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Quantifier languages Monotonicity Conclusion

Take-Home Message

» Study Det-quantifiers as formal languages

» Most quantifiers are remarkably simple.

Big picture: Cognitive parallelism

Comparable complexity across

» phonology
» morphology
P> syntax

> semantics

Empirical insight: A universal of lexical quantifiers

Quantifiers that can be expressed as a single lexical item are
monotonic TSL. (with a footnote on most, half)



Outline

Quantifier languages

Most quantifier languages are tier-based strictly local

Monotonic tier projections



Quantifier languages Monotonicity Conclusion

Semantic automata

» Quantifier languages start e N
Meanings as strings of truth values
(van Benthem 1986) Y Y

» distinguish quantifiers
. . Y
based on their complexity

regular context-free

every most
no half
some (at least) a third
(at least) n
not all
all but n
an even number




Quantifier languages Monotonicity

Evaluating the truth of quantifiers

a. Every student cheated.
b. No student cheated.

c. Some student cheated.
d. Three students cheated.

students John Mary Sue
cheated yes no yes

Y N Y

Conclusion



Quantifier languages TSL Monotonicity Conclusion

Evaluating the truth of quantifiers

(1) a. Every student cheated.
b. No student cheated.
c. Some student cheated.
d. Three students cheated.
students John Mary Sue
cheated  yes no  yes
Y N Y
» (1la): False, because the string contains a N
» (1b): False, because the string contains a Y
» (1c): True, because the string contains a Y
» (1d): False, because the string does not contain three Ys
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Formalization step 1: Binary string languages

Idea: Convert relation between sets A and B into set of
Yes/No-strings

Definition (Binary string language)

A, B: arbitrary sets

(A,B): maps each a € A to Y if a € B, otherwise N
(A): arbitrary enumeration of A

A | (A,B): all ¢(A), relabeled by (A, B)
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Conclusion

Example

Set of students: {John, Mary, Sue}
Set of cheaters: {John, Sue, Bill, Peter}

John +— Y

(A,B): Mary —~ N

Sue — Y
1) John Mary Sue
2) John Sue Mary
3) Mary John Sue
4) Mary Sue John
5) Sue John Mary
6) Sue Mary John

YNY,
@ (A B): { YYN,
NYY



Quantifier languages Monotonicity Conclusion

Formalization step 2: Quantifier language

Idea: Every quantifier is a set of acceptable Yes/No-strings

Definition (Quantifier language)

(Q) is the quantifier language of Q iff it holds for all A and B
that Q(A, B) is true iff L(A,B) C L(Q).



Quantifier languages TSL Monotonicity Conclusion

Formalization step 2: Quantifier language

Idea: Every quantifier is a set of acceptable Yes/No-strings

Definition (Quantifier language)

(Q) is the quantifier language of Q iff it holds for all A and B
that Q(A, B) is true iff L(A,B) C L(Q).

> | (every) = set of all strings containing no N
> Why?

> every(A, B) iff ACB

» |If A C B, then no binary string contains N.

» If some binary string contains N, then A Z B.
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Conclusion

A sample of quantifier languages

Quantifier Constraint
every
no
some
at least n
at most n
exactly n
not all
all but n
an even number
most
half
at least a third
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A sample of quantifier languages

Quantifier Constraint
every IN| =0
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at least n
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A sample of quantifier languages

Quantifier Constraint
every IN| =0
no Y[ =0
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at least n
at most n
exactly n
not all
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an even number
most
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at least a third
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A sample of quantifier languages

Quantifier Constraint
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at least n Y| >n
at most n
exactly n
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most
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A sample of quantifier languages

Quantifier Constraint
every IN| =0
no Y[ =0
some Y| >1
at least n Y| >n
at most n Y| <n
exactly n
not all
all but n

an even number
most
half

at least a third
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A sample of quantifier languages

Quantifier Constraint
every IN| =0
no Y[ =0
some Y| >1
at least n Y| >n
at most n Y| <n
exactly n Y| =n
not all IN| > 1

all but n

an even number
most
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A sample of quantifier languages

Quantifier Constraint
every IN| =0
no Y[ =0
some Y| >1
at least n Y| >n
at most n Y| <n
exactly n Y| =n
not all IN| > 1
all but n IN|=n
an even number
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A sample of quantifier languages

Quantifier Constraint
every IN| =0
no Y[ =0
some Y| >1
at least n Y| >n
at most n Y| <n
exactly n Y| =n
not all IN| > 1
all but n IN|=n
an even number Y| even
most
half

at least a third



Quantifier languages

A sample of quantifier languages

Quantifier
every
no
some
at least n
at most n
exactly n
not all
all but n
an even number
most
half
at least a third

Constraint

IN| =0
Y[ =0
Y[ =1
Y| >n
Y| <n
Y| =n
IN| > 1
IN|=n
Y| even

Y] > IN|



Quantifier languages

A sample of quantifier languages

Quantifier
every
no
some
at least n
at most n
exactly n
not all
all but n
an even number
most
half
at least a third

Constraint

IN| =0
Y[ =0
Y[ =1
Y| >n
Y| <n
Y| =n
IN| > 1
IN|=n
Y| even

Y] > IN|
Y[ = IN|



Quantifier languages

A sample of quantifier languages

Quantifier
every
no
some
at least n
at most n
exactly n
not all
all but n
an even number
most
half

