A Subregular Bound on the Complexity of Lexical Quantifiers

Quantifier languages TSL Monotonicity Conclusion

Take-Home Message

- Study Det-quantifiers as formal languages
- Most quantifiers are remarkably simple.

Big picture: Cognitive parallelism

Comparable complexity across

- phonology
- morphology
- syntax
- semantics

Empirical insight: A universal of lexical quantifiers

Quantifiers that can be expressed as a single lexical item are **monotonic TSL**. (with a footnote on *most*, *half*)

Outline

1 Quantifier languages

2 Most quantifier languages are tier-based strictly local

3 Monotonic tier projections

Semantic automata

- ► Quantifier languages
 Meanings as strings of truth values
 (van Benthem 1986)
- distinguish quantifiers based on their complexity

regular	context-free
every	most
no	half
some	(at least) a third
(at least) n	
not all	
all but \boldsymbol{n}	
an even number	

Evaluating the truth of quantifiers

- (1) a. Every student cheated.
 - b. No student cheated.
 - c. Some student cheated.
 - d. Three students cheated.

students	John	Mary	Sue
cheated	yes	no	yes
string	Υ	N	Υ

- ► (1a): False, because the string contains a N
- ► (1b): False, because the string contains a Y
- ► (1c): **True**, because the string contains a **Y**
- ► (1d): False, because the string does not contain three Ys

Evaluating the truth of quantifiers

- (1) a. Every student cheated.
 - b. No student cheated.
 - c. Some student cheated.
 - d. Three students cheated.

students	John	Mary	Sue
cheated	yes	no	yes
string	Υ	N	Y

- ► (1a): False, because the string contains a N
- ▶ (1b): **False**, because the string contains a **Y**
- ► (1c): **True**, because the string contains a **Y**
- ▶ (1d): **False**, because the string does not contain three **Y**s

Formalization step 1: Binary string languages

Idea: Convert relation between sets A and B into set of **Yes/No-strings**

Definition (Binary string language)

- **11** A, B: arbitrary sets
- **2** f(A, B): maps each $a \in A$ to Y if $a \in B$, otherwise N
- $\mathbf{3}$ $\mathbf{e}(\mathbf{A})$: arbitrary enumeration of \mathbf{A}
- (A, B): all e(A), relabeled by f(A, B)

Example

Quantifier languages

```
1 Set of students: {John, Mary, Sue}
   Set of cheaters: {John, Sue, Bill, Peter}
             John \mapsto \mathbf{Y}
2 f(A, B): Mary \mapsto N
              Sue \mapsto \mathbf{Y}
          1) John Mary
                            Sue
          2) John Sue Mary
3) Mary John Sue
4) Mary Sue John
          5) Sue John
                             Mary
          6)
             Sue Mary
                             John
4 L(A, B): { YNY, YYN, NVV
```

Formalization step 2: Quantifier language

Idea: Every quantifier is a set of acceptable Yes/No-strings

Definition (Quantifier language)

L(Q) is the **quantifier language** of Q iff it holds for all A and B that Q(A,B) is true iff $L(A,B)\subseteq L(Q)$.

Example

- ► L(every) = set of all strings containing no N
- ► Why?
 - ightharpoonup every(A, B) iff A \subseteq B
 - ▶ If $A \subseteq B$, then no binary string contains N.
 - ▶ If some binary string contains \mathbb{N} , then $\mathbb{A} \not\subseteq \mathbb{B}$.

Formalization step 2: Quantifier language

Idea: Every quantifier is a set of acceptable Yes/No-strings

Definition (Quantifier language)

L(Q) is the **quantifier language** of Q iff it holds for all A and B that Q(A,B) is true iff $L(A,B) \subseteq L(Q)$.

