A Subregular Bound

on the Complexity of Lexical Quantifiers

Thomas Graf

Stony Brook University
mail@thomasgraf.net
https://thomasgraf.net

Amsterdam Colloquium
December 18-20, 2019

Download
the slides

https://thomasgraf.net/doc/talks/Graf19ACtalk.pdf

Quantifier languages Monotonicity Conclusion

Take-Home Message

» Study Det-quantifiers as formal languages

» Most quantifiers are remarkably simple.

Big picture: Cognitive parallelism

Comparable complexity across

» phonology
» morphology
P> syntax

> semantics

Empirical insight: A universal of lexical quantifiers

Quantifiers that can be expressed as a single lexical item are
monotonic TSL. (with a footnote on most, half)

Outline

Quantifier languages

Most quantifier languages are tier-based strictly local

Monotonic tier projections

Quantifier languages Monotonicity Conclusion

Semantic automata

» Quantifier languages start e N
Meanings as strings of truth values
(van Benthem 1986) Y Y

» distinguish quantifiers
. . Y
based on their complexity

regular context-free

every most
no half
some (at least) a third
(at least) n
not all
all but n
an even number

Quantifier languages Monotonicity

Evaluating the truth of quantifiers

a. Every student cheated.
b. No student cheated.

c. Some student cheated.
d. Three students cheated.

students John Mary Sue
cheated yes no yes

Y N Y

Conclusion

Quantifier languages TSL Monotonicity Conclusion

Evaluating the truth of quantifiers

(1) a. Every student cheated.
b. No student cheated.
c. Some student cheated.
d. Three students cheated.
students John Mary Sue
cheated yes no yes
Y N Y
» (1la): False, because the string contains a N
» (1b): False, because the string contains a Y
» (1c): True, because the string contains a Y
» (1d): False, because the string does not contain three Ys

Quantifier languages Monotonicity Conclusion

Formalization step 1: Binary string languages

Idea: Convert relation between sets A and B into set of
Yes/No-strings

Definition (Binary string language)

A, B: arbitrary sets

(A,B): maps each a € A to Y if a € B, otherwise N
(A): arbitrary enumeration of A

A | (A,B): all ¢(A), relabeled by (A, B)

Quantifier languages Monotonicity

Conclusion

Example

Set of students: {John, Mary, Sue}
Set of cheaters: {John, Sue, Bill, Peter}

John +— Y

(A,B): Mary —~ N

Sue — Y
1) John Mary Sue
2) John Sue Mary
3) Mary John Sue
4) Mary Sue John
5) Sue John Mary
6) Sue Mary John

YNY,
@ (A B): { YYN,
NYY

Quantifier languages Monotonicity Conclusion

Formalization step 2: Quantifier language

Idea: Every quantifier is a set of acceptable Yes/No-strings

Definition (Quantifier language)

(Q) is the quantifier language of Q iff it holds for all A and B
that Q(A, B) is true iff L(A,B) C L(Q).

Quantifier languages TSL Monotonicity Conclusion

Formalization step 2: Quantifier language

Idea: Every quantifier is a set of acceptable Yes/No-strings

Definition (Quantifier language)

(Q) is the quantifier language of Q iff it holds for all A and B
that Q(A, B) is true iff L(A,B) C L(Q).

> | (every) = set of all strings containing no N
> Why?

> every(A, B) iff ACB

» |If A C B, then no binary string contains N.

» If some binary string contains N, then A Z B.

Quantifier languages Monotonicity

Conclusion

A sample of quantifier languages

Quantifier Constraint
every
no
some
at least n
at most n
exactly n
not all
all but n
an even number
most
half
at least a third

Quantifier languages Monotonicity

Conclusion

A sample of quantifier languages

Quantifier Constraint
every IN| =0
no
some
at least n
at most n
exactly n
not all
all but n
an even number
most
half
at least a third

Quantifier languages Monotonicity

Conclusion

A sample of quantifier languages

Quantifier Constraint
every IN| =0
no Y[=0
some
at least n
at most n
exactly n
not all
all but n
an even number
most
half
at least a third

Quantifier languages Monotonicity

Conclusion

A sample of quantifier languages

Quantifier Constraint
every IN| =0
no Y[=0
some Y| >1
at least n
at most n
exactly n
not all
all but n
an even number
most
half
at least a third

