Μ	Gs	
	00	

Evaluating Evaluation Measures for Minimalist Parsing

Thomas Graf

Bradley Marcinek

Stony Brook University
mail@thomasgraf.net
http://thomasgraf.net

Stony Brook University bradley.marcinek@stonybrook.edu

CMCL 2014 July 26, 2014

MGs 00000	MG Parser	Processing	Conclusion O
Topic of This	Talk		

- MG parser could yield processing predictions for syntactic proposals that differ on abstract level (e.g. head movement VS remnant movement)
- But: need a linking hypothesis/difficulty metric
- Is there a **simple metric that is good enough** to distinguish syntactic analyses?

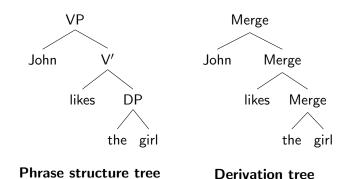
Results

- Counting number of memorized items insufficient
- Better: max time pronounced lexical items stay in memory

MGs	MG Parser	Processing	Conclusion
A			

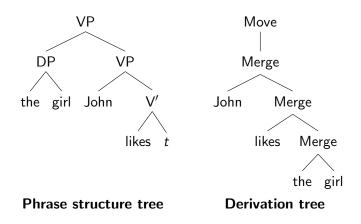
Outline

- 2 Parsing Minimalist Grammars
 - Stabler's Top-Down Parser
 - Evaluation Metrics for Processing Predictions
- 3 Predictions for Processing Difficulty
 - SC/RC vs RC/SC
 - Subject Gaps vs Object Gaps
 - Further Considerations

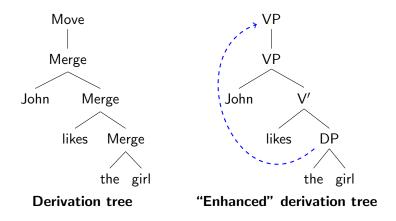

Conclusion

MGs	MG Parser	Processing	Conclusion
00000			
Minimalist	Grammars (MGs)		

- mildly context-sensitive formalization of Minimalist syntax (Chomsky 1995; Stabler 1997)
 - generates all context-free languages
 - generates some context-sensitive languages
- grammar is fully specified by lexicon
- lexicon = finite set of feature-annotated words
- features trigger structure-building operations Merge and Move
- Merge: combine two trees into a new tree
- Move: move a subtree of tree t to the left of the root of t


MGs	MG Parser	Processing	Conclusion
0000			

Sketch of a Simple Merge Derivation


MGs	MG Parser	Processing	Conclusion
00000			

Sketch of a Derivation with Move

A More Readable Variant of Derivation Trees

	T NA		
00000			
MGs	MG Parser	Processing	Conclusion

Why Derivation Trees Matter

- All information encoded in derivation trees
- Derivation trees automatically translated into corresponding phrase structure trees

 $\label{eq:phrase} \begin{array}{l} \mbox{Phrase structure trees are redundant!} \\ \mbox{Derivation tree} = \mbox{full description of sentence structure} \end{array}$

- Crucial: derivation trees are context-free.
- Hence we can build on standard parsing techniques for CFGs.

MGs 0000●	MG Parser	Processing	Conclusion ○

Why Derivation Trees Matter

- All information encoded in derivation trees
- Derivation trees automatically translated into corresponding phrase structure trees

 $\label{eq:phrase structure trees are redundant!} \\ Derivation tree = full description of sentence structure$

- Crucial: derivation trees are context-free.
- Hence we can build on standard parsing techniques for CFGs.

MGs 0000●	MG Parser	Processing	Conclusion O
Why Derivation	n Trees Matter		

- - All information encoded in derivation trees
 - Derivation trees automatically translated into corresponding phrase structure trees

 $\label{eq:phrase structure trees are redundant!} \\ Derivation tree = full description of sentence structure$

- Crucial: derivation trees are context-free.
- Hence we can build on standard parsing techniques for CFGs.

MGs 00000	MG Parser • 000000			Processing	Conclusion O
	 D	D	c	CEC	

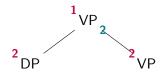
Incremental Top-Down Parser for CFGs

Stabler (2011, 2012) presents an MG parser similar to top-down CFG parsers.