Example

- ► L(every) = set of all strings containing no N
- ► Why?
 - ightharpoonup every(A, B) iff A \subseteq B
 - ▶ If $A \subseteq B$, then no binary string contains N.
 - ▶ If some binary string contains \mathbb{N} , then $\mathbb{A} \not\subseteq \mathbb{B}$.

```
Quantifier
                      Constraint
     every
      no
     some
   at least n
   at most n
   exactly n
    not all
   all but n
an even number
     most
      half
at least a third
```

Quantifier Constraint $|\mathbf{N}| = 0$ every no some at least n at most n exactly n not all all but n an even number most half at least a third

Quantifier Constraint $|\mathbf{N}| = 0$ every $|\mathbf{Y}| = 0$ no some at least n at most n exactly n not all all but n an even number most half at least a third

Quantifier Constraint $|\mathbf{N}| = 0$ every $|\mathbf{Y}| = 0$ no $|\mathbf{Y}| \geq 1$ some at least n at most n exactly n not all all but n an even number most half at least a third

Quantifier Constraint $|\mathbf{N}| = 0$ every $|\mathbf{Y}| = 0$ no $|\mathbf{Y}| \geq 1$ some $|\mathbf{Y}| \geq \mathbf{n}$ at least n at most n exactly n not all all but n an even number most half at least a third

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \ge 1$
at least n	$ \mathbf{Y} \geq \mathbf{n}$
at most n	$ \mathbf{Y} \leq \mathbf{n}$
exactly n	
not all	
all but n	
an even number	
most	
half	
at least a third	

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \geq 1$
at least n	$ \mathbf{Y} \geq \mathbf{n}$
at most n	$ \mathbf{Y} \leq \mathbf{n}$
exactly n	$ \mathbf{Y} = \mathbf{n}$
not all	
all but n	
an even number	
most	
half	
at least a third	

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \geq 1$
at least n	$ \mathbf{Y} \geq \mathbf{n}$
at most n	$ \mathbf{Y} \leq \mathbf{n}$
exactly n	$ \mathbf{Y} = \mathbf{n}$
not all	$ \mathbf{N} \geq 1$
all but n	
an even number	
most	
half	
at least a third	

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \geq 1$
at least n	$ \mathbf{Y} \geq \mathbf{n}$
at most n	$ \mathbf{Y} \leq \mathbf{n}$
exactly n	$ \mathbf{Y} = \mathbf{n}$
not all	$ \mathbf{N} \geq 1$
all but n	$ \mathbf{N} = \mathbf{n}$
an even number	
most	
half	
at least a third	

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \ge 1$
at least <mark>n</mark>	$ \mathbf{Y} \geq \mathbf{n}$
at most n	$ \mathbf{Y} \leq \mathbf{n}$
exactly n	$ \mathbf{Y} = \mathbf{n}$
not all	$ \mathbf{N} \geq 1$
all but n	$ \mathbf{N} = \mathbf{n}$
an even number	$ \mathbf{Y} $ even
most	
half	
at least a third	

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \geq 1$
at least n	$ \mathbf{Y} \geq \mathbf{n}$
at most n	$ \mathbf{Y} \leq \mathbf{n}$
exactly n	$ \mathbf{Y} = \mathbf{n}$
not all	$ \mathbf{N} \geq 1$
all but n	$ \mathbf{N} = \mathbf{n}$
an even number	$ \mathbf{Y} $ even
most	$ \mathbf{Y} > \mathbf{N} $
half	
at least a third	

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \geq 1$
at least n	$ \mathbf{Y} \geq \mathbf{n}$
at most n	$ \mathbf{Y} \leq \mathbf{n}$
exactly n	$ \mathbf{Y} = \mathbf{n}$
not all	$ \mathbf{N} \geq 1$
all but n	$ \mathbf{N} = \mathbf{n}$
an even number	$ \mathbf{Y} $ even
most	$ \mathbf{Y} > \mathbf{N} $
half	$ \mathbf{Y} = \mathbf{N} $
at least a third	