Quantifier languages Monotonicity

Conclusion

A sample of quantifier languages

Quantifier Constraint
every IN| =0
no Y[=0
some Y| >1
at least n Y| >n
at most n
exactly n
not all
all but n

an even number
most
half

at least a third

Quantifier languages Monotonicity Conclusion

A sample of quantifier languages

Quantifier Constraint
every IN| =0
no Y[=0
some Y| >1
at least n Y| >n
at most n Y| <n
exactly n
not all
all but n

an even number
most
half

at least a third

Quantifier languages Monotonicity Conclusion

A sample of quantifier languages

Quantifier Constraint
every IN| =0
no Y[=0
some Y| >1
at least n Y| >n
at most n Y| <n
exactly n Y| =n
not all
all but n

an even number
most
half

at least a third

Quantifier languages Monotonicity Conclusion

A sample of quantifier languages

Quantifier Constraint
every IN| =0
no Y[=0
some Y| >1
at least n Y| >n
at most n Y| <n
exactly n Y| =n
not all IN| > 1

all but n

an even number
most
half

at least a third

Quantifier languages Monotonicity Conclusion

A sample of quantifier languages

Quantifier Constraint
every IN| =0
no Y[=0
some Y| >1
at least n Y| >n
at most n Y| <n
exactly n Y| =n
not all IN| > 1
all but n IN|=n
an even number
most
half

at least a third

Quantifier languages Monotonicity Conclusion

A sample of quantifier languages

Quantifier Constraint
every IN| =0
no Y[=0
some Y| >1
at least n Y| >n
at most n Y| <n
exactly n Y| =n
not all IN| > 1
all but n IN|=n
an even number Y| even
most
half

at least a third

Quantifier languages

A sample of quantifier languages

Quantifier
every
no
some
at least n
at most n
exactly n
not all
all but n
an even number
most
half
at least a third

Constraint

IN| =0
Y[=0
Y[=1
Y| >n
Y| <n
Y| =n
IN| > 1
IN|=n
Y| even

Y] > IN|

Quantifier languages

A sample of quantifier languages

Quantifier
every
no
some
at least n
at most n
exactly n
not all
all but n
an even number
most
half
at least a third

Constraint

IN| =0
Y[=0
Y[=1
Y| >n
Y| <n
Y| =n
IN| > 1
IN|=n
Y| even

Y] > IN|
Y[= IN|

Quantifier languages

A sample of quantifier languages

Quantifier
every
no
some
at least n
at most n
exactly n
not all
all but n
an even number
most
half

Constraint

IN| =0
Y[=0
Y[=1
Y| >n
Y| <n
Y| =n
IN| > 1
IN|=n
Y| even

Y] > IN|
Y] =[N
at least a third 3 x |Y| > |Y| + |N|

Quantifier languages

A sample of quantifier languages

Quantifier
every
no
some
at least n
at most n
exactly n
not all
all but n
an even number
most
half

Constraint

IN| =0
Y] =0
Y| =1
Y| >n
Y| <n
Y| =n
IN| > 1
IN|=n
Y| even

Y] > IN|
Y] =[N
at least a third 3 x |Y| > |Y| + |N|

Conclusion

Quantifier languages Monotonicity

A sample of quantifier languages

Quantifier Constraint
every IN|=0
no Y| =0
some Y| >1
at least n Y| >n
at most n Y| <n
exactly n Y| =n
not all IN| >1

all but n IN|=n Regular

an even number Y| even
most Y| > |N|
half Y| = |N|

at least a third 3 x |Y| > |Y| + |N|

Quantifier languages Monotonicity

Conclusion

Subregular hierarchy
» Regular languages are not the weakest class of languages!
» There is a fine-grained subregular hierarchy.
» Many aspects of phonology, morphology, and syntax
turn out to be subregular.
(Heinz 2009, 2010, 2018; Chandlee 2014; Jardine 2016; McMullin
2016; Aksénova et al. 2016; Graf 2018; Shafiei and Graf 2020)

Quantifier languages Monotonicity Conclusion

TSL: Tier-based strictly local (Heinz et al. 2011)

Fix a tier alphabet T.
Project every symbol in T to the tier.

Fix a finite list of forbidden substrings
that may not occur on the tier.

Linguistic intuition

» inspired by autosegmental phonology (Goldsmith 1976)

» All dependencies are local if ones ignore irrelevant material.

