
MGs MG Parser Processing Conclusion

Evaluating Evaluation Measures
for Minimalist Parsing

Thomas Graf Bradley Marcinek

Stony Brook University Stony Brook University
mail@thomasgraf.net bradley.marcinek@stonybrook.edu

http://thomasgraf.net

CMCL 2014
July 26, 2014



MGs MG Parser Processing Conclusion

Topic of This Talk

MG parser could yield processing predictions for
syntactic proposals that differ on abstract level
(e.g. head movement VS remnant movement)

But: need a linking hypothesis/difficulty metric

Is there a simple metric that is good enough
to distinguish syntactic analyses?

Results

Counting number of memorized items insufficient

Better: max time pronounced lexical items stay in memory



MGs MG Parser Processing Conclusion

Outline

1 Overview of Minimalist Grammars

2 Parsing Minimalist Grammars
Stabler’s Top-Down Parser
Evaluation Metrics for Processing Predictions

3 Predictions for Processing Difficulty
SC/RC vs RC/SC
Subject Gaps vs Object Gaps
Further Considerations

4 Conclusion



MGs MG Parser Processing Conclusion

Minimalist Grammars (MGs)

mildly context-sensitive formalization of Minimalist syntax
(Chomsky 1995; Stabler 1997)

generates all context-free languages
generates some context-sensitive languages

grammar is fully specified by lexicon

lexicon = finite set of feature-annotated words

features trigger structure-building operations Merge and Move

Merge: combine two trees into a new tree

Move: move a subtree of tree t to the left of the root of t

1



MGs MG Parser Processing Conclusion

Sketch of a Simple Merge Derivation

VP

V′

DP

girlthe

likes

John

Merge

Merge

Merge

girlthe

likes

John

Phrase structure tree Derivation tree

2



MGs MG Parser Processing Conclusion

Sketch of a Derivation with Move

VP

VP

V′

tlikes

John

DP

girlthe

Move

Merge

Merge

Merge

girlthe

likes

John

Phrase structure tree Derivation tree

3



MGs MG Parser Processing Conclusion

A More Readable Variant of Derivation Trees

Move

Merge

Merge

Merge

girlthe

likes

John

VP

VP

V′

DP

girlthe

likes

John

Derivation tree “Enhanced” derivation tree

4



MGs MG Parser Processing Conclusion

Why Derivation Trees Matter

All information encoded in derivation trees

Derivation trees automatically translated into
corresponding phrase structure trees

Phrase structure trees are redundant!
Derivation tree = full description of sentence structure

Crucial: derivation trees are context-free.

Hence we can build on standard parsing techniques for CFGs.

5



MGs MG Parser Processing Conclusion

Why Derivation Trees Matter

All information encoded in derivation trees

Derivation trees automatically translated into
corresponding phrase structure trees

Phrase structure trees are redundant!
Derivation tree = full description of sentence structure

Crucial: derivation trees are context-free.

Hence we can build on standard parsing techniques for CFGs.

5



MGs MG Parser Processing Conclusion

Why Derivation Trees Matter

All information encoded in derivation trees

Derivation trees automatically translated into
corresponding phrase structure trees

Phrase structure trees are redundant!
Derivation tree = full description of sentence structure

Crucial: derivation trees are context-free.

Hence we can build on standard parsing techniques for CFGs.

5



MGs MG Parser Processing Conclusion

Incremental Top-Down Parser for CFGs

Stabler (2011, 2012) presents an MG parser similar to
top-down CFG parsers.

Incremental Top-Down CFG Parser

Conjecture start symbol

If the leftmost symbol is

non-terminal apply a matching rewrite rule
terminal scan first unscanned word of input

Stop if

all non-terminals have been expanded, and
all terminals have triggered a scan step, and
all words have been scanned