Quantifier	Constraint
every	$ \mathbf{N} = 0$
no	$ \mathbf{Y} = 0$
some	$ \mathbf{Y} \ge 1$
at least n	$ \mathbf{Y} \geq \mathbf{n}$
at most n	$ \mathbf{Y} \leq \mathbf{n}$
exactly n	$ \mathbf{Y} = \mathbf{n}$
not all	$ \mathbf{N} \geq 1$
all but n	$ \mathbf{N} = \mathbf{n}$
an even number	$ \mathbf{Y} $ even
most	$ \mathbf{Y} > \mathbf{N} $
half	$ \mathbf{Y} = \mathbf{N} $
at least a third	$3 \times \mathbf{Y} \ge \mathbf{Y} + \mathbf{N} $

	Quantifier	Constraint
	every	$ \mathbf{N} = 0$
	no	$ \mathbf{Y} = 0$
	some	$ \mathbf{Y} \geq 1$
	at least n	$ \mathbf{Y} \geq \mathbf{n}$
	at most n	$ \mathbf{Y} \leq \mathbf{n}$
	exactly n	$ \mathbf{Y} = \mathbf{n}$
	not all	$ \mathbf{N} \geq 1$
	all but n	$ \mathbf{N} = \mathbf{n}$
an	even number	$ \mathbf{Y} $ even
	most	$ \mathbf{Y} > \mathbf{N} $
	half	$ \mathbf{Y} = \mathbf{N} $
at	least a third	$3\times \mathbf{Y} \ge \mathbf{Y} + \mathbf{N} $

Lexical

		Quantifier	Constraint	
		every	$ \mathbf{N} = 0$	
		no	$ \mathbf{Y} = 0$	
		some	$ \mathbf{Y} \ge 1$	Lexical
	at least n		$ \mathbf{Y} \geq \mathbf{n}$	Lexical
		at most n	$ \mathbf{Y} \leq \mathbf{n}$	
		exactly n	$ \mathbf{Y} = \mathbf{n}$	
		not all	$ N \ge 1$	
		all but n	N = n	Regular
	an	even number	Y even	
most		most	Y > N	
half		half	$ \mathbf{Y} = \mathbf{N} $	
at least a third		least a third	$3\times \mathbf{Y} \ge \mathbf{Y} + \mathbf{N} $	

Subregular hierarchy

- ▶ Regular languages are not the weakest class of languages!
- ► There is a fine-grained subregular hierarchy.
- Many aspects of phonology, morphology, and syntax turn out to be subregular.

(Heinz 2009, 2010, 2018; Chandlee 2014; Jardine 2016; McMullin 2016; Aksënova et al. 2016; Graf 2018; Shafiei and Graf 2020)

TSL: Tier-based strictly local (Heinz et al. 2011)

- \blacksquare Fix a tier alphabet T.
- **2** Project every symbol in T to the tier.
- **3** Fix a finite list of forbidden substrings that may not occur on the tier.

Linguistic intuition

- ▶ inspired by autosegmental phonology (Goldsmith 1976)
- ▶ All dependencies are local if ones ignore irrelevant material.

```
every is TSL with tier alphabet {Y, N}
```

Forbidden substrings: *N

\$YYY\$

*\$ Y Y N Y \$

Forbidden substrings: *Y

\$NNNN\$ ***\$NNYN\$**

```
every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

$YYYY$

| | | | | | |
$YYYY$

*$YYNY$
```

```
no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

$NNNN$ *$NNYN$
```

```
every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

$YYYY$

$YYYY$

*$YYNY$
```

```
no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

$NNN$ *$NNYN$
```

```
every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

$YYYY$

$YYYY$

$YYYY$

*$YYNY$
```

```
no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

$NNNN$ *$NNYN$
```

```
every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

$YYYY$

$YYYY$

*$YYNY$
```

```
no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

$NNNN$ *$NNYN$
```

```
every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

$YYYY$

$YYYY$

*$YYNY$
```

```
no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

$NNNN$ *$NNYN$
```

```
every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

$YYYY$

$YYYY$

$YYYY$

*$YYNY$
```

```
no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

$NNNN$ *$NNYN$
```

```
every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

$YYYY$

$YYYY$

*$YYNY$
```

```
no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

$NNN$ *$NNYN$
```

```
every is TSL with tier alphabet {Y, N}
Forbidden substrings: *N
            $YYY$
                              $YYNY$
            $YYY$
                            *$ Y Y N Y $
```

