of adjuncts. Linguistic Inquiry 45:227–267.

Jardine, Adam. 2016. Computationally, tone is different. Phonology 33:247–283. URL
https://doi.org/10.1017/S0952675716000129.

42

https://doi.org/10.1016/j.tcs.2012.07.017
http://www.aclweb.org/anthology/P11-2011
https://doi.org/10.1017/S0952675716000129


Syntax Supplement References

References VII
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