Return derivation tree

6



MGs MG Parser Processing Conclusion

Example Parse of The girl, John likes

VP
1

1 Start with VP

2 VP → DP VP

3 DP → the girl

4 Scan the

5 Scan girl

6 VP → John V′

7 Scan John

8 V′ → likes t

9 Scan likes

10 Scan t (= empty
string)

7



MGs MG Parser Processing Conclusion

Example Parse of The girl, John likes

VP

DP VP

1

2

2 2

1 Start with VP

2 VP → DP VP

3 DP → the girl

4 Scan the

5 Scan girl

6 VP → John V′

7 Scan John

8 V′ → likes t

9 Scan likes

10 Scan t (= empty
string)

7



MGs MG Parser Processing Conclusion

Example Parse of The girl, John likes

VP

DP

the girl

VP

1

2

2

3

3 3

2

1 Start with VP

2 VP → DP VP

3 DP → the girl

4 Scan the

5 Scan girl

6 VP → John V′

7 Scan John

8 V′ → likes t

9 Scan likes

10 Scan t (= empty
string)

7



MGs MG Parser Processing Conclusion

Example Parse of The girl, John likes

VP

DP

the girl

VP

1

2

2

3

3

4

3

2

1 Start with VP

2 VP → DP VP

3 DP → the girl

4 Scan the

5 Scan girl

6 VP → John V′

7 Scan John

8 V′ → likes t

9 Scan likes

10 Scan t (= empty
string)

7



MGs MG Parser Processing Conclusion

Example Parse of The girl, John likes

VP

DP

the girl

VP

1

2

2

3

3

4

3

5

2

1 Start with VP

2 VP → DP VP

3 DP → the girl

4 Scan the

5 Scan girl

6 VP → John V′

7 Scan John

8 V′ → likes t

9 Scan likes

10 Scan t (= empty
string)

7



MGs MG Parser Processing Conclusion

Example Parse of The girl, John likes

VP

DP

the girl

VP

John V’

1

2

2

3

3

4

3

5

2

6

6 6

1 Start with VP

2 VP → DP VP

3 DP → the girl

4 Scan the

5 Scan girl

6 VP → John V′

7 Scan John

8 V′ → likes t

9 Scan likes

10 Scan t (= empty
string)

7



MGs MG Parser Processing Conclusion

Example Parse of The girl, John likes

VP

DP

the girl

VP

John V’

1

2

2

3

3

4

3

5

2

6

6

7

6

1 Start with VP

2 VP → DP VP

3 DP → the girl

4 Scan the

5 Scan girl

6 VP → John V′

7 Scan John

8 V′ → likes t

9 Scan likes

10 Scan t (= empty
string)

7



MGs MG Parser Processing Conclusion

Example Parse of The girl, John likes

VP

DP

the girl

VP

John V’

likes t

1

2

2

3

3

4

3

5

2

6

6

7

6

8

8 8

1 Start with VP

2 VP → DP VP

3 DP → the girl

4 Scan the

5 Scan girl

6 VP → John V′

7 Scan John

8 V′ → likes t

9 Scan likes

10 Scan t (= empty
string)

7



MGs MG Parser Processing Conclusion

Example Parse of The girl, John likes

VP

DP

the girl

VP

John V’

likes t

1

2

2

3

3

4

3

5

2

6

6

7

6

8

8

9

8

1 Start with VP

2 VP → DP VP

3 DP → the girl

4 Scan the

5 Scan girl

6 VP → John V′

7 Scan John

8 V′ → likes t

9 Scan likes

10 Scan t (= empty
string)

7



MGs MG Parser Processing Conclusion

Example Parse of The girl, John likes

VP

DP

the girl

VP

John V’

likes t

1

2

2

3

3

4

3

5

2

6

6

7

6

8

8

9

8

10

1 Start with VP

2 VP → DP VP

3 DP → the girl

4 Scan the

5 Scan girl

6 VP → John V′

7 Scan John

8 V′ → likes t

9 Scan likes

10 Scan t (= empty
string)

7



MGs MG Parser Processing Conclusion

The Problem With Derivation Trees

Derivation trees do not match string order
⇒ left-most terminal 6= left-most word

VP

VP

John V’

likes DP

the girl

1 Start with Move

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Scan John
Failure!

8



MGs MG Parser Processing Conclusion

The Problem With Derivation Trees

Derivation trees do not match string order
⇒ left-most terminal 6= left-most word

VP

VP

John V’

likes DP

the girl

1

1 Start with Move

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Scan John
Failure!

8



MGs MG Parser Processing Conclusion

The Problem With Derivation Trees

Derivation trees do not match string order
⇒ left-most terminal 6= left-most word

VP

VP

John V’

likes DP

the girl

1

2

2

1 Start with Move

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Scan John
Failure!

8



MGs MG Parser Processing Conclusion

The Problem With Derivation Trees

Derivation trees do not match string order
⇒ left-most terminal 6= left-most word

VP

VP

John V’

likes DP

the girl

1

2

2

3

3 3

1 Start with Move

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Scan John
Failure!