Forbidden substrings: *Y

\$NNNN\$ ***\$NNYN\$**

every is TSL with tier alphabet {Y, N} Forbidden substrings: *N \$YYNY\$ **\$YYYY**\$ **\$YYY**\$ *\$ Y Y N Y \$

Forbidden substrings: *Y

```
every is TSL with tier alphabet {Y, N}
Forbidden substrings: *N
                               YYNY$
            $YYY$
            $YYY$
                             *$ Y Y N Y $
```

Forbidden substrings: *Y

```
every is TSL with tier alphabet {Y, N}
Forbidden substrings: *N
             $YYYY$
             $YYY$
                              *$ Y Y N Y $
```

Forbidden substrings: *Y


```
every is TSL with tier alphabet {Y, N}
Forbidden substrings: *N
                              $YYNY$
            $YYYY$
            $YYY$
                             *$ Y Y N Y $
```

Forbidden substrings: *Y

\$YYY\$

```
every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

$YYYY$ $YYNY$
```

no is TSL with tier alphabet $\{Y, N\}$

Forbidden substrings: *Y

\$NNNN\$

*\$ N N Y N \$

*\$ Y Y N Y \$

```
every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

$YYYY$ $YYNY$

| | | | | | | |

$YYYY$ *$YYNY$
```

```
every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

$YYYY$ $YYNY$

| | | | | | | |

$YYYY$ *$YYNY$
```

no is TSL with tier alphabet {Y, N} Forbidden substrings: *Y \$NNNN\$ \$NNNN\$ *\$NNYN\$

no is TSL with tier alphabet {Y, N} Forbidden substrings: *Y \$NNN\$ \$NNN\$ *\$NNYN\$

no is TSL with tier alphabet {Y, N} Forbidden substrings: *Y \$NNNN\$ \$NNNN\$ *\$NNYN\$

*\$ Y Y N Y \$

TSL quantifier languages for every and no

\$YYY\$

```
every is TSL with tier alphabet {Y, N}
Forbidden substrings: *N
             $YYY$
                               SYYNY$
```

no is TSL with tier alphabet {**Y**, **N**} Forbidden substrings: *Y **\$ N N N N \$ \$ N N Y N \$ \$ N N N N \$** *\$ N N Y N \$

every is TSL with tier alphabet {Y, N} Forbidden substrings: *N **\$YYY**\$ SYYNY\$ **\$YYY\$** *\$ Y Y N Y \$

no is TSL with tier alphabet {**Y**, **N**} Forbidden substrings: *Y **\$NNYN\$ \$ N N N N \$ \$ N N N N \$** *\$ N N Y N \$

```
every is TSL with tier alphabet {Y, N}
Forbidden substrings: *N
            $YYY$
                             SYYNY$
            $YYY$
                            *$ Y Y N Y $
```

no is TSL with tier alphabet {**Y**, **N**} Forbidden substrings: *Y NNYN\$ **\$ N N N N \$ \$ N N N N \$** *\$ N N Y N \$

no is TSL with tier alphabet {Y, N} Forbidden substrings: *Y \$NNNN\$ \$NNYN\$ | | | | | | | | \$NNNN\$ *\$NNYN\$