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

$YYYYS *SYYNYS

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

SYYYYS$

| |
SYYYYS *$SYYNYS$

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

SYYYYS
NN

$YYYYS *SYYNYS

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

YNYYS$
[T

$YYYYS *SYYNYS

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

SYYVYS
[T
SYYYYS

*SYYNYS

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

*SYYNYS

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

SYYYYS
T

$YYYYS *SYYNYS

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

SYYYVYS$
T

$YYYYS *SYYNYS

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

SYYYYS$

@ — H
<—<
<— =
22— 2
<— <
@ — A

| |
SYYYYS *

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

SYYYYS YNY$
RN | 1]
YNYS$

| |
SYYYYS *$ Y

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

SYYYYS$ YN NYS$
R [T
SYYYYS *SYYNYS

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

SYYYYS $ Y$

| |
SYYYYS *$SYYNYS$

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

SYYYYS$ $Y $
||

| |
SYYYYS *$SYYNYS$

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

<— =<
@ — A

no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

SNNNNS *SNNYNS

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

<— =<
@ — A

no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

©— o
2—2

NNNN S
NNy
NNNNS *$SNNYNS$

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

<— =<
@ — A

no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

NNNS§
NNy
SNNNNS *$SNNYNS$

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

<— =<
@ — A

no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

NNS$
NN
SNNNNS

*SNNYNS

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

<— =<
@ — A

no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

£

NS
||
N $ *$SNNYNS$

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

<— =<
@ — A

no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

NV\@\W
| 1T
N $

@ — H

*SNNYNS

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

<— =<
@ — A

no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

NN
|1
NNNNS *$SNNYNS$

@ — H

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

<— =<
@ — A

no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

NNNNS|
N
NNNNS

@ — H

*SNNYNS

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

<— =<
@ — A

no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

NNNN
1T
NNNN

©— o
©r— o
©r— o
2—2
2—2
2—2
©r— o

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

SYYYYS$

@ — H
<—<
<— <
22— 2
<— =<
@ — A

| |
SYYYYS *

no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y
SNNYN
R
NYN

*$ N

NNNN
1T
NNNN

A — A
LA — A
A — A

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

<— =<
@ — A

no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

NNNN
1T
NNNN

@ — HA
“hA — A
<— =
2—2
LA — A

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

<— =<
@ — A

no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

NNNN
1T
NNNN

©— o
©r— o
©r— o

E
Z:Z
©r— o

10

Quantifier languages Monotonicity Conclusion

TSL quantifier languages for every and no

every is TSL with tier alphabet {Y, N}

Forbidden substrings: *N

<— =<
@ — A

no is TSL with tier alphabet {Y, N}

Forbidden substrings: *Y

NNNN
1T
NNNN

A — A
©»— o
“H— o
Z2—2
Z_
<
2_
“n— o

10

Quantifier languages Monotonicity Conclusion

Quantifier languages with a non-trivial tier

some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

SNNYNS *SNNNNS

11

Quantifier languages Monotonicity Conclusion

Quantifier languages with a non-trivial tier

some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

@hH — H

Y §
|
NNYNS

N *SNNNNS

11

Quantifier languages Monotonicity Conclusion

Quantifier languages with a non-trivial tier

some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

Y $
F
YNS$

@ —T A

NNYN *SNNNNS

11

Conclusion

Monotonicity

Quantifier languages

Quantifier languages with a non-trivial tier
some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

Y $
1
YNS$ *$SNNNNS

@hH — H

NN

11

Quantifier languages Monotonicity Conclusion

Quantifier languages with a non-trivial tier

some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

$ $ $
| | |
$ *SNNNNS

@hH — H

Y
|
NNYN

11

Conclusion

Monotonicity

Quantifier languages

Quantifier languages with a non-trivial tier
some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

