Tier-Local	Phonology

MGs 0000

Commonality in Disparity: The Computational View of Syntax and Phonology

Thomas Graf

Jeffrey Heinz

Stony Brook University
mail@thomasgraf.net
http://thomasgraf.net

University of Delaware heinz@udel.edu http://udel.edu/~heinz

Glow 38 April 18 2015

Tier-Local Phonology	MGs 0000	Tier-Local Sy	ntax Conclus
A New View of th	ne Power of	Syntax and	Phonology
Computations can be factored into two components: Data Structure strings, trees, graphs, Algorithm mechanism for manipulating data structures			
Standard Perspect	ive: Weak Gen	erative Capacit	ý
	Pho	nology	Syntax
Data Structur Algorith	re st n reg (Kaplan an	ring gular Id Kay 1994)	string beyond regular (Shieber 1985)
Our Perspective: S	Subregular Hyp	othesis	
	Phe	onology	Syntax
Data Strue	cture s	string	trees
Algor	ithm tier- (Heinz	based SL t et al. 2011)	ier-based SL (this talk)

Tier-Local Phonology	MGs Tier-Local	Syntax Conclus	
A New View of the	Power of Syntax an	d Phonology	
Computations can be factored into two components: Data Structure strings, trees, graphs, Algorithm mechanism for manipulating data structures			
Standard Perspective	: Weak Generative Capac	city	
	Phonology	Syntax	
Data Structure	string	string	
Algorithm	regular (Kaplan and Kay 1994)	beyond regular (Shieber 1985)	
Our Perspective: Subregular Hypothesis			
	Phonology	Syntax	
Data Structu	re string	trees	
Algorith	m tier-based SL	tier-based SL	
	(Heinz et al. 2011)	(this talk)	

Tier-Local Phonology	MGs 0000	Tier-Local Syntax	Conclusion ○
Outline			

1 Phonology is Tier-Based Strictly Local

2 Minimalist Grammars as a Formal Model of Syntax

3 Syntax is Tier-Based Strictly Local

- Tree *n*-gram Grammars
- Regulating Movement via Tree-Tiers

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
•000			
Dhanalamiraa			

Phonology as a Formal Language

Like the standard perspective, we view phonology as a set of well-formed strings \Rightarrow **phonology** \equiv **phonotactics**

Subregular Hypothesis (Weak Version; Heinz et al. 2011)

Phonology is properly included in the class of regular languages:

- All local dependencies can be described by *n*-gram grammars.
- Non-local dependencies are local on phonological tiers.

Remarks

- Primary stress in Creek and Cairene Arabic might not be tier-local, but the data is unclear. (Graf 2010)
- Non-local dependencies might be even weaker. (Heinz 2010)
- The subregular hypothesis might even apply to input-output mappings. (Chandlee 2014)

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
•000			
Dhanalami as a Ea	mallang.		

Phonology as a Formal Language

Like the standard perspective, we view phonology as a set of well-formed strings \Rightarrow **phonology** \equiv **phonotactics**

Subregular Hypothesis (Weak Version; Heinz et al. 2011)

Phonology is properly included in the class of regular languages:

- All local dependencies can be described by *n*-gram grammars.
- Non-local dependencies are local on phonological tiers.

Remarks

- Primary stress in Creek and Cairene Arabic might not be tier-local, but the data is unclear. (Graf 2010)
- Non-local dependencies might be even weaker. (Heinz 2010)
- The subregular hypothesis might even apply to input-output mappings. (Chandlee 2014)

- Suppose we have a fixed alphabet Σ (e.g. sounds of English).
- A bigram is a sequence ab s.t. a and b are members of Σ .
- A **bigram grammar** *G* is a finite set of bigrams.
- *G* generates the largest language of strings such that no string contains any bigrams of *G* as a substring
- Intuition: bigrams are hard, local constraints

Example		
Rewrite rule	Constraint	Bigrams
$n ightarrow m \mid_{-} b$	*nb	nb
$z ightarrow s \mid_{\scriptscriptstyle{-}} s$	* z\$	z\$
$[-voice] o \emptyset \mid_{\scriptscriptstyle{-}} $ \$	*[-voice]\$	s\$, θ\$, f\$,

	0000	00000000	V
	0000	00000000	0
Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion

(Negative) Bigram Grammars for Local Processes

- Suppose we have a fixed alphabet Σ (e.g. sounds of English).
- A bigram is a sequence ab s.t. a and b are members of Σ .
- A **bigram grammar** *G* is a finite set of bigrams.
- *G* generates the largest language of strings such that no string contains any bigrams of *G* as a substring
- Intuition: bigrams are hard, local constraints