Quantifier languages

TSL quantifier languages for every and no

```
every is TSL with tier alphabet {Y, N}
Forbidden substrings: *N
            $YYY$
                             SYYNY$
            $YYY$
                            *$ Y Y N Y $
```

no is TSL with tier alphabet {**Y**, **N**} Forbidden substrings: *Y **\$ N N Y N \$ \$ N N N N \$ \$ N N N N \$** *\$ N N Y N \$

```
some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

$NNYN$ *$NNNN$
```

```
all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *$N$, *$NN$, *NNNN

$NNYN$ *$NYYN$ *$NNNN$
```

```
all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *$N$, *$NN$, *NNNN

$NNYN$ *$NYYN$ *$NNNN$
```

```
some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

$ Y $
$ NNYN$ *$NNNN$
```

```
all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *$N$, *$NN$, *NNNN

$NNYN$ *$NYYN$ *$NNNN$
```

```
some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

$ Y $ $ $ NNYN$ *$NNNN$
```

```
all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *$N$, *$NN$, *NNNN

$NNYN$ *$NYYN$ *$NNNN$
```

```
all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *$N$, *$NN$, *NNNN

$NNYN$ *$NYYN$ *$NNNN$
```

```
all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *$N$, *$NN$, *NNNN

$NNYN$ *$NYYN$ *$NNNN$
```

```
all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *$N$, *$NN$, *NNNN

$NNYN$ *$NYYN$ *$NNNN$
```

```
all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *$N$, *$NN$, *NNNN

$NN N$
| | | | | |
$NNYN$ *$NYYN$ *$NNNN$
```

```
all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *$N$, *$NN$, *NNNN

$NNN$

$NNN$

*$NNYN$

*$NNNN$
```


TSL descriptions for quantifier languages

```
Forbidden
       Quantifier
                         Constraint
                                              Tier
                            |{\bf N}| = 0
                                             Y. N
                                                        * N
               every
                                                        *Y
                             |\mathbf{Y}| = 0
                                             Y, N
                  nο
                                                        *$$
                            |\mathbf{Y}| \geq 1
               some
                            |\mathbf{Y}| > \mathbf{n}
                                                        *$Y<sup>m</sup>$ (m < n)
        at least n
                                                        *\mathbf{v}^{\mathbf{n}+1}
        at most n 	 |Y| < n
         exactly \mathbf{n} |\mathbf{Y}| = \mathbf{n}
                                                        at least + at most
             not all |\mathbf{N}| \geq 1
                                             Ν
                                                        *$$
                                                        *$N<sup>m</sup>$. *N<sup>n+1</sup>
          all but n
                            |\mathbf{N}| = \mathbf{n}
                                             Ν
an even number
                             regular
               most
                       context-free
                 half
                       context-free
            a third
                         context-free
```

- ▶ **Insight:** common quantifiers are even simpler than we realized
- ▶ Open issue: still unclear why only some quantifiers can be expressed as a single lexical item (Paperno 2011)

Monotonicity

Definition (Monotonicity)

- ▶ Let A and B be two sets with orders \leq_A and \leq_B , respectively.
- ► A function **f** from **A** to **B** is **monotonic**ally increasing iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

► Monotonicity is similar to **No Crossing Branches** constraint.

Monotonicity

Definition (Monotonicity)

- ▶ Let A and B be two sets with orders \leq_A and \leq_B , respectively.
- ► A function **f** from **A** to **B** is **monotonic**ally increasing iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

► Monotonicity is similar to **No Crossing Branches** constraint.

Monotonicity

Definition (Monotonicity)

- Let A and B be two sets with orders \leq_A and \leq_B , respectively.
- ► A function **f** from **A** to **B** is **monotonic**ally increasing iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

► Monotonicity is similar to **No Crossing Branches** constraint.

Monotonicity

Definition (Monotonicity)

- Let A and B be two sets with orders \leq_A and \leq_B , respectively.
- ► A function **f** from **A** to **B** is **monotonic**ally increasing iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

► Monotonicity is similar to **No Crossing Branches** constraint.