Y §
|
YNS$

@hH — H

NNYN

11

Quantifier languages Monotonicity Conclusion

Quantifier languages with a non-trivial tier

some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

$ $ $
| | |
$ *SNNNNS

@hH — H

Y
|
NNY

all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *N, *SNN$, “NNNN

N

SNNYNS *SNYYNS$ *SNNNNS$

11

Quantifier languages Monotonicity Conclusion

Quantifier languages with a non-trivial tier

some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

$ $ $
| | |
$ *SNNNNS

@hH — H

Y
|
NNY

all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *N, *SNN$, “NNNN

N

*SNYYNS$ *SNNNNS$

11

Quantifier languages Monotonicity Conclusion

Quantifier languages with a non-trivial tier

some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

$ $ $
| | |
$ *SNNNNS

@hH — H

Y
|
NNY

all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *N, *SNN$, “NNNN

N

$
| I|
$ *SNYYNS$ *SNNNNS$

11

Quantifier languages Monotonicity Conclusion

Quantifier languages with a non-trivial tier

some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

$ $ $
| | |
$ *SNNNNS

@hH — H

Y
|
NNY

all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *N, *SNN$, “NNNN

N

.
NNYN

$ $
| |
$ $ *SNYYNS$ *SNNNNS

11

Quantifier languages Monotonicity Conclusion

Quantifier languages with a non-trivial tier

some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

$ $ $
| | |
$ *SNNNNS

@hH — H

Y
|
NNY

all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *N, *SNN$, “NNNN

N

N$
||
N$ *$NNNNS$

11

Conclusion

Monotonicity

Quantifier languages

Quantifier languages with a non-trivial tier
some is TSL with tier alphabet {Y}
Forbidden substrings: *$$
$

NNYN *SNNNN
all but 3 is TSL with tier alphabet {N}
Forbidden substrings: *$$, *N, *SNN$, “NNNN

$N
B
$N

Y § $
| |
YNS$ $

@hH — H

NS
I
YYNS *$SNNNNS

*

11

Quantifier languages Monotonicity Conclusion

Quantifier languages with a non-trivial tier

some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

$ $ $
| | |
$ *SNNNNS

@hH — H

Y
|
NNY

all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *N, *SNN$, “NNNN

N

*

SNNNN
R
SNNNN

A — A

11

Quantifier languages Monotonicity Conclusion

Quantifier languages with a non-trivial tier

some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

$ $ $
| | |
$ *SNNNNS

@hH — H

Y
|
NNY

all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *N, *SNN$, “NNNN

N

*

2—2
©o— o

$NNN
1
SNNN

11

Quantifier languages Monotonicity Conclusion

Quantifier languages with a non-trivial tier

some is TSL with tier alphabet {Y}

Forbidden substrings: *$$

$ $ $
| | |
$ *SNNNNS

@hH — H

Y
|
NNY

all but 3 is TSL with tier alphabet {N}

Forbidden substrings: *$$, *N, *SNN$, “NNNN

N

A — A

SNNNN
| T 1
SNNNN

11

Quantifier languages

Monotonicity Conclusion

TSL descriptions for quantifier languages

Quantifier
every

no

some

at least n
at most n
exactly n
not all

all but n
an even number
most

half

a third

Constraint
IN| =0
Y| =0
Y| >1
Y| >n
Y| <n
Y| =n
IN| >1
IN|=n
regular

context-free

context-free
context-free

Tier
Y, N
Y, N

| Z2Z2<<=<<

Forbidden

*N

*Y

“$$

*$Y"$ (m < n)
*Yn—l—l

at least + at most
“$%

*$N $' *Nn—l-l

» Insight: common quantifiers are even simpler than we realized
» Open issue: still unclear why only some quantifiers can be
expressed as a single lexical item (Paperno 2011)

12

Quantifier languages Monotonicity Conclusion

Monotonicity

Definition (Monotonicity)

> Let A and B be two sets with orders < and <g, respectively.
» A function ! from A to B is monotonically increasing iff

r<ay=f(z) <s (y)

» Monotonicity is similar to No Crossing Branches constraint.

13

Quantifier languages Monotonicity Conclusion

Monotonicity

Definition (Monotonicity)

> Let A and B be two sets with orders < and <g, respectively.
» A function ! from A to B is monotonically increasing iff

r<ay=f(z) <s (y)

» Monotonicity is similar to No Crossing Branches constraint.

pan

1
A B C

13

Quantifier languages Monotonicity Conclusion

Monotonicity

Definition (Monotonicity)

> Let A and B be two sets with orders < and <g, respectively.
» A function ! from A to B is monotonically increasing iff

r<ay=f(z) <s (y)

» Monotonicity is similar to No Crossing Branches constraint.

e

2 3
A B C

13

Quantifier languages Monotonicity Conclusion

Monotonicity

Definition (Monotonicity)

> Let A and B be two sets with orders < and <g, respectively.
» A function ! from A to B is monotonically increasing iff

r<ay=f(z) <s (y)

» Monotonicity is similar to No Crossing Branches constraint.