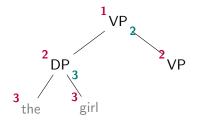
Incremental Top-Down CFG Parser

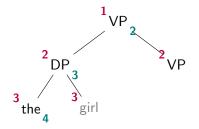
- Conjecture start symbol
- If the leftmost symbol is

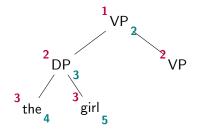
non-terminal apply a matching rewrite rule terminal scan first unscanned word of input

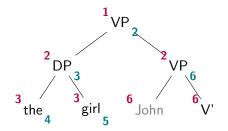

- Stop if
 - all non-terminals have been expanded, and
 - all terminals have triggered a scan step, and
 - all words have been scanned
- Return derivation tree

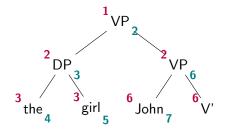
MGs 00000 MG Parser ○●○○○○○ Processing

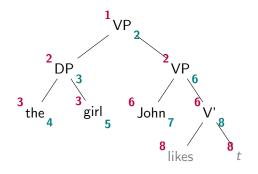

Conclusion

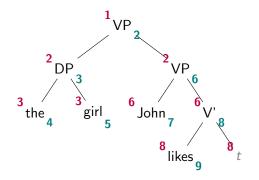

- Start with VP
- $\textcircled{O} \mathsf{VP} \to \mathsf{DP} \mathsf{VP}$
- \bigcirc DP \rightarrow the girl
- ④ Scan the
- 5 Scan girl
- $\bigcirc VP \rightarrow John V'$
- O Scan John
- $\ \ \, \mathbf{0} \ \ \, \mathbf{V}' \to \mathsf{likes} \ t$
- Scan likes
- Scan t (= empty string)

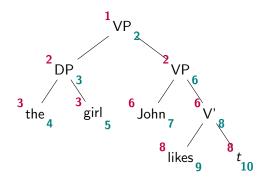

- Start with VP
- ${\rm 2 \hspace{-0.5mm} VP} \to {\rm DP} \; {\rm VP}$
- **OP** $\rightarrow the girl$
- ④ Scan the
- 5 Scan girl
- $\textcircled{0} \mathsf{VP} \to \mathsf{John} \mathsf{V'}$
- O Scan John
- $\textcircled{0} V' \to \mathsf{likes} \ t$
- Scan likes
- Scan t (= empty string)


- Start with VP
- ${\rm 2 \hspace{-0.5mm} VP} \to {\rm DP} \; {\rm VP}$
- $\textbf{3} \ \mathsf{DP} \to \mathsf{the} \ \mathsf{girl}$
- Is Scan the
- 5 Scan girl
- $\textcircled{O} \mathsf{VP} \to \mathsf{John} \mathsf{V'}$
- O Scan John
- $\textcircled{0} V' \to \mathsf{likes} \ t$
- Scan likes
- Scan t (= empty string)

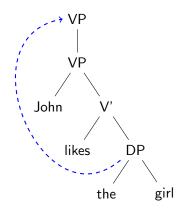

- Start with VP
- ${\rm 2 \hspace{-0.5mm} VP} \to {\rm DP} \; {\rm VP}$
- $\textbf{O} \mathsf{DP} \to \mathsf{the} \mathsf{ girl}$
- Scan the
- 5 Scan girl
- $\textcircled{O} \mathsf{VP} \to \mathsf{John} \mathsf{V'}$
- O Scan John
- ${\small \textcircled{\ 0 \ }} V' \to {\sf likes} \ t$
- Scan likes
- Scan t (= empty string)


- Start with VP
- ${\rm 2 \hspace{-0.5mm} VP} \to {\rm DP} \; {\rm VP}$
- $\textbf{3} \ \mathsf{DP} \to \mathsf{the} \ \mathsf{girl}$
- Scan the
- Scan girl
- $\textcircled{0} \mathsf{VP} \to \mathsf{John} \mathsf{V'}$
- O Scan John
- $\textcircled{0} V' \to \mathsf{likes} t$
- Scan likes
- Scan t (= empty string)