Monotonicity

Definition (Monotonicity)

- Let A and B be two sets with orders \leq_A and \leq_B , respectively.
- ► A function **f** from **A** to **B** is **monotonic**ally increasing iff

$$x \leq_{\mathbf{A}} y \Rightarrow \mathbf{f}(x) \leq_{\mathbf{B}} \mathbf{f}(y)$$

► Monotonicity is similar to **No Crossing Branches** constraint.

Monotonicity in language

Monotonicity in phonology

- No Crossing Branches constraint
- Natural classes are convex

► Monotonicity in morphology

- adjectival gradation
- person pronoun paradigms
- tense
- resolved gender

Monotonicity in syntax

- ► Subcategorization < A-Move < A'-Move
- Adjunct Island Constraint & Coordinate Structure Constraint
- Williams cycle
- Ban against improper case
- Expletive negation

► Monotonicity in semantics

Everywhere...

- ► Suppose, then, that monotonicity is a desirable trait.
- ▶ How does monotonicity relate to tier projection?

Project:

- ▶ Suppose, then, that monotonicity is a desirable trait.
- ▶ How does monotonicity relate to tier projection?

Project: Y

- ▶ Suppose, then, that monotonicity is a desirable trait.
- ▶ How does monotonicity relate to tier projection?

Project: Y and N

- ► Suppose, then, that monotonicity is a desirable trait.
- How does monotonicity relate to tier projection?

Project: nothing

- ▶ Suppose, then, that monotonicity is a desirable trait.
- How does monotonicity relate to tier projection?

Project: forbidden

- ▶ Suppose, then, that monotonicity is a desirable trait.
- How does monotonicity relate to tier projection?

Project: forbidden

Quantifier	TSL?	Tier	Mono.	(Paperno 2011)
every	yes	Y, N	yes	
no	yes	Y, N	yes	
some	yes	Υ	yes	
at least n	yes	Υ	yes	
$at\ most\ n$	yes	Υ	yes	
exactly \boldsymbol{n}	yes	Υ	yes	
not all	yes	N	no	
all but one	yes	N	no	
an even number	no		no	
most	no		_	
half	no		_	
at least a third	no			

Quantifier	TSL?	Tier	Mono.	(Paperno 2011)
every	yes	Y, N	yes	
no	yes	Y, N	yes	
some	yes	Υ	yes	
at least n	yes	Υ	yes	
at most \boldsymbol{n}	yes	Υ	yes	
exactly n	yes	Υ	yes	
not all	yes	Ν	no	
all but one	yes	N	no	
an even number	no		no	
most	no			
half	no		_	Context-f
at least a third	no		_	

free

	Quantifier	TSL?	Tier	Mono.	(Paperno 2011)
	every	yes	Y, N	yes	
	no	yes	Y, N	yes	
	some	yes	Υ	yes	
	at least n	yes	Υ	yes	
	at most \boldsymbol{n}	yes	Υ	yes	
	exactly n	yes	Υ	yes	
	not all	yes	N	no	
	all but one	yes	N	no	
	an even number	no		no	Regular
	most	no			
	half	no		_	Context-fr
	at least a third	no		_	

Regular **Context-free**

	Quantifier	TSL?	Tier	Mono.	(Pa	aperno 2011)
	every	yes	Y, N	yes]
	no	yes	Y, N	yes	П	
	some	yes	Υ	yes	П	
	at least \boldsymbol{n}	yes	Υ	yes	П	
	at most \boldsymbol{n}	yes	Υ	yes	П	
	exactly n	yes	Υ	yes	П	
	not all	yes	N	no	П	TCI
	all but one	yes	N	no		TSL
	an even number	no		no		Regular
	most	no				
	half	no		_		Context-free
	at least a third	no		_		

A semantic universal

Monotic TSL restriction

If a regular quantifier can be expressed by a single lexical item, then its quantifier language must be monotonic TSL.

What about most/half?