1
A B C

13

Quantifier languages Monotonicity Conclusion

Monotonicity

Definition (Monotonicity)

> Let A and B be two sets with orders < and <g, respectively.
» A function ! from A to B is monotonically increasing iff

r<ay=f(z) <s (y)

» Monotonicity is similar to No Crossing Branches constraint.

A B C

13

Quantifier languages Monotonicity Conclusion

Monotonicity in language

» Monotonicity in phonology
» No Crossing Branches constraint
> Natural classes are convex

» Monotonicity in morphology

P adjectival gradation

P person pronoun paradigms
> tense

» resolved gender

» Monotonicity in syntax

» Subcategorization < A-Move < A’-Move

» Adjunct Island Constraint & Coordinate Structure Constraint
> Williams cycle

» Ban against improper case

» Expletive negation

> Monotonicity in semantics
» Everywhere. ..

14

Quantifier languages Monotonicity Conclusion

Montonicity in tier projection

» Suppose, then, that monotonicity is a desirable trait.

» How does monotonicity relate to tier projection?

Y T
N F
Project:

15

Quantifier languages Monotonicity Conclusion

Montonicity in tier projection

» Suppose, then, that monotonicity is a desirable trait.

» How does monotonicity relate to tier projection?

Y——— T
N———F

Project: Y

15

Quantifier languages Monotonicity Conclusion

Montonicity in tier projection

» Suppose, then, that monotonicity is a desirable trait.

» How does monotonicity relate to tier projection?

N F

Project: Y and N

15

Quantifier languages Monotonicity Conclusion

Montonicity in tier projection

» Suppose, then, that monotonicity is a desirable trait.

» How does monotonicity relate to tier projection?

Y\T
N—————F

Project: nothing

15

Quantifier languages Monotonicity Conclusion

Montonicity in tier projection

» Suppose, then, that monotonicity is a desirable trait.

» How does monotonicity relate to tier projection?

Y><T
N

F

Project: forbidden

15

Quantifier languages Monotonicity Conclusion

Montonicity in tier projection

» Suppose, then, that monotonicity is a desirable trait.

» How does monotonicity relate to tier projection?

T

>

F

Project: forbidden

> Monotonicity forbids projecting only N.

15

Quantifier languages Monotonicity Conclusion

Typology of quantifiers

Quantifier ~ TSL? Tier Mono. (Paperno 2011)

every ves Y, N yes

no yes Y, N yes

some yes Y yes

at least n yes Y yes
at most n yes Y yes
exactly n yes Y yes
not all yes N no

all but one yes N no
an even number no no
most no —

half no —

at least a third no —

16

Quantifier languages Monotonicity Conclusion

Typology of quantifiers

Quantifier ~ TSL? Tier Mono. (Paperno 2011)

every ves Y, N yes
no yves Y, N yes
some yes Y yes
at least n yes Y yes
at most n yes Y yes
exactly n yes Y yes
not all yes N no
all but one yes N no
an even number no no
most no —

half no — Context-free
at least a third no —

16

Quantifier languages

Monotonicity

Conclusion

Typology of quantifiers

Mono. (Paperno 2011)

Quantifier TSL? Tier
every ves Y, N yes
no yves Y, N yes
some yes Y yes
at least n yes Y yes
at most n yes Y yes
exactly n yes Y yes
not all yes N no
all but one yes N no
an even number no no
most no —
half no —
at least a third no —

Regular

Context-free

16

Quantifier languages

Monotonicity

Conclusion

Typology of quantifiers

Mono. (Paperno 2011)

Quantifier TSL? Tier
every yves Y, N yes
no yes Y, N yes
some yes Y yes
at least n yes Y yes
at most n yes Y yes
exactly n yes Y yes
not all yes N no
all but one yes N no
an even number no no
most no —
half no —
at least a third no —

TSL
Regular

Context-free

16

Quantifier languages

Monotonicity

Conclusion

Typology of quantifiers

Mono. (Paperno 2011)

Quantifier TSL? Tier
every yves Y, N yes
no yes Y, N yes
some yes Y yes
at least n yes Y yes
at most n yes Y yes
exactly n yes Y yes
not all yes N no
all but one yes N no
an even number no no
most no —
half no —
at least a third no —

TSL
Regular

Context-free

16

Quantifier languages Monotonicity Conclusion

A semantic universal

Monotic TSL restriction

If a regular quantifier can be expressed by a single lexical item,
then its quantifier language must be monotonic TSL.