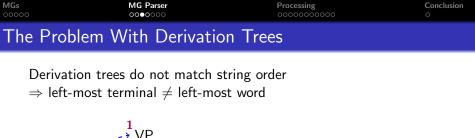

- Start with VP
- ${\rm 2 \hspace{-0.5mm} VP} \to {\rm DP} \; {\rm VP}$
- $\textbf{3} \ \mathsf{DP} \to \mathsf{the} \ \mathsf{girl}$
- Scan the
- Scan girl
- ${\rm \textcircled{o}} \ VP \to John \ V'$
- O Scan John
- $\textcircled{0} V' \to \mathsf{likes} t$
- Scan likes
- Scan t (= empty string)

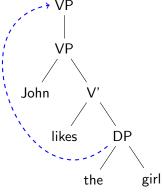

- Start with VP
- ${\rm 2 \hspace{-0.5mm} VP} \to {\rm DP} \; {\rm VP}$
- $\textbf{3} \ \mathsf{DP} \to \mathsf{the} \ \mathsf{girl}$
- Scan the
- Scan girl
- ${\rm \textcircled{o}} \ VP \to John \ V'$
- Scan John
- $\textcircled{0} V' \to \mathsf{likes} t$
- Scan likes
- Scan t (= empty string)

- Start with VP
- ${\rm 2 \hspace{-0.5mm} VP} \to {\rm DP} \; {\rm VP}$
- $\textbf{O} \mathsf{DP} \to \mathsf{the} \mathsf{ girl}$
- Scan the
- Scan girl
- $\textcircled{O} VP \rightarrow John ~V'$
- O Scan John
- $0 V' \to \text{likes } t$
- Scan likes
- Scan t (= empty string)

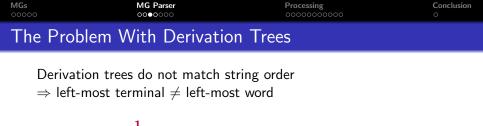

- Start with VP
- ${\rm 2 \hspace{-0.5mm} VP} \to {\rm DP} \; {\rm VP}$
- ${\rm ③}~{\rm DP} \rightarrow {\rm the~girl}$
- Scan the
- Scan girl
- $\textcircled{O} VP \to John V'$
- O Scan John
- $\bullet V' \to \mathsf{likes} \ t$
- Scan likes
- Scan t (= empty string)

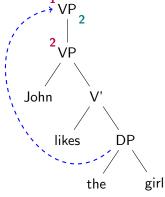
- Start with VP
- ${\rm 2 \hspace{-0.5mm} VP} \to {\rm DP} \; {\rm VP}$
- ${\rm ③}~{\rm DP} \rightarrow {\rm the~girl}$
- Scan the
- **5** Scan girl
- $\textcircled{O} \mathsf{VP} \to \mathsf{John} \mathsf{V'}$
- Scan John
- $\bullet V' \to \mathsf{likes} \ t$
- Scan likes
- Scan t (= empty string)


MGs 00000	MG Parser ○○●○○○○	Processing	Conclusion O
The Prob	lem With Derivatio	on Trees	
Derivat	ion trees do not match s	string order	


 \Rightarrow left-most terminal \neq left-most word

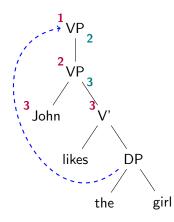
- Start with Move


- Scan John Failure!



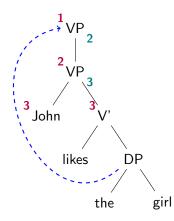
Start with Move

- Scan John Failure!



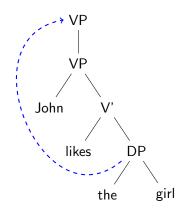
- Start with Move
- Merge \Rightarrow John Merge
- Scan John
 Failure!

 \Rightarrow left-most terminal \neq left-most word



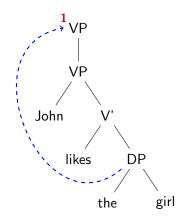
- Start with Move

Scan John Failure!