8



MGs MG Parser Processing Conclusion

The Problem With Derivation Trees

Derivation trees do not match string order
⇒ left-most terminal 6= left-most word

VP

VP

John V’

likes DP

the girl

1

2

2

3

3 3

1 Start with Move

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Scan John
Failure!

8



MGs MG Parser Processing Conclusion

Derivation Trees Require Delayed Scanning

Steps must be delayed until we have found the leftmost word!
⇒ symbols crossed by mover must be kept in memory

VP

VP

John V’

likes DP

the girl

1 Conjecture top-Mover

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Delay Scan John
Merge ⇒ likes Merge

5 Delay Scan likes
Merge ⇒ the[top] girl

6 Mover found!
Scan the

7 Scan girl

8 Scan John

9 Scan likes
9



MGs MG Parser Processing Conclusion

Derivation Trees Require Delayed Scanning

Steps must be delayed until we have found the leftmost word!
⇒ symbols crossed by mover must be kept in memory

VP

VP

John V’

likes DP

the girl

1
1 Conjecture top-Mover

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Delay Scan John
Merge ⇒ likes Merge

5 Delay Scan likes
Merge ⇒ the[top] girl

6 Mover found!
Scan the

7 Scan girl

8 Scan John

9 Scan likes
9



MGs MG Parser Processing Conclusion

Derivation Trees Require Delayed Scanning

Steps must be delayed until we have found the leftmost word!
⇒ symbols crossed by mover must be kept in memory

VP

VP

John V’

likes DP

the girl

1

2

2

1 Conjecture top-Mover

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Delay Scan John
Merge ⇒ likes Merge

5 Delay Scan likes
Merge ⇒ the[top] girl

6 Mover found!
Scan the

7 Scan girl

8 Scan John

9 Scan likes
9



MGs MG Parser Processing Conclusion

Derivation Trees Require Delayed Scanning

Steps must be delayed until we have found the leftmost word!
⇒ symbols crossed by mover must be kept in memory

VP

VP

John V’

likes DP

the girl

1

2

2

3

3 3

1 Conjecture top-Mover

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Delay Scan John
Merge ⇒ likes Merge

5 Delay Scan likes
Merge ⇒ the[top] girl

6 Mover found!
Scan the

7 Scan girl

8 Scan John

9 Scan likes
9



MGs MG Parser Processing Conclusion

Derivation Trees Require Delayed Scanning

Steps must be delayed until we have found the leftmost word!
⇒ symbols crossed by mover must be kept in memory

VP

VP

John V’

likes DP

the girl

1

2

2

3

3 3

4

4 4

1 Conjecture top-Mover

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Delay Scan John
Merge ⇒ likes Merge

5 Delay Scan likes
Merge ⇒ the[top] girl

6 Mover found!
Scan the

7 Scan girl

8 Scan John

9 Scan likes
9



MGs MG Parser Processing Conclusion

Derivation Trees Require Delayed Scanning

Steps must be delayed until we have found the leftmost word!
⇒ symbols crossed by mover must be kept in memory

VP

VP

John V’

likes DP

the girl

1

2

2

3

3 3

4

4 4

5

5 5

1 Conjecture top-Mover

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Delay Scan John
Merge ⇒ likes Merge

5 Delay Scan likes
Merge ⇒ the[top] girl

6 Mover found!
Scan the

7 Scan girl

8 Scan John

9 Scan likes
9



MGs MG Parser Processing Conclusion

Derivation Trees Require Delayed Scanning

Steps must be delayed until we have found the leftmost word!
⇒ symbols crossed by mover must be kept in memory

VP

VP

John V’

likes DP

the girl

1

2

2

3

3 3

4

4 4

5

5

6

5

1 Conjecture top-Mover

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Delay Scan John
Merge ⇒ likes Merge

5 Delay Scan likes
Merge ⇒ the[top] girl

6 Mover found!
Scan the

7 Scan girl

8 Scan John

9 Scan likes
9



MGs MG Parser Processing Conclusion

Derivation Trees Require Delayed Scanning

Steps must be delayed until we have found the leftmost word!
⇒ symbols crossed by mover must be kept in memory

VP

VP

John V’

likes DP

the girl

1

2

2

3

3 3

4

4 4

5

5

6

5

7

1 Conjecture top-Mover

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Delay Scan John
Merge ⇒ likes Merge

5 Delay Scan likes
Merge ⇒ the[top] girl

6 Mover found!
Scan the

7 Scan girl

8 Scan John

9 Scan likes
9



MGs MG Parser Processing Conclusion

Derivation Trees Require Delayed Scanning

Steps must be delayed until we have found the leftmost word!
⇒ symbols crossed by mover must be kept in memory