Example		
Rewrite rule	Constraint	Bigrams
$n o m \mid_{-} b$	* <mark>nb</mark>	nb
$z o s \mid_{ ext{-}} s$	* z\$	z\$
$[-\mathbf{voice}] \to \emptyset \mid_{\scriptscriptstyle{-}} \$$	*[-voice]\$	s\$, θ\$, f\$,

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
○○●○	0000		○
Tiers for Long-Dista	nce Dependen	icies	

- We can move to 3-grams, 4-grams, ... *n*-grams in order to regulate less local processes (e.g. umlaut, vowel harmony).
- **Problem:** Still limited to locality domain of size *n* ⇒ unbounded processes cannot be captured
- Solution: segments can be on multiple tiers

Tier-Based Bigram Grammar

- Tier-projection is determined by the shape of the segment, not by structural properties (e.g. feet).
- A string is well-formed iff no tier *T* contains an illicit *T*-*n*-gram.

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
○○●○	0000		○
Tiers for Long-Dista	nce Dependen	icies	

- We can move to 3-grams, 4-grams, ... *n*-grams in order to regulate less local processes (e.g. umlaut, vowel harmony).
- **Problem:** Still limited to locality domain of size *n* ⇒ unbounded processes cannot be captured
- Solution: segments can be on multiple tiers

Tier-Based Bigram Grammar

- Tier-projection is determined by the shape of the segment, not by structural properties (e.g. feet).
- A string is well-formed iff no tier *T* contains an illicit *T*-*n*-gram.

Evennela, Cibilant II			
0000	0000	000000000	0
Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion

Example: Sibilant Harmony

 $\begin{array}{ll} \mbox{Tier}_1 & \mbox{contains all sibilants} \\ \mbox{Tier}_0 & \mbox{contains all segments} \end{array}$

$Tier_1$:	\$	J		S		\$
Tier ₀ :	\$ e	ļ	i	 S	i	\$
Tier ₁ :	\$	ſ		ſ		\$
Tier ₀ :	\$ e	ſ	i	ſ	i	 \$

Tier-Local Phonology	MGs ●000	Tier-Local Syntax	Conclusion O
A Closer Look a	it Syntax		

- Phonology is tier-based strictly local and thus subregular.
- Syntactic dependencies, on the other hand, yield non-regular string sets.
- But: syntacticians work with trees, not strings.
- Minimalist grammars (MGs) are a formalization of Minimalist syntax that makes this idea precise. (Stabler 1997)

Tier-Local Phonology	MGs o●oo	Tier-Local Syntax	Conclusion ○
Syntax as Chemistry	of Language		

Minimalist grammars treat syntax like chemistry.

Chemistry	Syntax
atoms	words
electrons	features
molecules	sentences

- Every word is a collection of features.
- Every feature has either positive or negative polarity.
- Features of opposite polarity annihilate each other.
- Feature annihilation drives the structure-building operations **Merge** and **Move**.
- Merge and Move do all the work, there are no other mechanisms like the EPP or the Θ-criterion.

Tier-Local Phonology	MGs o●oo	Tier-Local Syntax	Conclusion ○
Syntax as Chemistry	of Language		

Minimalist grammars treat syntax like chemistry.

Chemistry	Syntax
atoms	words
electrons	features
molecules	sentences

- Every word is a collection of features.
- Every feature has either positive or negative polarity.
- Features of opposite polarity annihilate each other.
- Feature annihilation drives the structure-building operations **Merge** and **Move**.
- Merge and Move do all the work, there are no other mechanisms like the EPP or the Θ-criterion.

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
	oo●o	0000000000	O

MG Syntax in Action

Phrase Structure Tree

Derivation Tree

Tier-Local Phonology	MGs ○○○●	Tier-Local Syntax	Conclusion
The Complexity c	of Minimalist T	ree Languages	

- Syntacticians usually look at the tree structure that is built by the operations Merge and Move.
- But the history of how such a structure is built is also a tree
 - \Rightarrow phrase structure trees and derivation trees as two possible views of tree-based syntax
- The set of phrase structure trees is not regular. (Doner 1970; Thatcher 1967; Michaelis 2001)
- But the set of derivation trees is regular. (Michaelis 2001; Kobele et al. 2007; Graf 2012)

The Big Question

Are MG derivation tree languages tier-based strictly local?