- Derivation trees do not match string order
 - \Rightarrow left-most terminal \neq left-most word

- Start with Move

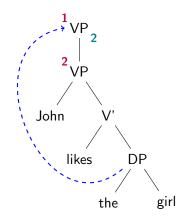
- Scan John
 Failure!


MGs		MG Parse	er		Proce	essing	Conclusion
		0000000			0000		
<u> </u>		-		D 1			

- Conjecture top-Mover
 - $Move \Rightarrow Merge$
- Merge \Rightarrow John Merge
- Delay Scan John
 Merge ⇒ likes Merge
- Delay Scan *likes* Merge ⇒ the[top] girl
- Mover found!
 - Scan the
- O Scan girl
- Scan John
- Scan likes

MGs	MG Parser	Processing	Conclusion
	0000000		

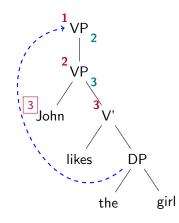
Steps must be **delayed** until we have found the leftmost word! \Rightarrow symbols crossed by mover must be kept in memory



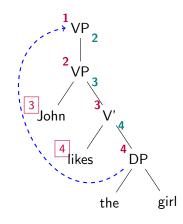
- Conjecture top-Mover
- ③ Delay Scan John Merge ⇒ likes Merge
- Delay Scan *likes* Merge ⇒ the[top] girl
- **Mover found!**

Scan the

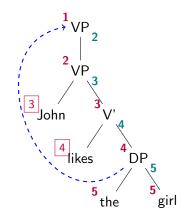
- O Scan girl
- Scan John
- Scan likes


MGs		MG Parse	er		Proce	essing	Conclusion	
00000 000000								
_ .			-		- -			

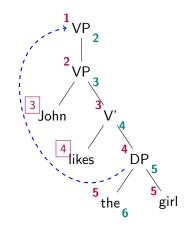
- Conjecture top-Mover


- Delay Scan John Merge ⇒ likes Merge
- Delay Scan *likes* Merge ⇒ the[top] girl
- Mover found!
 - Scan the
- O Scan girl
- Scan John
- Scan likes

MGs	MG Parser	Processing	Conclusion
	0000000		
B 1 11	T D : D		

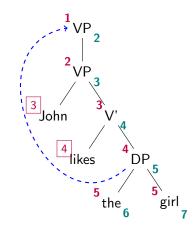

- Conjecture top-Mover
- $\textbf{0} Merge \Rightarrow John Merge$
 - Delay Scan John Merge ⇒ likes Merge
- Delay Scan *likes* Merge ⇒ the[top] girl
- **6** Mover found!
 - Scan the
- O Scan girl
- Scan John
- Scan likes

MGs		MG Parse	er	Proce	essing	Conclusion	
	00000 000000						
D ·			_				

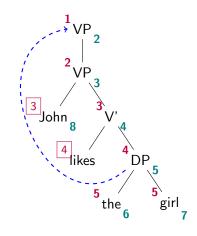

- Conjecture top-Mover
- $\textbf{0} Merge \Rightarrow John Merge$
- Oelay Scan John
 Merge ⇒ likes Merge
- Delay Scan *likes* Merge ⇒ the[top] girl
- **6** Mover found!
 - Scan the
- O Scan girl
- Scan John
- Scan likes

MGs		MG Parse	er	Proce	essing	Conclusion	
	00000 000000						
D ·			_				

- Conjecture top-Mover
- $\textbf{0} Merge \Rightarrow John Merge$
- ④ Delay Scan John
 Merge ⇒ likes Merge
- Delay Scan *likes* Merge ⇒ the[top] girl
- Mover found!
 - Scan the
- O Scan girl
- Scan John
- Scan likes

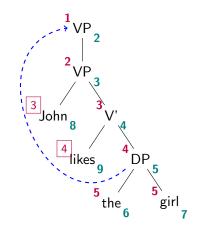

MGs		MG Parse	er	Proce	essing	Conclusion	
	00000 000000						
D ·			_				

- Conjecture top-Mover


- ④ Delay Scan John
 Merge ⇒ likes Merge
- Delay Scan *likes* Merge ⇒ the[top] girl
- Mover found!
 - Scan the
- O Scan girl
- Scan John
- Scan likes