17

Quantifier languages Monotonicity Conclusion

A semantic universal

Monotic TSL restriction

If a regular quantifier can be expressed by a single lexical item,
then its quantifier language must be monotonic TSL.

What about most/half?
not regular, hence not subject to the universal
HA might be multi-lexical underlyingly (Hackl 2009)
monotonic TSL if we can impose specific orders

Example: most

Tier: Y, N > YNYNY
Start with Y » YYYNY
End with Y > *YNNNY
A Don’t have NN > *YNYN

17

Quantifier languages Monotonicit Conclusion
guag y

Conclusion

v

Common quantifiers are even simpler than we thought (TSL).

Cognitive parallelism
TSL also plays a major role in phonology, morphology, syntax

TSL brings a new kind of monotonicity to quantifiers.
Lexical quantifiers are starting to look like a natural class.

Of course, plenty of work remains to be done.
adverbials, modals, typology, ...

18

Thanks

The work reported in this paper was supported by
the National Science Foundation under Grant No. BCS-1845344.

References |

Aksénova, Aléna, Thomas Graf, and Sedigheh Moradi. 2016. Morphotactics as
tier-based strictly local dependencies. In Proceedings of the 14th SIGMORPHON
Workshop on Computational Research in Phonetics, Phonology, and Morphology,
121-130. URL https://wuw.aclweb.org/anthology/W/W16/W16-2019.pdf.

van Benthem, Johan. 1986. Semantic automata. In Essays in logical semantics,
151-176. Dordrecht: Springer.

Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral Dissertation,
University of Delaware. URL http://udspace.udel.edu/handle/19716/13374.

Goldsmith, John. 1976. Autosegmental phonology. Doctoral Dissertation, MIT.

Graf, Thomas. 2018. Why movement comes for free once you have adjunction. In
Proceedings of CLS 53, ed. Daniel Edmiston, Marina Ermolaeva, Emre Hakgitider,

Jackie Lai, Kathryn Montemurro, Brandon Rhodes, Amara Sankhagowit, and
Miachel Tabatowski, 117-136.

Hackl, Martin. 2009. On the grammar and processing of proportional quantifiers:
Most versus more than half. Natural Language Semantics 17:63-98.

Heinz, Jeffrey. 2009. On the role of locality in learning stress patterns. Phonology
26:303-351. URL https://doi.org/10.1017/50952675709990145.

Heinz, Jeffrey. 2010. Learning long-distance phonotactics. Linguistic Inquiry
41:623-661. URL http://dx.doi.org/10.1162/LING_a_00015.

19

https://www.aclweb.org/anthology/W/W16/W16-2019.pdf
http://udspace.udel.edu/handle/19716/13374
https://doi.org/10.1017/S0952675709990145
http://dx.doi.org/10.1162/LING_a_00015

References

References |l

Heinz, Jeffrey. 2018. The computational nature of phonological generalizations. In
Phonological typology, ed. Larry Hyman and Frank Plank, Phonetics and
Phonology, chapter 5, 126-195. Mouton De Gruyter.

Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local
constraints in phonology. In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics, 58—64. URL
http://www.aclweb.org/anthology/P11-2011.

Jardine, Adam. 2016. Computationally, tone is different. Phonology 33:247-283. URL
https://doi.org/10.1017/50952675716000129.

McMullin, Kevin. 2016. Tier-based locality in long-distance phonotactics: Learnability
and typology. Doctoral Dissertation, University of British Columbia.

Paperno, Denis. 2011. Learnable classes of natural language quantifiers: Two
perspectives. URL http://paperno.bol.ucla.edu/q_learning.pdf, ms., UCLA.

Shafiei, Nazila, and Thomas Graf. 2020. The subregular complexity of syntactic
islands. In Proceedings of the Society for Computation in Linguistics (SCiL) 2020.
To appear.

20

http://www.aclweb.org/anthology/P11-2011
https://doi.org/10.1017/S0952675716000129
http://paperno.bol.ucla.edu/q_learning.pdf

	Quantifier languages
	Most quantifier languages are tier-based strictly local
	Monotonic tier projections
	Conclusion
	Appendix
	References