Tier-Local Phonology	MGs ○○○●	Tier-Local Syntax	Conclusion
The Complexity c	of Minimalist T	ree Languages	

- Syntacticians usually look at the tree structure that is built by the operations Merge and Move.
- But the history of how such a structure is built is also a tree
 - \Rightarrow phrase structure trees and derivation trees as two possible views of tree-based syntax
- The set of phrase structure trees is not regular. (Doner 1970; Thatcher 1967; Michaelis 2001)
- But the set of derivation trees is regular. (Michaelis 2001; Kobele et al. 2007; Graf 2012)

The Big Question

Are MG derivation tree languages tier-based strictly local?

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		00000000	
Tree n gram Gra	mmare		

- We need to lift *n*-grams from strings to trees.
- Instead of strings of length *n*, use subtrees of depth *n*.
- Each subtree encodes a constraint on the derivation.

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		00000000	
Tree n-gram Gr	ammars		

- We need to lift *n*-grams from strings to trees.
- Instead of strings of length *n*, use subtrees of depth *n*.
- Each subtree encodes a constraint on the derivation.

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		00000000	
Tree n-gram Gr	ammars		

- We need to lift *n*-grams from strings to trees.
- Instead of strings of length *n*, use subtrees of depth *n*.
- Each subtree encodes a constraint on the derivation.

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
	0000	○●○○○○○○○	O
Constraints on Move	9		

Merge is a local process, regulated by tree *n*-grams. But what about Move?

Suppose our MG is in **single movement normal form**, i.e. every lexical item moves at most once. Then movement is regulated by two constraints. (Graf 2012)

Constraints on Movement

- Move Every lexical item with a negative Move feature has a dominating matching Move node.
- SMC Every Move node is a closest dominating match for exactly one lexical item.

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
	0000	o●oooooooo	○
Constraints on Move	2		

Merge is a local process, regulated by tree *n*-grams. But what about Move?

Suppose our MG is in **single movement normal form**, i.e. every lexical item moves at most once. Then movement is regulated by two constraints. (Graf 2012)

Constraints on Movement

- Move Every lexical item with a negative Move feature has a dominating matching Move node.
- SMC Every Move node is a closest dominating match for exactly one lexical item.

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
0000	0000	00000000	
Tiers for Moveme	nt		

- There is no upper bound on the distance between a lexical item and its matching Move node.
- Consequently, Move dependencies are not strictly local.
- What if every movement type (wh, topic, ...) induces its own tier? Would that make Move dependencies local?

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
0000	0000	00000000	
Tiers for Moveme	nt		

- There is no upper bound on the distance between a lexical item and its matching Move node.
- Consequently, Move dependencies are not strictly local.
- What if every movement type (wh, topic, ...) induces its own tier? Would that make Move dependencies local?

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		00000000	
Tiers for Movemen	+		

- There is no upper bound on the distance between a lexical item and its matching Move node.
- Consequently, Move dependencies are not strictly local.
- What if every movement type (wh, topic, ...) induces its own tier? Would that make Move dependencies local?

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		00000000	
Tiers for Moveme	nt		

- There is no upper bound on the distance between a lexical item and its matching Move node.
- Consequently, Move dependencies are not strictly local.
- What if every movement type (wh, topic, ...) induces its own tier? Would that make Move dependencies local?

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		00000000	

Move Constraints over Tiers

Original Move Every lexical item with Every lexical item has a a negative Move feature mother labeled Move. has a dominating matching Move node.

SMC Every Move node is a closest dominating match for exactly one lexical item.

Tier

Exactly one of a Move node's daughters is a lexical item.

Tree Bigram Tem	plates			
	Move	SMC1	SMC2	
	\$	Move	Move	
			/^``\	
	LI	no LI	\geq 2 Lls	

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		000000000	
The Droblem M	lith Our Rigran	nc	

The Problem With Our Bigrams

- No limit on number of daughters per Move node in tier
 SMC1 and SMC2 correspond to infinitely many bigrams
- But a bigram grammar must be finite!

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		00000000	
The Droblem	With Our Digrams		

The Problem With Our Bigrams

- No limit on number of daughters per Move node in tier
 SMC1 and SMC2 correspond to infinitely many bigrams
- But a bigram grammar must be finite!

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
	0000	○○○○●○○○○○	O
The Problem Witl	h Our Bigrams		

- Ŭ
 - No limit on number of daughters per Move node in tier
 SMC1 and SMC2 correspond to infinitely many bigrams
 - But a bigram grammar must be finite!

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		000000000	
The Ducklose	Mith Own Dismost		

The Problem With Our Bigrams

- No limit on number of daughters per Move node in tier
 SMC1 and SMC2 correspond to infinitely many bigrams
- But a bigram grammar must be finite!