MGs		MG Parse	er	Proce	essing	Conclusion	
	00000 000000						
D ·			_				

- Conjecture top-Mover
- $\textbf{0} Merge \Rightarrow John Merge$
- ④ Delay Scan John
 Merge ⇒ likes Merge
- Delay Scan *likes* Merge ⇒ the[top] girl
- Mover found!
 - Scan the
- Scan girl
- Scan John
- Scan likes


MGs		MG Parse	er	Proce	essing	Conclusion	
	00000 000000						
D ·			_				

- Conjecture top-Mover
- $\textbf{0} Merge \Rightarrow John Merge$
- ④ Delay Scan John
 Merge ⇒ likes Merge
- Delay Scan *likes* Merge ⇒ the[top] girl
- Mover found!
 - Scan the
- Scan girl
- Scan John
- Scan likes

MGs		MG Parse	er	Proce	essing	Conclusion	
	00000 000000						
D ·			_				

Steps must be **delayed** until we have found the leftmost word! \Rightarrow symbols crossed by mover must be kept in memory

- Conjecture top-Mover
- $\textbf{0} Merge \Rightarrow John Merge$
- ④ Delay Scan John
 Merge ⇒ likes Merge
- Delay Scan *likes* Merge ⇒ the[top] girl
- Mover found!

Scan the

- Scan girl
- Scan John
- Scan likes

MGs	MG Parser	Processing	Conclusion
00000		0000000000	○
Tenure as l	_inking Hypothe	sis for Processing	

Kobele et al. (2012) link parsing behavior to processing difficulty:

Tenure Time a symbol stays in memory

= Subscript-Superscript

Max Greatest tenure among all nodes in derivation

Max Linking Hypothesis

What Matters for Processing Difficulty

• Max value of the correct derivation

What Doesn't Matter

- Size of search space/number of conjectured derivations
- Number of items kept in memory
- Type of item memorized (e.g. R-expression vs anaphor)
- lexical frequency/probabilities

MGs	MG Parser	Processing	Conclusion
00000	○○○○●○○		○
Tenure as L	inking Hypothes	is for Processing	

Kobele et al. (2012) link parsing behavior to processing difficulty:

Tenure Time a symbol stays in memory

= Subscript-Superscript

Max Greatest tenure among all nodes in derivation

Max Linking Hypothesis

What Matters for Processing Difficulty

• Max value of the correct derivation

What Doesn't Matter

- Size of search space/number of conjectured derivations
- Number of items kept in memory
- Type of item memorized (e.g. R-expression vs anaphor)
- lexical frequency/probabilities

MGs	MG Parser	Processing	Conclusion
00000	○○○○●○		o
Why this is	s Attractive		

- The MG parser is very simple.
- The linking hypothesis is very simple.
- Nonetheless we get some interesting predictions:
 - Crossing dependencies easier than nested dependencies (Bach et al. 1986)
 - Results can vary with syntactic analysis, for instance head movement VS remnant movement
 ⇒ processing data differentiates abstract analyses

The Big Promise

- extremely simple processing model (definitely too simple)
 - no number crunching
 - pen and paper is enough
- yet good enough to distinguish between competing proposals from the Minimalist literature

MGs	MG Parser	Processing	Conclusion
00000	○○○○●○		o
Why this i	s Attractive		

- The MG parser is very simple.
- The linking hypothesis is very simple.
- Nonetheless we get some interesting predictions:
 - Crossing dependencies easier than nested dependencies (Bach et al. 1986)
 - Results can vary with syntactic analysis, for instance head movement VS remnant movement
 ⇒ processing data differentiates abstract analyses

The Big Promise

- extremely simple processing model (definitely too simple)
 - no number crunching
 - pen and paper is enough
- yet good enough to distinguish between competing proposals from the Minimalist literature

MGs	MG Parser	Processing	Conclusion
00000	○○○○○●		\circ
Too Good to b	e True?		

Why should **Max** be the best metric?

MaxLex Max of lexical nodes

Box number of items kept in memory

= number of boxed superscripts

BoxLex number of lexical items kept in memory

±Empty for each metric, another variant that does not count unpronounced nodes

Next Steps

- Pick phenomena that are most likely to be adequately explained by memory limitations
- Mark up correct derivation trees with indices
- See which metric gives best results across the board

MGs	MG Parser	Processing	Conclusion
00000	○○○○○○●		O
Too Good	to be True?		