- 1 not regular, hence not subject to the universal
- 2 might be multi-lexical underlyingly (Hackl 2009)
- 3 monotonic TSL if we can impose specific orders

Example: most

- 1 Tier: Y, N
- 2 Start with Y
- 3 End with Y
- 4 Don't have NN

- ► YNYNY
- YYYNY
- ► *YNNNY
- ► *YNYI

A semantic universal

Monotic TSL restriction

If a regular quantifier can be expressed by a single lexical item, then its quantifier language must be monotonic TSL.

What about most/half?

- 1 not regular, hence not subject to the universal
- 2 might be multi-lexical underlyingly (Hackl 2009)
- 3 monotonic TSL if we can impose specific orders

Example: most

- Tier: Y, N
- 2 Start with Y
- 3 End with Y
- Don't have NN

- ► YNYNY
- YYYNY
- ► *YNNNY
- ► *YNYN

Conclusion

- ► Common quantifiers are even simpler than we thought (TSL).
- Cognitive parallelism
 TSL also plays a major role in phonology, morphology, syntax
- ► TSL brings a new kind of monotonicity to quantifiers.
- Lexical quantifiers are starting to look like a natural class.
- Of course, plenty of work remains to be done. adverbials, modals, typology, ...

Thanks

The work reported in this paper was supported by the National Science Foundation under Grant No. BCS-1845344.

References I

- Aksënova, Alëna, Thomas Graf, and Sedigheh Moradi. 2016. Morphotactics as tier-based strictly local dependencies. In *Proceedings of the 14th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology*, 121–130. URL https://www.aclweb.org/anthology/W/W16/W16-2019.pdf.
- van Benthem, Johan. 1986. Semantic automata. In *Essays in logical semantics*, 151–176. Dordrecht: Springer.
- Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral Dissertation, University of Delaware. URL http://udspace.udel.edu/handle/19716/13374.
- Goldsmith, John. 1976. Autosegmental phonology. Doctoral Dissertation, MIT.
- Graf, Thomas. 2018. Why movement comes for free once you have adjunction. In *Proceedings of CLS 53*, ed. Daniel Edmiston, Marina Ermolaeva, Emre Hakgüder, Jackie Lai, Kathryn Montemurro, Brandon Rhodes, Amara Sankhagowit, and Miachel Tabatowski, 117–136.
- Hackl, Martin. 2009. On the grammar and processing of proportional quantifiers: Most versus more than half. *Natural Language Semantics* 17:63–98.
- Heinz, Jeffrey. 2009. On the role of locality in learning stress patterns. *Phonology* 26:303–351. URL https://doi.org/10.1017/S0952675709990145.
- Heinz, Jeffrey. 2010. Learning long-distance phonotactics. *Linguistic Inquiry* 41:623–661. URL http://dx.doi.org/10.1162/LING_a_00015.

References II

- Heinz, Jeffrey. 2018. The computational nature of phonological generalizations. In *Phonological typology*, ed. Larry Hyman and Frank Plank, Phonetics and Phonology, chapter 5, 126–195. Mouton De Gruyter.
- Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local constraints in phonology. In *Proceedings of the 49th Annual Meeting of the* Association for Computational Linguistics, 58–64. URL http://www.aclweb.org/anthology/P11-2011.
- Jardine, Adam. 2016. Computationally, tone is different. *Phonology* 33:247–283. URL https://doi.org/10.1017/S0952675716000129.
- McMullin, Kevin. 2016. *Tier-based locality in long-distance phonotactics: Learnability and typology*. Doctoral Dissertation, University of British Columbia.
- Paperno, Denis. 2011. Learnable classes of natural language quantifiers: Two perspectives. URL http://paperno.bol.ucla.edu/q_learning.pdf, ms., UCLA.
- Shafiei, Nazila, and Thomas Graf. 2020. The subregular complexity of syntactic islands. In *Proceedings of the Society for Computation in Linguistics (SCiL) 2020*. To appear.