VP

VP

John V’

likes DP

the girl

1

2

2

3

3

8

3

4

4 4

5

5

6

5

7

1 Conjecture top-Mover

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Delay Scan John
Merge ⇒ likes Merge

5 Delay Scan likes
Merge ⇒ the[top] girl

6 Mover found!
Scan the

7 Scan girl

8 Scan John

9 Scan likes
9



MGs MG Parser Processing Conclusion

Derivation Trees Require Delayed Scanning

Steps must be delayed until we have found the leftmost word!
⇒ symbols crossed by mover must be kept in memory

VP

VP

John V’

likes DP

the girl

1

2

2

3

3

8

3

4

4

9

4

5

5

6

5

7

1 Conjecture top-Mover

2 Move ⇒ Merge

3 Merge ⇒ John Merge

4 Delay Scan John
Merge ⇒ likes Merge

5 Delay Scan likes
Merge ⇒ the[top] girl

6 Mover found!
Scan the

7 Scan girl

8 Scan John

9 Scan likes
9



MGs MG Parser Processing Conclusion

Tenure as Linking Hypothesis for Processing

Kobele et al. (2012) link parsing behavior to processing difficulty:

Tenure Time a symbol stays in memory
= Subscript−Superscript

Max Greatest tenure among all nodes in derivation

Max Linking Hypothesis

What Matters for Processing Difficulty

Max value of the correct derivation

What Doesn’t Matter

Size of search space/number of conjectured derivations

Number of items kept in memory

Type of item memorized (e.g. R-expression vs anaphor)

lexical frequency/probabilities

10



MGs MG Parser Processing Conclusion

Tenure as Linking Hypothesis for Processing

Kobele et al. (2012) link parsing behavior to processing difficulty:

Tenure Time a symbol stays in memory
= Subscript−Superscript

Max Greatest tenure among all nodes in derivation

Max Linking Hypothesis

What Matters for Processing Difficulty

Max value of the correct derivation

What Doesn’t Matter

Size of search space/number of conjectured derivations

Number of items kept in memory

Type of item memorized (e.g. R-expression vs anaphor)

lexical frequency/probabilities

10



MGs MG Parser Processing Conclusion

Why this is Attractive

The MG parser is very simple.

The linking hypothesis is very simple.

Nonetheless we get some interesting predictions:

Crossing dependencies easier than nested dependencies
(Bach et al. 1986)
Results can vary with syntactic analysis,
for instance head movement VS remnant movement
⇒ processing data differentiates abstract analyses

The Big Promise

extremely simple processing model (definitely too simple)

no number crunching
pen and paper is enough

yet good enough to distinguish between competing proposals
from the Minimalist literature

11



MGs MG Parser Processing Conclusion

Why this is Attractive

The MG parser is very simple.

The linking hypothesis is very simple.

Nonetheless we get some interesting predictions:

Crossing dependencies easier than nested dependencies
(Bach et al. 1986)
Results can vary with syntactic analysis,
for instance head movement VS remnant movement
⇒ processing data differentiates abstract analyses

The Big Promise

extremely simple processing model (definitely too simple)

no number crunching
pen and paper is enough

yet good enough to distinguish between competing proposals
from the Minimalist literature

11



MGs MG Parser Processing Conclusion

Too Good to be True?

Why should Max be the best metric?

MaxLex Max of lexical nodes

Box number of items kept in memory
= number of boxed superscripts

BoxLex number of lexical items kept in memory

±Empty for each metric, another variant that does not count
unpronounced nodes

Next Steps

Pick phenomena that are most likely to be adequately
explained by memory limitations

Mark up correct derivation trees with indices

See which metric gives best results across the board

12



MGs MG Parser Processing Conclusion

Too Good to be True?

Why should Max be the best metric?

MaxLex Max of lexical nodes

Box number of items kept in memory
= number of boxed superscripts

BoxLex number of lexical items kept in memory

±Empty for each metric, another variant that does not count
unpronounced nodes

Next Steps

Pick phenomena that are most likely to be adequately
explained by memory limitations

Mark up correct derivation trees with indices

See which metric gives best results across the board

12



MGs MG Parser Processing Conclusion

SC/RC vs RC/SC

SC/RC vs RC/SC

A sentential complement (SC) containing a relative clause (RC)
is easier to parse than an RC containing an SC.