Why should **Max** be the best metric?

MaxLex Max of lexical nodes

Box number of items kept in memory

= number of boxed superscripts

BoxLex number of lexical items kept in memory

±Empty for each metric, another variant that does not count unpronounced nodes

Next Steps

- Pick phenomena that are most likely to be adequately explained by memory limitations
- Mark up correct derivation trees with indices
- See which metric gives best results across the board

SC/RC vs RC/SC

SC/RC vs RC/SC

A sentential complement (SC) containing a relative clause (RC) is easier to parse than an RC containing an SC.

- The fact [SC that the employee; [RC who the manager hired t;] stole office supplies] worried the executive.
- (2) The executive [RC who the fact [SC that the employee stole office supplies] worried t_i] hired the manager.

MGs	MG Parser	Processing	Conclusion
00000		OOOOOOOOO	○
Syntactic Analy	vsis		

- Following Kobele et al. we use a promotion analysis of RCs.
 - Head noun is merged as argument DP of verb inside RCs
 Head noun moves into Spec,CP of RC

[DP the [CP [DP ε employee] [C' who the manager hired t_{DP}]]

• **But**: Same results with other analyses as long as something moves from within RC to the left of *who*

MGs 00000	MG Parser	Processing	Conclusion O
SC/RC Derivat	tion		
⁰ CP ₁ ¹ C ₂ ¹ TP ₃ ³ T' ₄ ⁴ T ₃₆ ⁶ ther ⁶ ther ⁶ thet ¹⁰ that ₁₁	$\overbrace{\substack{10 \text{ TP}_{12} \\ 7 \text{ i}^{2}\text{ T'}_{13}}^{10}}_{12} \overbrace{\substack{113 \text{ T}_{32} \\ 14\text{ DP}_{15}}^{13}\text{ T}_{32}}^{113} \overbrace{\substack{113 \text{ T}_{32} \\ 14\text{ DP}_{15}}^{13}\text{ NP}_{17} \leftarrow 233\text{ st}_{17}^{33}\text{ st}_{18}^{11} + 233\text{ st}_{17}^{11} + 2333\text{ st}_{17}^{11} + 2333\text{ st}_$	Max MaxLex Box BoxLex P ₃₉ executive ₄₁ 1^{14} V' ₃₃ 1^{14} V' ₃₄ 1^{14} V' ₃₅ 1^{14} V' ₃₅ $1^$	32/32 32/9 9/6 7/4

MGs 00000	MG Parser	Processing	Conclusion O
RC/SC De	erivation		
¹ C ₂ ⁵ DP ⁶ the ₇ ⁹ who ₂₆	$\stackrel{6}{\overset{6}{\text{NP}_8} \leftarrow 3^{38}\text{hi}}{\overset{7}{\text{NP}_{10}}} \\ \stackrel{9}{\overset{7}{\text{TP}_{10}}}{\overset{9}{\text{TP}_{10}}} \\ \stackrel{1}{\overset{1}{\text{10}}} \\ \stackrel{1}{\overset{1}{\text{10}}} \\ \stackrel{1}{\overset{1}{\text{10}}} \\ \stackrel{1}{\overset{1}{\text{10}}} \\ \stackrel{1}{\overset{1}{\text{22}}} \\ \stackrel{1}{\overset{1}{\text{22}}} \\ \stackrel{1}{\overset{1}{\text{22}}} \\ \stackrel{1}{\overset{1}{\text{22}}} \\ \stackrel{1}{\overset{1}{\text{15}}} \\ \stackrel{1}{\text{fact}_{28}} \\ \stackrel{1}{\overset{1}{\text{15}}} \\ \stackrel{1}{\overset{1}{\text{16}}} \\ \stackrel{1}{\overset{1}{\text{16}}} \\ \stackrel{1}{\overset{1}{\text{16}}} \\ \stackrel{1}{\overset{1}{\text{18}}} \\ \stackrel{1}{\text{T}_{32}} \\ \stackrel{1}{\overset{1}{\overset{1}{\text{19}}} \\ \stackrel{1}{\overset{1}{\text{19}}} \\ \stackrel{1}{\overset{1}{\text{19}}} \\ \stackrel{1}{\overset{1}{\text{19}}} \\ \stackrel{1}{\overset{1}{\text{19}}} \\ \stackrel{1}{\overset{1}{\text{19}}} \\ \stackrel{1}{\overset{1}{\text{19}}} \\ \stackrel{1}{\overset{1}{\text{18}}} \\ \stackrel{1}{\overset{1}{\overset{1}{\text{18}}} \\ \stackrel{1}{\overset{1}{\text{18}}} \\ \stackrel{1}{\overset{1}{\overset{1}{\text{18}}} \\ \stackrel{1}{\overset{1}{\overset{1}{\text{18}}} \\ \stackrel{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$	¹⁸ ¹⁸ VP ₁₉	33/33 33/17 14/11 12/9