Constraint

IN| =0
Y[ =0
Y[ =1
Y| >n
Y| <n
Y| =n
IN| > 1
IN|=n
Y| even

Y] > IN|
Y] =[N
at least a third 3 x |Y| > |Y| + |N|



Quantifier languages

A sample of quantifier languages

Quantifier
every
no
some
at least n
at most n
exactly n
not all
all but n
an even number
most
half

Constraint

IN| =0
Y] =0
Y| =1
Y| >n
Y| <n
Y| =n
IN| > 1
IN|=n
Y| even

Y] > IN|
Y] =[N
at least a third 3 x |Y| > |Y| + |N|



Conclusion

Quantifier languages Monotonicity

A sample of quantifier languages

Quantifier Constraint
every IN|=0
no Y| =0
some Y| >1
at least n Y| >n
at most n Y| <n
exactly n Y| =n
not all IN| >1

all but n IN|=n Regular

an even number Y| even
most Y| > |N|
half Y| = |N|

at least a third 3 x |Y| > |Y| + |N|
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Conclusion

Subregular hierarchy
» Regular languages are not the weakest class of languages!
» There is a fine-grained subregular hierarchy.
» Many aspects of phonology, morphology, and syntax
turn out to be subregular.
(Heinz 2009, 2010, 2018; Chandlee 2014; Jardine 2016; McMullin
2016; Aksénova et al. 2016; Graf 2018; Shafiei and Graf 2020)
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TSL: Tier-based strictly local (Heinz et al. 2011)

Fix a tier alphabet T.
Project every symbol in T to the tier.

Fix a finite list of forbidden substrings
that may not occur on the tier.

Linguistic intuition

» inspired by autosegmental phonology (Goldsmith 1976)

» All dependencies are local if ones ignore irrelevant material.
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TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

$YYYYS *SYYNYS

10
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TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N
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Quantifier languages

Quantifier languages with a non-trivial tier
some is TSL with tier alphabet {Y}
Forbidden substrings: *$$
$

NNYN *SNNNN
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Quantifier languages with a non-trivial tier

some is TSL with tier alphabet {Y}
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Monotonicity Conclusion

TSL descriptions for quantifier languages

Quantifier
every

no

some

at least n
at most n
exactly n
not all

all but n
an even number
most

half

a third

Constraint
IN| =0
Y| =0
Y| >1
Y| >n
Y| <n
Y| =n
IN| >1
IN|=n
regular

context-free

context-free
context-free

Tier
Y, N
Y, N

| Z2Z2<<=<<

Forbidden

*N

*Y

“$$

*$Y"$ (m < n)
*Yn—l—l

at least + at most
“$%

*$N $' *Nn—l-l

» Insight: common quantifiers are even simpler than we realized
» Open issue: still unclear why only some quantifiers can be
expressed as a single lexical item (Paperno 2011)
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Monotonicity

Definition (Monotonicity)

> Let A and B be two sets with orders < and <g, respectively.
» A function ! from A to B is monotonically increasing iff

r<ay=f(z) <s (y)

» Monotonicity is similar to No Crossing Branches constraint.
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Monotonicity

Definition (Monotonicity)

> Let A and B be two sets with orders < and <g, respectively.
» A function ! from A to B is monotonically increasing iff

r<ay=f(z) <s (y)

» Monotonicity is similar to No Crossing Branches constraint.

A B C
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Monotonicity in language

» Monotonicity in phonology
» No Crossing Branches constraint
> Natural classes are convex

» Monotonicity in morphology

P adjectival gradation

P person pronoun paradigms
> tense

» resolved gender

» Monotonicity in syntax

» Subcategorization < A-Move < A’-Move

» Adjunct Island Constraint & Coordinate Structure Constraint
> Williams cycle

» Ban against improper case

» Expletive negation

> Monotonicity in semantics
» Everywhere. ..

14
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Montonicity in tier projection

» Suppose, then, that monotonicity is a desirable trait.

» How does monotonicity relate to tier projection?

Y T
N F
Project:
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Montonicity in tier projection

» Suppose, then, that monotonicity is a desirable trait.

» How does monotonicity relate to tier projection?

Y\T
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Project: nothing
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» Suppose, then, that monotonicity is a desirable trait.
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Quantifier languages Monotonicity Conclusion

Montonicity in tier projection

» Suppose, then, that monotonicity is a desirable trait.

» How does monotonicity relate to tier projection?

T

>

F

Project: forbidden

> Monotonicity forbids projecting only N.

15
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Typology of quantifiers

Quantifier ~ TSL? Tier Mono. (Paperno 2011)

every ves Y, N yes

no yes Y, N yes

some yes Y yes

at least n yes Y yes
at most n yes Y yes
exactly n yes Y yes
not all yes N no

all but one yes N no
an even number  no no
most no —

half no —

at least a third no —

16
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then its quantifier language must be monotonic TSL.
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Quantifier languages Monotonicity Conclusion

A semantic universal

Monotic TSL restriction

If a regular quantifier can be expressed by a single lexical item,
then its quantifier language must be monotonic TSL.

What about most/half?
not regular, hence not subject to the universal
HA might be multi-lexical underlyingly (Hackl 2009)
monotonic TSL if we can impose specific orders

Example: most

Tier: Y, N > YNYNY
Start with Y » YYYNY
End with Y > *YNNNY
A Don’t have NN > *YNYN
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guag y

Conclusion

v

Common quantifiers are even simpler than we thought (TSL).

Cognitive parallelism
TSL also plays a major role in phonology, morphology, syntax

TSL brings a new kind of monotonicity to quantifiers.
Lexical quantifiers are starting to look like a natural class.

Of course, plenty of work remains to be done.
adverbials, modals, typology, ...
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