(1) The fact [SC that the employeei [RC who the manager hired
ti ] stole office supplies] worried the executive.

(2) The executive [RC who the fact [SC that the employee stole
office supplies] worried ti ] hired the manager.

13



MGs MG Parser Processing Conclusion

Syntactic Analysis

Following Kobele et al. we use a promotion analysis of RCs.

Head noun is merged as argument DP of verb inside RCs
Head noun moves into Spec,CP of RC

[DP the [CP [DP ε employee] [C’ who the manager hired tDP]] ]

But: Same results with other analyses as long as something
moves from within RC to the left of who

14



MGs MG Parser Processing Conclusion

SC/RC Derivation
0CP1

1TP3

3T′
4

4VP5

5 V′
37

37DP39

39executive41
39the40

37worried38

5DP6

6NP8

8CP10

10TP12

12T′
13

13VP14

14 V′
33

33office supplies35
33stole34

14DP15

15NP17

17N′
18

18TP19

19T′
20

20VP21

21V′
23

23DP24

24employee26
24D25

23 hired31

21DP22

22 manager29
22 the28

20 T30

18 who27

15the16

13 T32

10that11

8fact9

6the7

4 T36

1C2 Max 32/32
MaxLex 32/9
Box 9/6
BoxLex 7/4

15



MGs MG Parser Processing Conclusion

RC/SC Derivation

0CP1

1TP3

3T′
4

4VP5

5 V′
38

38DP40

40manager41
40the41

38hired39

5DP6

6NP8

8N′
9

9TP10

10T′
11

11VP12

12 V′
22

22DP23

23executive25
23D24

22 worried36

12DP13

14NP15

15CP16

16TP17

17T′
18

18VP19

19VP21

21 office supplies34
21 stole33

19DP20

20 employee31
20 the30

18 T32

16 that29

15 fact28

14 the27

11 T35

9 who26

6the7

4 T37

1C2

Max 33/33
MaxLex 33/17
Box 14/11
BoxLex 12/9

16



MGs MG Parser Processing Conclusion

Analysis

Box metrics get the contrast.

SC/RC
elements of SC preceding RC can be scanned right away,
only RC delayed by movement of head noun
RC/SC
both RC and SC delayed by movement of head noun

Max metrics give mixed results.
Max

highest value at matrix T-head due to size of subjects
both SC/RC and RC/SC yield big subjects
difference too small, a single adjective modifying fact can tip
scale in favor of RC/SC

MaxLex
if only pronounced words are considered, highest value at who
tenure of who increases with distance to head noun
RC/SC harder because of increased size of RC

17



MGs MG Parser Processing Conclusion

Analysis

Box metrics get the contrast.

SC/RC
elements of SC preceding RC can be scanned right away,
only RC delayed by movement of head noun
RC/SC
both RC and SC delayed by movement of head noun

Max metrics give mixed results.
Max

highest value at matrix T-head due to size of subjects
both SC/RC and RC/SC yield big subjects
difference too small, a single adjective modifying fact can tip
scale in favor of RC/SC

MaxLex
if only pronounced words are considered, highest value at who
tenure of who increases with distance to head noun
RC/SC harder because of increased size of RC

17



MGs MG Parser Processing Conclusion

Subject Gaps vs Object Gaps

Subject Gaps vs Object Gaps

An RC containing a subject gap is easier to parse than
an RC containing an object gap.

(3) The reporteri [CP who ti attacked the senator] admitted
the error.

(4) The reporteri [CP who the senator attacked ti ] admitted
the error.

18



MGs MG Parser Processing Conclusion

Subject Gap Derivation

0CP1

1TP3

3T′
4

4VP5

5 V′
24

24DP26

26error28
26the27

24admitted25

5DP6

6NP8

8N′
9

9TP10

10T′
11

11VP12

12 V′
18

18DP20

20senator22
20the21

18attacked19

12r13

13reporter15
13D14

11 T17

9 who16

6the7

4 T23

1C2

Max 19/19
MaxLex 19/7
Box 5/3
BoxLex 3/1

19



MGs MG Parser Processing Conclusion

Object Gap Derivation

0CP1

1TP3

3T′
4

4VP5

5 V′
24

24DP26

26error27
26the27

24admitted25

5DP6

6NP8

8N′
9

9TP10

10T′
11

11VP12

12V′
14

14DP15

15reporter17
15D16

14 attacked22

12DP13

13 senator20
13 the19

11 T21

9 who18

6the7

4 T23

1C2

Max 19/19
MaxLex 19/9
Box 7/5
BoxLex 6/4

20



MGs MG Parser Processing Conclusion

Analysis

Box metrics get the contrast, again.