Tier-Local Phonology MGs Tier-Local Syntax Conclusion 0000000000

A Hint From Multidimensional Trees

- We think of trees as nodes ordered by dominance and precedence.
- Jim Rogers (2003) formalizes trees as strings (sequences of siblings) related by dominance.
- Analogously, a tree-tier consists of string-tiers related by dominance!

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		000000000	

- Take derivation and project Move tiers.
- In every Move tier, project LI-tiers.

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		0000000000	

- Take derivation and project Move tiers.
- In every Move tier, project LI-tiers.

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		000000000	

- Take derivation and project Move tiers.
- In every Move tier, project LI-tiers.

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		000000000	

- Take derivation and project Move tiers.
- In every Move tier, project LI-tiers.

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		000000000	
Erom Tomplatas to	Trop Digrama	with Lovical Tiors	

From Templates to Tree Bigrams with Lexical Tiers

Old Tree Bigram	Template	S		
	Move	SMC1	SMC2	
	\$	Move	Move	
	LI	no Ll	\geq 2 Lls	

New Tree Bigrams with Lexical Tier <i>n</i> -Grams as Daughters					
	Move	SMC1	SMC2		
	\$	Move	Move		
	LI	\$\$	LI LI		

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
	0000	○○○○○○○●○	O

\$	Move	Move
LI	\$\$	LI LI
Move	SMC1	SMC2

Tier-Local Phonology	MGs 0000	Tier-Local Syntax ○○○○○○○○●○	<	Conclusion ○
Example of III-Forme	ed Derivation			
Merge Merge Merge Merge Merge Merge Merge Merge Merge Merge	\$ Move /// a f \$ \$	\$ LI Move	Move \$ \$ SMC1 5	Move LI LI SMC2

Move

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		000000000	

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		000000000	

17

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		000000000	

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		000000000	

Tier-Local Ph	ionology	MGs		Tier-Local Syntax	Conclusion
				000000000	

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		000000000	

Tier-Local 0000	Phonolo	ду	MGs 0000	Tier-Local Syntax ○○○○○○○○●	Conclusion O
_					

Example of Well-Formed Derivation

0000	0000	00000000	
Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
		00000000	

Example of Well-Formed Derivation

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
	0000	○○○○○○○○●	○

Example of Well-Formed Derivation

Tier-Local Phonology	MGs	Tier-Local Syntax	Conclusion
			•
Conclusion			

- The standard perspective views syntax and phonology as string-based algorithms of vastly different complexity.
- A linguistically informed perspective that picks more adequate data structures reveals profound similarities:
 - Phonology is tier-based strictly local over strings.
 - Syntax is tier-based strictly local over derivation trees.
- Intuition
 - Non-local dependencies are not particularly complex.
 - They are local over a very simple relativization domain.

References I

- Chandlee, Jane. 2014. *Strictly local phonological processes*. Doctoral Dissertation, University of Delaware.
- Doner, John. 1970. Tree acceptors and some of their applications. *Journal of Computer and System Sciences* 4:406–451.
- Graf, Thomas. 2010. *Logics of phonological reasoning*. Master's thesis, University of California, Los Angeles.
- Graf, Thomas. 2012. Locality and the complexity of minimalist derivation tree languages. In *Formal Grammar 2010/2011*, ed. Philippe de Groot and Mark-Jan Nederhof, volume 7395 of *Lecture Notes in Computer Science*, 208–227. Heidelberg: Springer.
- Heinz, Jeffrey. 2010. Learning long-distance phonotactics. *Linguistic Inquiry* 41:623–661.
- Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local constraints in phonology. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics*, 58–64.
- Kaplan, Ronald M., and Martin Kay. 1994. Regular models of phonological rule systems. *Computational Linguistics* 20:331–378.

References II

- Kobele, Gregory M., Christian Retoré, and Sylvain Salvati. 2007. An automata-theoretic approach to minimalism. In *Model Theoretic Syntax at 10*, ed. James Rogers and Stephan Kepser, 71–80.
- Michaelis, Jens. 2001. Transforming linear context-free rewriting systems into minimalist grammars. Lecture Notes in Artificial Intelligence 2099:228–244.
- Rogers, James. 2003. Syntactic structures as multi-dimensional trees. *Research on Language and Computation* 1:265–305.
- Shieber, Stuart M. 1985. Evidence against the context-freeness of natural language. Linguistics and Philosophy 8:333-345.
- Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in Computer Science, 68–95. Berlin: Springer.
- Thatcher, James W. 1967. Characterizing derivation trees for context-free grammars through a generalization of finite automata theory. *Journal of Computer and System Sciences* 1:317–322.