MGs	MG Parser	Processing	Conclusion
		000000000	
Analysis			

- Box metrics get the contrast.
 - SC/RC

elements of SC preceding RC can be scanned right away, only RC delayed by movement of head noun

• RC/SC

both RC and SC delayed by movement of head noun

- Max metrics give mixed results. Max
 - highest value at matrix T-head due to size of subjects
 - both SC/RC and RC/SC yield big subjects
 - difference too small, a single adjective modifying *fact* can tip scale in favor of RC/SC

- if only pronounced words are considered, highest value at who
- tenure of who increases with distance to head noun
- RC/SC harder because of increased size of RC

MGs	MG Parser	Processing	Conclusion
00000		○○○○●○○○○○○	O
Analysis			

- Box metrics get the contrast.
 - SC/RC

elements of SC preceding RC can be scanned right away, only RC delayed by movement of head noun

• RC/SC

both RC and SC delayed by movement of head noun

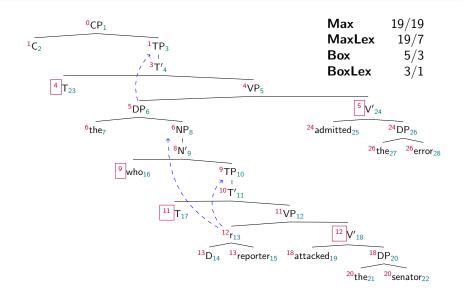
- Max metrics give mixed results.
 Max
 - highest value at matrix T-head due to size of subjects
 - both SC/RC and RC/SC yield big subjects
 - difference too small, a single adjective modifying *fact* can tip scale in favor of RC/SC

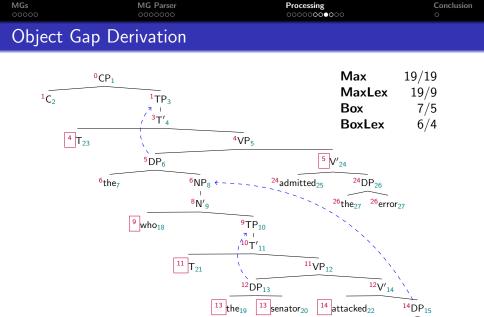
- if only pronounced words are considered, highest value at who
- tenure of who increases with distance to head noun
- RC/SC harder because of increased size of RC

Processing

Conclusion ○

Subject Gaps vs Object Gaps


Subject Gaps vs Object Gaps


An RC containing a subject gap is easier to parse than an RC containing an object gap.

- (3) The reporter_i [CP who t_i attacked the senator] admitted the error.
- (4) The reporter_i [CP who the senator attacked t_i] admitted the error.