object gap leaves more material between landing site and
mover
number of delayed scan steps increases with moved distance

Max metrics give mixed results, again.
Max

highest value at matrix T-head due to size of subjects
type of RC has no effect on size of subject
both derivations must have same maximum tenure

MaxLex
if only pronounced words are considered, highest value at who
tenure of who increases with distance to head noun
object gap harder because of increased distance

21



MGs MG Parser Processing Conclusion

Analysis

Box metrics get the contrast, again.

object gap leaves more material between landing site and
mover
number of delayed scan steps increases with moved distance

Max metrics give mixed results, again.
Max

highest value at matrix T-head due to size of subjects
type of RC has no effect on size of subject
both derivations must have same maximum tenure

MaxLex
if only pronounced words are considered, highest value at who
tenure of who increases with distance to head noun
object gap harder because of increased distance

21



MGs MG Parser Processing Conclusion

All Metrics are Insufficient

Box/BoxLex

good results for relative clauses

Box: increasing difficulty for all left embedding constructions

BoxLex: constant difficulty for some left embedding

But: do not capture difference between crossing and nested
dependencies.

Max/MaxLex

Only MaxLex restricted to overt material captures RC
contrasts.

Both capture difference between crossing and nesting.

Max: increasing difficulty for all left embedding constructions

MaxLex: constant difficulty for some left embedding

22



MGs MG Parser Processing Conclusion

All Metrics are Insufficient

Box/BoxLex

good results for relative clauses

Box: increasing difficulty for all left embedding constructions

BoxLex: constant difficulty for some left embedding

But: do not capture difference between crossing and nested
dependencies.

Max/MaxLex

Only MaxLex restricted to overt material captures RC
contrasts.

Both capture difference between crossing and nesting.

Max: increasing difficulty for all left embedding constructions

MaxLex: constant difficulty for some left embedding

22



MGs MG Parser Processing Conclusion

Next Step: Head-Final RCs

Even in languages with head-final RCs, subject gaps are
preferred.

This is not captured by the metrics. At best we get a tie.

Further complication
Basque may have a preference for object gaps.
(Carreiras et al. 2010)

23



MGs MG Parser Processing Conclusion

Summary

MG derivation trees allow for very simple top-down parsing

Idea: test syntactic proposals by linking parser behavior to
processing difficulty

Problem: Is there a simple yet good enough metric?

Phenomenon Max MaxLex Box BoxLex
SC/RC vs RC/SC ∼ / ∼ ∼ /yes yes/yes yes/yes

S-Gap vs O-Gap no/no no/yes yes/yes yes/yes
Nesting vs Crossing yes/yes yes/yes no/no no/no

Left embedding no/no no/∼ no/no no/∼
Head-Initial RC no/no no/no no/no no/no

24



References

References

Bach, Emmon, Colin Brown, and William Marslen-Wilson. 1986. Crossed and nested
dependencies in German and Dutch: A psycholinguistic study. Language and
Cognitive Processes 1:249–262.

Carreiras, Manuel, Jon Andoni Duñabeitia, Marta Vergara, Irene de la Cruz-Pav́ıa, and
Itziar Laka. 2010. Subject relative clauses are not universally easier to process:
Evidence from basque. Cognition 115:79–92.

Chomsky, Noam. 1995. The minimalist program. Cambridge, Mass.: MIT Press.

Kobele, Gregory M., Sabrina Gerth, and John T. Hale. 2012. Memory resource
allocation in top-down minimalist parsing. In Proceedings of Formal Grammar
2012 .

Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of
computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in
Computer Science, 68–95. Berlin: Springer.

Stabler, Edward P. 2011. Computational perspectives on minimalism. In Oxford
handbook of linguistic minimalism, ed. Cedric Boeckx, 617–643. Oxford: Oxford
University Press.

Stabler, Edward P. 2012. Bayesian, minimalist, incremental syntactic analysis. Topics
in Cognitive Science 5:611–633.

25


	Overview of Minimalist Grammars
	Parsing Minimalist Grammars
	Stabler's Top-Down Parser
	Evaluation Metrics for Processing Predictions

	Predictions for Processing Difficulty
	SC/RC vs RC/SC
	Subject Gaps vs Object Gaps
	Further Considerations

	Conclusion
	Appendix