MGs	MG Parser	Processing	Conclusion
00000	000000	00000000000	
$c \mapsto c$	D I II		

Subject Gap Derivation

13

senator₂₀

14

attacked₂₂

 ${}^{15}D_{16}$

 $^{15} {\rm reporter}_{17}$

MGs	MG Parser	Processing	Conclusion	
00000		○○○○○○○●○○	o	
Analysis				

- Box metrics get the contrast, again.
 - object gap leaves more material between landing site and mover
 - number of delayed scan steps increases with moved distance
- Max metrics give mixed results, again. Max
 - highest value at matrix T-head due to size of subjects
 - type of RC has no effect on size of subject
 - both derivations must have same maximum tenure

- if only pronounced words are considered, highest value at who
- tenure of who increases with distance to head noun
- object gap harder because of increased distance

MGs	MG Parser	Processing	Conclusion	
00000		○○○○○○○○○○○	O	
Analysis				

- Box metrics get the contrast, again.
 - object gap leaves more material between landing site and mover
 - number of delayed scan steps increases with moved distance
- Max metrics give mixed results, again. Max
 - highest value at matrix T-head due to size of subjects
 - type of RC has no effect on size of subject
 - both derivations must have same maximum tenure

- if only pronounced words are considered, highest value at who
- tenure of who increases with distance to head noun
- object gap harder because of increased distance

MGs	MG Parser	Processing	Conclusion
00000		○○○○○○○●○	O
All Metrics are	Insufficient		

Box/BoxLex

- good results for relative clauses
- Box: increasing difficulty for all left embedding constructions
- BoxLex: constant difficulty for some left embedding
- **But**: do not capture difference between crossing and nested dependencies.

Max/MaxLex

- Only **MaxLex** restricted to overt material captures RC contrasts.
- Both capture difference between crossing and nesting.
- Max: increasing difficulty for all left embedding constructions
- MaxLex: constant difficulty for some left embedding

MGs	MG Parser	Processing	Conclusion
00000		○○○○○○○○●○	O
All Metrics are	Insufficient		

Box/BoxLex

- good results for relative clauses
- Box: increasing difficulty for all left embedding constructions
- BoxLex: constant difficulty for some left embedding
- **But**: do not capture difference between crossing and nested dependencies.

Max/MaxLex

- Only **MaxLex** restricted to overt material captures RC contrasts.
- Both capture difference between crossing and nesting.
- Max: increasing difficulty for all left embedding constructions
- MaxLex: constant difficulty for some left embedding

MGs	MG Parser	Processing	Conclusion
		000000000	

Next Step: Head-Final RCs

- Even in languages with head-final RCs, subject gaps are preferred.
- This is not captured by the metrics. At best we get a tie.

• Further complication

Basque may have a preference for object gaps. (Carreiras et al. 2010)

MGs 00000	MG Parser	Processing	Conclusion ●
Summary			

- MG derivation trees allow for very simple top-down parsing
- Idea: test syntactic proposals by linking parser behavior to processing difficulty
- Problem: Is there a simple yet good enough metric?

Phenomenon	Max	MaxLex	Box	BoxLex
SC/RC vs RC/SC	\sim/\sim	$\sim/{ m yes}$	yes/yes	yes/yes
S-Gap vs O-Gap	no/no	no/yes	yes/yes	yes/yes
Nesting vs Crossing	yes/yes	yes/yes	no/no	no/no
Left embedding	no/no	no/\sim	no/no	no/~
Head-Initial RC	no/no	no/no	no/no	no/no

References

- Bach, Emmon, Colin Brown, and William Marslen-Wilson. 1986. Crossed and nested dependencies in German and Dutch: A psycholinguistic study. *Language and Cognitive Processes* 1:249–262.
- Carreiras, Manuel, Jon Andoni Duñabeitia, Marta Vergara, Irene de la Cruz-Pavía, and Itziar Laka. 2010. Subject relative clauses are not universally easier to process: Evidence from basque. *Cognition* 115:79–92.

Chomsky, Noam. 1995. The minimalist program. Cambridge, Mass.: MIT Press.

- Kobele, Gregory M., Sabrina Gerth, and John T. Hale. 2012. Memory resource allocation in top-down minimalist parsing. In *Proceedings of Formal Grammar* 2012.
- Stabler, Edward P. 1997. Derivational minimalism. In Logical aspects of computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in Computer Science, 68–95. Berlin: Springer.
- Stabler, Edward P. 2011. Computational perspectives on minimalism. In Oxford handbook of linguistic minimalism, ed. Cedric Boeckx, 617–643. Oxford: Oxford University Press.
- Stabler, Edward P. 2012. Bayesian, minimalist, incremental syntactic analysis. Topics in Cognitive Science 5:611–633.